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Abstract: Many industries apply traditional controllers to automate manual control. In recent years,
artificial intelligence controllers applied with deep-learning techniques have been suggested as
advanced controllers that can achieve goals from many industrial domains, such as humans. Deep
reinforcement learning (DRL) is a powerful method for these controllers to learn how to achieve their
specific operational goals. As DRL controllers learn through sampling from a target system, they
can overcome the limitations of traditional controllers, such as proportional-integral-derivative (PID)
controllers. In nuclear power plants (NPPs), automatic systems can manage components during
full-power operation. In contrast, startup and shutdown operations are less automated and are
typically performed by operators. This study suggests DRL-based and PID-based controllers for
cold shutdown operations, which are a part of startup operations. By comparing the suggested
controllers, this study aims to verify that learning-based controllers can overcome the limitations of
traditional controllers and achieve operational goals with minimal manipulation. First, to identify the
required components, operational goals, and inputs/outputs of operations, this study analyzed the
general operating procedures for cold shutdown operations. Then, PID- and DRL-based controllers
are designed. The PID-based controller consists of PID controllers that are well-tuned using the
Ziegler–Nichols rule. The DRL-based controller with long short-term memory (LSTM) is trained
with a soft actor-critic algorithm that can reduce the training time by using distributed prioritized
experience replay and distributed learning. The LSTM can process a plant time-series data to generate
control signals. Subsequently, the suggested controllers were validated using an NPP simulator
during the cold shutdown operation. Finally, this study discusses the operational performance by
comparing PID- and DRL-based controllers.

Keywords: nuclear power plant; autonomous operation; artificial intelligence; deep reinforcement
learning; soft actor-critic algorithm

1. Introduction

Nuclear power plants (NPPs) use highly automated controllers to increase availability
and reduce accident risk and operating costs [1,2]. In addition, digitalized controllers help
process large amounts of data, improve system reliability, automate periodic tests, perform
diagnosis, and increase operation capability [3].

Startup and shutdown operations in NPPs largely rely on the operator’s manual
controls, whereas the full power operation is highly automated. Thus, these operations are
known to be error-prone for the following reasons [4,5]:

• There is a significantly increased need for decision-making, such as selecting the power
operation target and determining the control strategy based on guidelines from the
operating procedures.
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• Many manual actions owing to extensive maintenance, tests, and monitoring of
plant parameters.

• Manipulation of components for which the automatic system and safety functions
may be disabled.

Therefore, automation of startup and shutdown operations is expected to reduce the
operator’s burden and errors.

Typical approaches to automatic controllers in current NPPs include proportional-
integral-differential (PID) controllers, programmable logic controllers (PLCs), and field-
programmable gate arrays (FPGAs) [6–9]. For safety systems, the PLC is generally used to
automatically act as a fast and reliable response to prevent malfunctions from propagating
into major accidents. For non-safety systems, PID controllers or controllers that combine
two out of three types of controllers (e.g., proportional-integral controllers) are the most
popular among the existing NPPs. These controllers generally aim to stabilize a system
within a defined range.

To tune the PID controller, traditional tuning methods have been applied, such as
Ziegler–Nichols [10], Cohen-Coon [11], and Astrom and Hagglund [12]. However, tradi-
tional methods still need re-tuning before being applied to industrial processes because
the methods may cause high overshoots, large oscillations, and longer settling times for
higher-order systems [13]. To enhance the capabilities of traditional PID parameter tuning
techniques, intelligent tuning methods have been presented. Davut Izci et al. proposed a
Harris hawks optimization (HHO) algorithm, which is a novel meta-heuristic algorithm,
to achieve optimal parameters of a PID controller adopted for an aircraft pitch control
system [14]. For DC motor control, Erdal Eker et al. improved an atom search optimization
algorithm by using simulated annealing (SA) [15], and Mahmud Iwan Solihin et al. com-
pared tuning algorithms between ZN and particle swarm optimization [16]. For a mobile
robot, Ignacio Carlucho et al. proposed self-adaptive multiple PID controllers using the
DRL [17].

