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Abstract: Hydrogen and renewable electricity-based microgrid is considered to be a promising
way to reduce carbon emissions, promote the consumption of renewable energies and improve the
sustainability of the energy system. In view of the fact that the existing day-ahead optimal operation
model ignores the uncertainties and fluctuations of renewable energies and loads, a two-stage
energy management model is proposed for the sustainable wind-PV-hydrogen-storage microgrid
based on receding horizon optimization to eliminate the adverse effects of their uncertainties and
fluctuations. In the first stage, the day-ahead optimization is performed based on the predicted
outpower of WT and PV, the predicted demands of power and hydrogen loads. In the second stage,
the intra-day optimization is performed based on the actual data to trace the day-ahead operation
schemes. Since the intra-day optimization can update the operation scheme based on the latest
data of renewable energies and loads, the proposed two-stage management model is effective in
eliminating the uncertain factors and maintaining the stability of the whole system. Simulations
show that the proposed two-stage energy management model is robust and effective in coordinating
the operation of the wind-PV-hydrogen-storage microgrid and eliminating the uncertainties and
fluctuations of WT, PV and loads. In addition, the battery storage can reduce the operation cost,
alleviate the fluctuations of the exchanged power with the power grid and improve the performance
of the energy management model.

Keywords: sustainable wind-PV-hydrogen-storage microgrid; energy management; power-to-hydrogen;
receding horizon optimization; storage

1. Introduction

In order to protect the environment and cope with the energy crisis, the renewable
energies, such as wind and solar, are being exploited in a more widespread way. However,
the randomness and intermittency of renewable electricity are still challenging issues for
the large-scale connection to the power grid [1].

Since hydrogen has the advantages of high-energy density, being environmentally
friendly and easy storage, it has been regarded as a promising energy carrier and electricity
storage medium to reduce carbon emission, improve the sustainability of the energy system,
promote the consumption of renewable energies and alleviate their volatility [2]. Hydrogen
can either be produced centrally from renewable electricity through electrolyzers situated
close to wind or PV power plants and then transported to hydrogen consumers or can be
directly generated on sites close to hydrogen consumers [3]. Though mass production in a
central manner is more economical, the high transportation cost may erase the advantages
of this hydrogen production mode. Consequently, the distributed hydrogen production
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mode based on a renewable energy microgrid is considered to be an effective way to reduce
hydrogen production and transportation costs and promote the consumptions of distributed
renewable energies [4]. The distributed hydrogen production mode based on a renewable
energy microgrid has attracted more attention, and research is focused on the aspects of
modeling, techno-economic analysis, cooperative operation and optimal planning, etc. For
example, the accurate modeling method of the advanced alkaline electrolyzer system is
proposed and demonstrated in [5]. The techno-economic feasibility of the production of
hydrogen from the PV-wind microgrid has been evaluated in [6]. A cooperative operation
method to increase profits for wind turbines and onsite hydrogen production and fueling
stations has been proposed in [7]. A Nash-bargaining-based cooperative planning and
operation method for a wind-hydrogen-heat multi-agent energy system has been proposed
in [8]. In addition, optimal capacity planning of an isolated, batteryless, hydrogen-based
microgrid is proposed in [9].

Due to the stochastic volatility of renewable electricity, such as wind power and PV,
not only affecting the stable operation of the hydrogen production system, but also affecting
hydrogen purity, the question of how to relieve the adverse effects of the uncertainties and
volatility of the renewable energies is still a critical challenge and an open problem, which
has drawn more and more attention. The energy management strategy based on model
predictive controller or receding horizon optimization is considered to be one of the promis-
ing methods. For instance, an energy management strategy is proposed for a renewable
hydrogen-based microgrid in [10], and both the long- and short-term optimal operation
schedules are obtained by the model predictive controller. In [11], an energy management
strategy based on the receding-horizon stochastic optimization method is proposed to
increase renewable penetration and improve operational flexibility of the PV-hydrogen mi-
crogrids. In [12], a flexible weighted model predictive control energy management strategy
is proposed for a multi-energy microgrid with the hydrogen energy storage system and
the heat storage system. In [13], a real-time energy management method based on model
predictive control is proposed for a microgrid composed of PV, battery, electrolyzer and fuel
cell. In [14], in order to maximize the operational benefit of the microgrid and minimize
the degradation causes of each storage system, energy management based on the model
predictive control method is proposed. The energy management strategies proposed above
all show good performance in relieving the uncertainties of renewable energies or loads.
Furthermore, the energy storage as well as the demand response technologies is also help-
ful in mitigating the power fluctuations of the renewable energy microgrid. For example,
in [15], the conventional operation strategy, demand response strategy for peak shaving,
has been comparatively studied for grid-connected photovoltaic (PV)-hydrogen/battery
systems and the battery storage has an important role in reducing the operation cost and
mitigating the power fluctuation. In [16], the accurate model of a hybrid energy system
including solar energy, lithium-ion battery and hydrogen is proposed; the coordinated op-
erations of the short-term lithium-ion battery and long-term hydrogen storage show great
advantage in keeping energy balanced and mitigating the power fluctuation of renewable
energies. In [17], the advantages in reducing operation cost and relieving the intermittent
use of a pumped-storage system with a dynamic tariff demand response strategy have
been demonstrated in a system consisting of wind turbines, a photovoltaic array and a
pumped hydro energy storage system. In order to improve the reliability and mitigate
the stochastic volatility of wind farms, an optimal coordination operation and planning
method of kinetic energy storage is proposed in [18]; simulation results show that the
proposed method is effective in identifying the minimum capacity of kinetic energy storage
and improving power supply reliability. Likewise, an optimization energy management
method is proposed in [19] to reduce the operation cost of a wind power plant-flywheel
energy storage system; simulation results show that the flywheel energy storage method is
effective in relieving the stochastic fluctuation of wind power. In [20], a planning method is
proposed to optimize the structure of the PV-wind-electrochemical storage system, and the
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energy storage system has been shown to play an important role in improving the power
supply reliability.

These research results have laid a good foundation for the energy management prob-
lem of the renewable-energy-based microgrid. However, the energy management problem
for the wind-PV-hydrogen-battery microgrid is still an open problem; the questions of how
to mitigate the adverse effects of the stochastic and uncertain factors of renewable electricity
and how to coordinate the operation of the whole system still need further investigation.

In order to alleviate the uncertainties and fluctuations of outpower of WT and PV, and
the power and hydrogen demands, this paper proposes a two-stage energy management
model for the sustainable wind-PV-hydrogen-storage microgrid based on receding horizon
optimization, and the role of energy storage has also been explored. The main contributions
are as follows.

(1) A two-stage energy management model based on receding horizon optimization is
proposed to tackle the uncertainties and randomness of renewable energies and loads,
as well as to minimize the operation cost.

(2) The day-ahead optimization is performed to minimize the overall operation cost,
while the intra-day optimization model is carried out to trace the day-ahead schemes
and minimize the deviations of the intra-day and the day-ahead operation strategies.

(3) The roles of battery storage in reducing operation cost and improving the performance
of the energy management model have been explored and demonstrated.

The remainder of this paper is organized as follows. Section 2 introduces the struc-
tures and the subsystem models of the sustainable wind-PV-hydrogen-storage microgrid.
Section 3 proposes the two-stage energy management model. Section 4 presents the simu-
lation and result analysis. At last, Section 5 draws the conclusion.

2. The Sustainable Wind-PV-Hydrogen-Storage Microgrid

Figure 1 illustrates the sustainable wind-PV-hydrogen-storage (WPHS) microgrid. It
is mainly composed of wind turbines (WT), photovoltaics (PV), battery storage and the
power-to-hydrogen (P2H) subsystem. The WPHS microgrid is responsible for meeting the
hydrogen demands and power demands of the end users. The sustainable WPHS microgrid
is connected to the upstream power grid, and the renewable electricity is mainly consumed
locally to produce hydrogen and meet the power loads. Bilateral power exchange with
the power grid is supported, the surplus power can be fed back to the power grid to make
profit and the insufficient electricity can also be purchased from the power grid. Therefore,
the WPHS microgrid comprises a high proportion of renewable energy systems, which can
realize the sustainability of energy supply. The models of WT, PV, battery storage and the
power-to-hydrogen subsystem are as follows.
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2.1. The Wind Turbine Model

The outpower of wind turbine can be expressed as the function of wind speed [15].

Pt
WT =


0 vt ≤ vin, vt ≥ vout

vt−vin
vr−vin

PRWT vin ≤ vt ≤ vr

PRWT vr ≤ vt ≤ vout

(1)

where Pt
WT is the outpower of wind turbine at time slot t; vt is the wind speed at time slot t;

vin and vout are cut-in and cut-out wind speed, respectively; vr is the rated wind speed of
wind turbine; PRWT is the rated power of wind turbine.