Recently, controllers applying artificial intelligence (AI) techniques have been studied
in several industrial fields [18]. Since the 2000s, deep-learning techniques have drawn
attention for several reasons: increasing computing power, increasing data size, and ad-
vances in deep-learning research [19,20]. Among them, deep reinforcement learning (DRL)
is a popular approach because it has a training mechanism very similar to that of humans.
A DRL-based controller develops its own experiences through trial and error, similar to
humans. In addition, this DRL-based controller can perform tasks that classical controllers
cannot perform, such as selecting an operation strategy, operating systems, making deci-
sions based on current conditions, and optimizing operations. For this reason, DRL-based
controllers have been developed in robotics [6,21], autonomous vehicles [7–9,22,23], smart
building [18,24], power management [25–28], railway industry [29], wind turbine [30],
traffic signal [31], and nuclear power plants [32,33].

Although AI-based controllers have been developed in several studies, they are not
applied to NPPs at a practical level. This is mainly because AI-based controllers do not
sufficiently prove their performance to guarantee robustness and correctness and solve
regulatory issues, such as the transparency of the algorithm. However, it is very likely
that the AI-based controller implemented as part of autonomous reactor controls will be
an important aspect of small modular reactors and microreactors that can be operated
remotely by an offsite operations crew [34].

This study compares the performances of DRL and PID controllers in the cold shut-
down operation of NPPs. First, this study analyzes the general operating procedures
(GOPs) of the bubble creation operation, which is part of the cold shutdown operation.
It identifies the operational goals and manual controls by operators, and defines the in-
puts and outputs for the automatic controllers. Subsequently, a DRL-based controller is
developed by combining a rule-based system, long short-term memory (LSTM), and soft
actor critic (SAC). Then, a PID controller was developed using the Ziegler–Nichols and



Energies 2022, 15, 2834 3 of 25

DRL-based tuning methods. Finally, the performances of both controllers were compared
and discussed.

2. Task Analysis of Bubble Creation Operation in the Cold Shutdown Condition

To develop automatic algorithms for cold shutdown operations that are not automated
in Korean NPPs, the current operating strategies were considered. First, this study analyzed
GOPs and performed a task analysis to identify the operation goal and define the inputs
and outputs of operational tasks during the cold shutdown operation. These are used as
inputs and outputs in the automatic controllers.

2.1. Overview of Cold Shutdown Operation

The cold shutdown operation is included in the GOPs, which provide instructions
to start up the reactor and increase its power after refueling. A Westinghouse-900 MW
pressurized water reactor (PWR) was used as the reference plant in the task analysis. The
reference plant had six GOPs, as listed below [35,36]:

− Reactor coolant system filling and venting;
− Cold shutdown to hot shutdown;
− Hot shutdown to hot standby;
− Hot standby to 2% reactor power;
− Power operation at than 2% power;
− Secondary systems heatup and startup.

Figure 1 shows the trend of the important parameters in the startup operation along
with the relevant procedures. These parameters provide milestones for operators to achieve
successful startup operations. The cold shutdown operation, i.e., the focus of this study, is
located in the gray area in Figure 1.
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Figure 1. Significant parameters of the startup operation.

The cold shutdown procedure provides instructions for heating the plant from the
cold shutdown condition to the hot shutdown condition (Tavg < 176.7 ◦C, Keff < 0.99). This
operation allows the components to increase the temperature of the primary system by
maintaining pressure in the pressurizer. The goal of the cold shutdown operation is to
create bubbles in the pressurizer, that is, the bubble creation operation, and then to control
the pressure and level of the pressurizer.
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Figure 2 shows a simplified schematic of the components related to cold shutdown
operation. The initial and final conditions of the operation of the plant variables are shown
in Table 1.