2.2. The PV Model

The outpower of PV panels can be expressed as the function of solar radiation intensity
and the cell temperature [21].

Pt
PV = NPV · PrSTC · It

ISTC
[1 + 0.005 · (Tt − 25)] (2)

where Pt
PV is the outpower of PV array; NPV is the number of PV panes; ISTC is the

standard irradiance, 1000 W/m2; PrSTC is the rated power of each PV panel at standard
test conditions (cell temperature is 25 ◦C, irradiance is 1000 W/m2); It and Tt are irradiance
and cell temperature (which approximates to the ambient temperature) at time slot t.

2.3. The Battery Storage Model

The battery storages are helpful in alleviating the volatility of renewable energies. Let
Et

bat be the energy stored in the batteries at time slot t; Emin
bat and Emax

bat denote the minimum
and maximum capacity of battery storages, respectively. Let Pt

bat,c and Pt
bat,d denote the

charging and discharging power, respectively, and let Pmax
bat,c and Pmax

bat,d denote the maximum
values of charging and discharging power, respectively. Then, the battery storage model
can be formulated as follows [22].

Et
bat = Et−1

bat + (Pt
bat,cebat,c −

Pt
bat,d

ebat,d
)∆t

0 ≤ Pt
bat,c ≤ ut

bat · Pmax
bat,c

0 ≤ Pt
bat,d ≤ (1 − ut

bat)·P
max
bat,d

Emin
bat ≤ Et

bat ≤ Emax
bat

ET
bat = E1

bat

(3)

where the first equation of Equation (3) denotes the stored energy variation during time
interval ∆t before and after charging or discharging. The second and third items of
Equation (3) indicate that the charging and discharging power cannot exceed their maxi-
mums. ut

bat is a binary variable to avoid charging and discharging power simultaneously.
The fourth item of Equation (3) denotes that the stored energy should be constrained
between the minimum and maximum capacity. The last item of Equation (3) shows that
the stored energy at the end of the dispatch period is to be equal to its initial value.

2.4. The Power-to-Hydrogen Subsystem Model

The power-to-hydrogen production system mainly consists of alkaline electrolyzer,
hydrogen compressor and hydrogen storage tank.

2.4.1. The Model of Electrolyzer

Currently the alkaline electrolyzer (AE) and proton exchange membrane (PEM) are
two major ways to produce hydrogen from electricity. The alkaline electrolyzer technology
is more mature and economic, and was thus chosen to produce hydrogen in this paper.
Since the start and response speed of the electrolyzer is quick [16], the ramp up/down
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constraints are assumed to be satisfied in this paper. The mass of hydrogen production of
AE is approximately linear to the consumed power [23].{

mt
H2

= ηH2 Pt
el · ∆t

0 ≤ Pt
el ≤ Pmax

el
(4)

where mt
H2

is the hydrogen mass produced at time slot t, kg; ηH2 is hydrogen production
rate, kg/kW · h; Pt

el denotes the power consumed by electrolyzer at time slot t, kW; ∆t is
the time step; Pmax

el is the maximum power of electrolyzer.

2.4.2. The Model of Hydrogen Compressor

A hydrogen compressor is used to compress the hydrogen into high-pressure hydro-
gen. The power consumption of the hydrogen compressor can be expressed as follows [24]: Pt

com =
CH2 mt

comTinκ

ηcom(κ−1)

[(
Pout
Pin

) κ−1
κ − 1

]
0 ≤ Pt

com ≤ Pmax
com

(5)

where Pt
com is the electric power consumed by compressor at time t; CH2 is the specific

heat of hydrogen at constant pressure, 14.304 kJ/kg · K; mt
com is the hydrogen flow rate

through compressor at time t, kg/s; Tin is the inlet hydrogen temperature (293 K); ηcom is
the efficiency of compressor (0.7); κ is the isentropic exponent of hydrogen (1.4); Pmax

com is the
maximum power of hydrogen compressor.

2.4.3. The Model of Hydrogen Storage Tank

The compressed hydrogen is stored in the hydrogen storage tank. The pressure of the
hydrogen tank can be formulated as follows [25].

Mt+1
H2

= Mt
H2

+ mt
H2

− Lt
H2

Mmin
H2

≤ Mt
H2

≤ Mmax
H2

Mmin
H2

= γminCR
tank, Mmax

H2
= γmaxCR

tank

M0
H2

= MT
H2

= γ0CR
tank,

(6)

where Mt
H2

is the stored hydrogen mass in the hydrogen tank at time slot t, kg; Lt
H2

is the
hydrogen load at time slot t, kg; CR

tank is the capacity of hydrogen tank, kg; γmin and γmax

denote the minimum and maximum ratio of the rated capacity of hydrogen tank; M0
H2

and
MT

H2
are the stored hydrogen at the initial and end time slot, respectively.

3. The Two-Stage Energy Management Model

The randomness and uncertainty of the outpower of WT and PV will affect the stable
operation of the whole system and may reduce the hydrogen purity. As illustrated in
Figure 2, in order to alleviate these adverse effects, a two-stage energy management model
based on receding horizon optimization is proposed for the wind-PV-hydrogen-storage
microgrid. In the first stage of the energy management model, the day-ahead optimization
is performed to minimize the total operational cost based on the predicted outpower of
WT and PV, as well as the predicted power and hydrogen demands, the time-of-use price,
the feed-in tariff and the operation constraints of the whole system. In the second stage of
the energy management model, the intra-day optimization model based on the receding
horizon optimization is executed to eliminate the power fluctuations caused by the forecast
errors. The specific day-ahead optimization and intra-day optimization models will be
formulated in the following subsections.
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3.1. The Day-Ahead Optimization Model

The objective of the day-ahead operation is to minimize the comprehensive operation
cost CDAC, which is composed of the operational and maintenance costs of PV (CPV) and
WT (CWT); the degradation costs of batteries (Cbat) and electrolyzer (Cel); and the net energy
cost (Ce).

The operational and maintenance costs of PV and WT are formulated as the functions
of their output power. 

CPV =
T
∑

t=1
λPV Pt

PV∆t

CWT =
T
∑

t=1
λWT Pt

WT∆t
(7)

where T is the total number of time slots, λPV and λWT are maintenance cost coefficients of
PV and WT, respectively; their values are assumed to be 0.005 ¥/kWh and 0.0045 ¥/kWh,
respectively [26]. Pt

PV and Pt
WT are output power of PV and WT at time slot t, respectively.

The degradation of energy storage is caused by charging and discharging, as well as
the depth of discharge. Refs. [27,28] have shown that the degradation density function of
the state of charge (SoC) is almost flat between minimum and maximum of Soc. Thus, as in
the model in [29–31], the amortized battery degradation cost Cbat can be computed by the
power of discharging and charging (Equation (8)), while the degradation cost of battery
considering the depth of discharge can be found in [17,32].

Cbat =
T

∑
t=1

λbat

(
Pt

bat,c + Pt
bat,d

)
∆t (8)

where Pt
bat,c and Pt

bat,d are the charging and discharging power of battery, respectively. λbat
denotes the degradation cost coefficient.

Similarly, the amortized degradation cost Cel of electrolyzer can be expressed as follows.

Cel =
T

∑
t=1

λel Pt
el∆t (9)

where Pt
el and λel are the consumed power and degradation cost coefficient of electrolyzer,

respectively.
The microgrid is allowed to buy electricity from the utility grid when its electricity is

insufficient and it may sell power back to the grid when its power is surplus. Then, the
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net energy cost is formulated as the electricity purchasing cost minus the revenue from
selling electricity.

Ce =
T

∑
t=1

(
πbPt

b − πsPt
s
)
∆t (10)

where πb and πs denote the electricity buying and selling prices, respectively.Pt
b and Pt

s are
the power purchased from and sold to the utility grid, respectively.

Then, the objective of the day-ahead optimization model can be expressed as follows.

min CDAC = min(CPV + CWT + Cbat + Cel + Ce) (11)

The power balance should be satisfied at each time slot.

Pt
PV + Pt

WT + Pt
b + Pt

bat,d = Pt
bat,c + Pt

el + Pt
com + Pt

s + Pt
load (12)

where Pt
b and Pt

s are the power buying from and selling to the power grid at time slot t,
respectively. Pt

load is the predicted power load at time slot t.
The buying and selling power cannot happen simultaneously. Let Pmax

grid denote the
maximum power allowed when selling to or buying from the power grid, and χt

bs denote
the binary variable; then, the constraints of power exchanged with the power grid can be
formulated as follows. {

0 ≤ Pt
b ≤ χt

bsPmax
grid

0 ≤ Pt
s ≤

(
1 − χt

bs
)

Pmax
grid

(13)

Furthermore, the operation constraints of WT, PV, battery storage and the power-
to-hydrogen subsystem should be satisfied. Then, the day-ahead optimization model in
compact form can be expressed as follows.

min CDAC = min


T
∑

t=1
λPV Pt

PV +
T
∑

t=1
λWT Pt

WT +
T
∑

t=1
λbat

(
Pt

bat,c + Pt
bat,d

)
+

T
∑

t=1
λel Pt

el +
T
∑

t=1

(
πbPt

b − πsPt
s
)


s.t. (1)− (6), (12)− (13)

(14)

3.2. The Intra-Day Optimization Model

According to the day-ahead operation schemes, the intra-day optimization model will
be performed to minimize the operation errors based on the ultra-short-term prediction
data of WT, PV, power and hydrogen demands. The intra-day optimization model is built
based on the receding horizon optimization, which is an effective method to tackle the
uncertainty and volatility of renewable energies and loads. The main idea of the receding
horizon operation is illustrated in Figure 3. It mainly contains the following three steps [3].
(1) Take the day-ahead operation schemes as set points; at the time slot k, solve the intra-day
operation strategies during the receding horizon based on the real-time predicted values
of renewable energy generation, power loads and hydrogen loads. (2) From the first step,
obtain the operation strategies over the k-th to the (k + M − 1)-th time slot. Only the
operation strategies at the k-th slot are implemented. (3) Move to the k + 1-th time slot,
update the prediction data and repeat the first two steps. It is obvious that by means
of receding horizon optimization, the operation strategies are updated step-by-step to
alleviate the impacts of the uncertainty and volatility of renewable energies and loads.

The objective of the intra-day energy management is to trace the day-ahead operation
schemes based on the updated predicted data for the output power of PV and WT, the
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power loads and hydrogen loads. Take the day-ahead operation strategies as set points and
the objection function intra-day energy management can be expressed as follows.

min CIDC = min

k+M−1
∑

t=k

 w1

(
Pt

grid − P̂t
grid

)2
+ w2

(
Pt

el − P̂t
el
)2

+w3
(

Pt
com − P̂t

com
)2

+ w4
(

Pt
bat − P̂t

bat
)2



s.t.



(1)− (6), (12)− (13)
∆Pt

grid =
∣∣∣Pt

grid − P̂t
grid

∣∣∣ ≤ ∆Pmax
grid

∆Pt
el =

∣∣Pt
el − P̂t

el

∣∣ ≤ ∆Pmax
el

∆Pt
com =

∣∣Pt
com − P̂t

com
∣∣ ≤ ∆Pmax

com

∆Pt
bat =

∣∣Pt
bat − P̂t

bat

∣∣ ≤ ∆Pmax
bat

(15)

where Pt
grid = Pt

b − Pt
s , Pt

bat = Pt
bat,c − Pt

bat,d, P̂t
grid, P̂t

el , P̂t
com and P̂t

bat denote the day-ahead
operation schemes of buying power, electrolyzer, compressor and battery storage. w1, w2,
w3 and w4 are weight factors; they can be optimized based on their significance. In this
paper, they are assumed to have equal weights. ∆Pmax

grid , ∆Pmax
el , ∆Pmax

com and ∆Pmax
bat are the

admissible maximum errors of exchanged power, the power of electrolyzer, the power
of compressor and the net charging power of battery storage, respectively. The objective
function (15) of the intra-day operation model is to minimize the operation deviation
between the intra-day strategies and the day-ahead strategies. The constraints are the
operation limitations of each component and the power exchange with the power grid. The
decision variables are the operation strategies of each component and the power exchange
with the power grid; the decision variable vector is x =

[
Pt

grid, Pt
el , Pt

com, Pt
bat

]
. More details

about the input and output variables of the two-stage energy management model can be
found in Appendix A.
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Figure 3. Schematic of receding horizon optimization.

4. Numerical Analysis
4.1. Basic Parameter Settings

The microgrid in Figure 1 is taken as an example to demonstrate the proposed two-
stage energy management method. In the first stage, the day-ahead optimization is per-
formed based on the predicted outpower of WT and PV, the predicted power and hydrogen
loads. In the second stage, the intra-day optimization is performed based on the actual data.
Without loss of generality, the actual data are assumed to be the sum of predicted data and
the forecast error. Assume that the day-ahead forecast errors of wind power, PV, power
and hydrogen demands follow standard normal distribution. The standard deviation
for the day-ahead forecast errors of wind power, PV, power and hydrogen demands is
set as 25%, 20%, 15% and 15% of their day-ahead forecast data, respectively. In fact, the
ultra-short-term prediction data of WT, PV, power and hydrogen demands can be predicted
by the long short-term memory (LSTM), neural network or other artificial intelligence
methods [33]. In this paper, the prediction cycle is 1 h, and the control cycle is 30 min and
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the receding horizon optimization is performed once per 5 min. Therefore, the intra-day
optimization model will be executed 288 times during the 24 h.

The predicted and actual output power of WT and PV is shown in Figures 4 and 5 [34],
respectively. The predicted and actual power load and hydrogen load are illustrated in
Figures 6 and 7 [7,34], respectively. Table 1 gives the power prices of the power grid [35]; the
buying price is time-of-use price and the feed-in price is fixed price. The other parameters
of the micro are given in Table 2 [34,35]. The maximum of the deviations for Pt

grid, P̂t
el , P̂t

com

and P̂t
bat are 200 kW.
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Table 2. The parameters of the WPHS microgrid.

ηH2 0.0192 ηcom 0.7 Smax
B 5700 kWh ∆Pmax

grid 200 kW
Pmax

el 5000 kW κ 1.4 Smin
B 600 kWh ∆Pmax

el 100 kW
Pmax

grid 6000 kW mmin
H2

0 kg St=0
B 600 kWh ∆Pmax

com 10 kW
RH2 14.304 mmax

H2
1000 kg Pmax

bat,c 2100 kW ∆Pmax
bat 200 kW

Tin 40 ◦C Pmax
com 500 kW Pmax

bat,d 2400 kW

4.2. The Analysis and Discussions of the Simulation Results

Figures 8–11 show the day-ahead schemes and the intra-day operation strategies of
buying or selling power, charging and discharging power of battery storage, electrolyzer
and compressor, respectively. Figures 12 and 13 illustrate the storage states of battery
storage and hydrogen tank, respectively.
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Figure 8. The exchanged power with power grid.
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Figure 9. The charging and discharging power of battery storage.

Energies 2022, 15, x FOR PEER REVIEW 13 of 21 
 

 

 
Figure 9. The charging and discharging power of battery storage. 

 
Figure 10. The power of electrolyzer. 

 
Figure 11. The power of compressor. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time(h)

-2000

-1000

0

1000

2000

3000

Th
e 

ch
ar

gi
ng

 o
r d

is
ch

ar
gi

ng
 p

ow
er

of
 b

at
te

ry
 st

or
ag

e 
(k

W
)

Day-ahead scheme

Receding horizon optimization strategy

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time(h)

0

1000

2000

3000

4000

5000

Th
e 

po
w

er
 o

f e
le

ct
ro

ly
ze

r (
kW

)

Day-ahead scheme

Receding horizon optimization strategy

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time(h)

0

50

100

150

200

250

Th
e 

po
w

er
 o

f c
om

pr
es

so
r (

kW
)

Day-ahead scheme

Receding horizon optimization strategy

Figure 10. The power of electrolyzer.
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Figure 11. The power of compressor.
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Figure 12. The storage state of battery storage.
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Figure 13. The storage state of hydrogen tank.
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4.2.1. The Day-Ahead Simulation Results

The simulation results of Figures 8 and 9 show that the sustainable WPHS microgrid
buys more electricity from the power grid during the valley periods and flat periods than
the peak periods. This is because the buying power price is low during the valley and flat
periods; in order to reduce the operation cost, the microgrid buys more electricity to meet
the demands of power loads, produce hydrogen or charge the batteries. During the peak
periods, the required power of the WPHS microgrid is mainly met by the battery storage,
the WT and PV. In addition, it can be seen from Figures 10, 11 and 13 that the hydrogen
is produced and stored in the tank during the valley periods, and the tank discharges
hydrogen during the flat and peak periods to satisfy hydrogen demand. Figures 9 and 12
show that the battery storage mainly stores the electricity during the valley or flat periods
and discharges power during the peak periods to reduce the operation cost. Therefore,
the day-ahead optimization can effectively coordinate the operation of the WT, PV, battery
storage and power-to-hydrogen subsystems, and realize high-efficiency operation.

4.2.2. The Intra-Day Simulation Results

Figures 8–13 show that the intra-day operation strategies are effective in tracing the
day-ahead operation schemes and eliminating the effects of the volatility of renewable ener-
gies, power and hydrogen loads. Furthermore, the intra-day operation strategies of battery
storage and hydrogen tank can completely trace their day-ahead states. The maximum
deviations of exchanged power, the power of electrolyzer, the power of compressor and
the power of battery storage are 199.45 kW, 81.34 kW, 3.48 kW and 191.62 kW, respectively.
They all satisfy their maximum error constraints. Therefore, the intra-day optimization
model is able to improve the operation stability of the WPHS microgrid and eliminate the
adverse influence of the fluctuations of WT, PV, power and hydrogen demands.

4.2.3. The Simulation Results of WPHS Microgrid without Battery Storage

In this section, the sustainable WPHS microgrid in Figure 1 without battery storage is
taken as the comparative microgrid (WPH microgrid) to demonstrate the roles of battery
storages. Figures 14–17 illustrate the day-ahead schemes and the intra-day operation
strategies of buying or selling power, electrolyzer and compressor, respectively. Figure 17
illustrates the storage states of hydrogen tank. It can be seen that the proposed two-stage
energy management model is robust and effective in coordinating the operation of the
sustainable WPH microgrid, and intra-day receding horizon optimization strategies can
effectively trace the day-ahead schemes. The operation costs for the microgrid with and
without battery storage are 27,727 CNY and 31,815 CNY, respectively. The battery storage
can reduce the operation cost dramatically by 12.85%. Furthermore, the maximum of
the deviation of the receding horizon optimization strategy and the day-ahead scheme
is 202.0123 kW and 231.5762 kW for the microgrid with and without battery storage,
respectively. This deviation is reduced by 12.77% when the battery storage is considered.
Therefore, the battery storage can also alleviate the fluctuations of the exchanged power
with power grid and improve the performance of the intra-day optimization model.

Remark 1. Though other methods, such as the scenario-based stochastic programming method
and robust optimization [36], can also tackle the uncertainties, the former needs the probability
distribution of uncertain factors and a huge number of scenario simulations, which may be a heavy
burden. While the robust optimization can incorporate the uncertainties with a range without
underlying probability distributions, and the optimal solutions in the worst case can be obtained,
however, these solutions are very conservative [36]. The two-stage energy management method
needs neither probability distribution nor huge scenario simulations; the robust solutions can be
obtained based on the updated predicted data.
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Figure 15. The power of electrolyzer of WPH microgrid.
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Figure 16. The power of compressor of WPH microgrid.
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Figure 17. The storage state of hydrogen tank of WPH microgrid.

5. Conclusions

A two-stage energy management model is proposed for the sustainable wind-PV-
hydrogen-storage microgrid based on receding horizon optimization. In the first stage,
the day-ahead optimization is performed based on the predicted outpower of WT and
PV, the predicted demands of power and hydrogen loads. In the second stage, the intra-
day optimization is performed based on the actual data to trace the day-ahead operation
schemes. The following conclusions are drawn.

(1) The proposed two-stage optimization is effective in managing the operation of the
micro and eliminating the uncertainties and fluctuations of WT, PV and loads. The
day-ahead optimization can effectively coordinate the operations of the WT, PV,
battery storage and power-to-hydrogen subsystems, and realize the high-efficiency
operations. The intra-day optimization model is able to improve the operation stability
of the WPHS microgrid and eliminate the adverse influence of the fluctuations of WT,
PV, power and hydrogen demands.

(2) The proposed two-stage energy management model is robust and effective in coor-
dinating the operation of the sustainable WHP microgrid, and intra-day receding
horizon optimization strategies can effectively trace the day-ahead schemes. In ad-
dition, the battery storage can reduce the operation cost dramatically by 12.85%, as
well as alleviate the fluctuations of the exchanged power with the power grid, and the
maximum deviation of the exchanged power between the day-ahead and intra-day
strategies is reduced by 12.77% when the battery storage is considered.

Furthermore, in the future work, more accurate models of each component, including
consideration of the startup cost and ramp time of the green hydrogen system will be
considered. The demand side management issue is another interesting topic, which can be
integrated in the two-stage energy management model. The mean efficiency of the whole
process of the system can also be discussed and analyzed in the future work.
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Abbreviations

PV Photovoltaic WT Wind turbine
WPHS Wind-PV-hydrogen-storage WPH Wind-PV-hydrogen
Parameters and variables of wind turbine model
Pt

WT Outpower of WT at time slot t PRWT Rated power of WT
vt Wind speed at time slot t vin Cut-in wind speed
vout Cut-out wind speed vr Rated wind speed of wind turbine
Parameters and variables of PV model
Pt

PV Outpower of PV array NPV Number of PV panes
ISTC Standard irradiance PrSTC Rated power of each PV panel at standard test conditions
It Irradiance at time slot t Tt Temperature at time slot t
Parameters and variables of battery storage model
Et

bat Energy stored in the batteries at time slot t Emin
bat Minimum capacity of battery storages

Emax
bat Maximum capacity of battery storages Pt

bat,c Charging power at time slot t
Pt

bat,d Discharging power at time slot t Pmax
bat,c Maximum charging power

Pmax
bat,d Maximum discharging power ut

bat Binary variable
Parametersand variables of power-to-hydrogen system
ηH2 Hydrogen production rate Pmax

el Maximum power of electrolyzer
mt

H2
Hydrogen mass-produced at time slot t Pt

el Power consumed by electrolyzer at time slot t
CH2 Specific heat of hydrogen at constant pressure Tin Inlet hydrogen temperature
ηcom Efficiency of compressor Pout/Pin Compression ratio of hydrogen
Pmax

com Maximum power of compressor mt
com Hydrogen flow rate through compressor at time

κ Isentropic exponent of hydrogen Mt
H2

Stored hydrogen mass in the hydrogen tank at time slot t
Lt

H2
Hydrogen load at time slot t CR

tank Capacity of hydrogen tank
γmin Minimum ratio of the rated capacity of hydrogen tank γmax Maximum ratio of the rated capacity of hydrogen tank
Variables of the two-stage energy management model
CDAC Day-ahead comprehensive operation cost CPV Operational and maintenance costs of PV
CWT Operational and maintenance costs of WT Cbat Degradation costs of battery storage
Cel Degradation costs of electrolyzer Ce Net energy cost
λPV Maintenance cost coefficient of PV λWT Maintenance cost coefficient of WT
λbat Degradation cost coefficient of battery storage λel Degradation cost coefficient of electrolyzer
Pt

b Buying power from the power grid at time slot t Pt
s Selling power to the power grid at time slot t

Pt
load Predicted power load at time slot t χt

bs Binary variable
Pt,0

H2, fs
Hydrogen production at time slot t Pt,0

el, fs
Power consumed by electrolyzer device at time slot t

Appendix A

Take the exchanged power with power grid, the power of electrolyzer, the power of
compressor, the charging/discharging power of battery storage, the power storage state
of battery storage and the hydrogen storage state of hydrogen tank to constitute state
vector x(k) =

[
Pgrid(k) Pel(k) Pcom(k) Pbat(k) Ebat(k) MH2(k)

]T; take the incre-
ment power of electrolyzer, the increment power of compressor and the increment charg-
ing/discharging power of battery storage to constitute the control variables
u(k) =

[
∆Pel(k) ∆Pcom(k) ∆Pbat(k)

]T ; take the increment power of the ultra-short-
term predicted power of wind turbine, PV, power load and hydrogen load as distur-
bance input vector r(k) =

[
∆PWT(k) ∆PPV(k) ∆Pload(k) ∆LH2(k)

]T ; take the ex-
changed power with power grid, the power of electrolyzer, the power of compressor
and the charging/discharging power of battery storage as the output variable vector
y(k) =

[
Pgrid(k) Pel(k) Pcom(k) Pbat(k)

]T; then the multi-input and multi-output
state space model can be formulated in the following matrix form [34]:
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x(k + ∆t) =



Pgrid(k + ∆t)
Pel(k + ∆t)
Pcom(k + ∆t)
Pbat(k + ∆t)
Ebat(k + ∆t)
MH2(k + ∆t)

 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





Pgrid(k)
Pel(k)
Pcom(k)
Pbat(k)
Ebat(k)
MH2(k)



+



−1 −1 −1
1 0 0
0 1 0
0 0 1
0 0 ηbs

ηH2 0 0


 ∆Pel(k)

∆Pcom(k
∆Pbat(k)

+



1 1 −1 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 1 1 −1




∆PWT(k)
∆PPV(k)
∆Pload(k)
∆LH2(k)


(A1)

y(k) =


Pgrid(k)
Pel(k)

Pcom(k)
Pbat(k)

 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0




Pgrid(k)
Pel(k)

Pcom(k)
Pbat(k)
Ebat(k)
MH2(k)

 (A2)
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