Table 1. Initial and final conditions of the cold shutdown operation.

Major Parameter Initial Condition Final Condition

Pressurizer pressure 27 kg/cm2 27 kg/cm2

Pressurizer temperature 84 ◦C 210 ◦C
Average temperature 81 ◦C 176 ◦C

Pressurizer level 100% 50%
Back-up heater Off On

Proportional heater 0% 100%
Letdown valve 0% ≈40%

Pressurizer spray valve 0% ≈30%
Charging valve 0% ≈60%
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The first step of the cold shutdown operation is to heat the coolant in the primary
system by turning on all the pressurizer heaters (e.g., back-up and proportional heaters)
and starting the reactor coolant pump. This leads to an increase in the temperature of
the primary system and pressure inside the pressurizer. The pressure of the primary
system, that is, the reactor coolant system (RCS), should be maintained between 25 kg/cm2

and 29 kg/cm2 despite the increase in the pressurizer temperature. Thus, the increase in
pressure can be prevented by opening a letdown valve that handles the letdown flow rate
from the RCS to a residual heat removal system (RHR). When the pressurizer temperature
reached the saturation point of approximately 200 ◦C, its level decreased. A space filled with
saturated steam was created on top of the pressurizer, allowing pressure to be controlled
through the pressurizer spray. Subsequently, the level inside the pressurizer was maintained
at 50% by adjusting the charging flow rate. It is known that this operation normally requires
8 h for actual NPPs.
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2.2. Task Analysis of Cold Shutdown Operation

Task analysis identifies the objective of each operator action and defines the inputs
and outputs of the actions to design the controllers. Table 2 presents the results of the task
analysis of the operating procedure. The step numbers and tasks are the step numbers and
instructions described in the procedure, respectively. Subsequently, task types are classified
into control or check tasks. If the task type was “control”, the task included action(s) on a
component. The task type “check” is to check or monitor plant states without performing
any action on components. The inputs and outputs of each task are then defined. The
information necessary to design the controllers is then extracted by focusing on the task
type of the control. Finally, four tasks were selected for implementation using the control
algorithm, as listed in Table 3.

Table 2. Task analysis result for cold shutdown operation.

Step Number Task Task Type

1 Cold shutdown operation should be completed within 8 h. Check

2 The pressurizer pressure should be maintained between 25 kg/cm2 and 29 kg/cm2

during cold shutdown operation.
Check

3 The RHR system should be isolated from RCS before the pressurizer temperature reaches
200 ◦C or its pressure reaches 30 kg/cm2. Check

4 The reactor coolant loops and the pressurizer are filled and vented. Check

5 The reactor coolant boron concentration is greater than or equal to that of the cold
shutdown condition. Check

6 The residual heat removal (RHR) system is served with all loop isolation valves open and
one operational RHR. Check

7 Close main steam isolation valves. Check

8 Close steam generator (S/G) power operated relief valves. Check

9 The makeup control system is in Auto mode. Check

10 Letdown is established via the RHR letdown line, and three-letdown orifice isolation
valves are open. Check

11 Pressurizer spray control valve, power-operated relief valve (PORV), and PORV block
valve are in manual and closed modes. Check

12 The safety injection (SI) initiation signal is blocked. Check

13 Maintain the RCS pressure between 25 kg/cm2 and 29 kg/cm2 by adjusting the letdown
valve (RHR to CVCS flow).

Control

14 Maintain the flow through the bypass valve of the RHR heat exchanger. Check

15 Check the PORV position, whether closed or open. If the PORV position is open,
close PORV. Check

16 If PORV block valves are in man mode, put the associated PORV block valves to
auto mode. Check

17 Energize all pressurizer heater groups and start increasing the pressurizer temperature. Control

18 Open all three-letdown orifice isolation valves and establish letdown via RHR. Check

19 If the pressurizer level goes down owing to reaching saturation point, maintain the
pressure between 25 kg/cm2 and 29 kg/cm2 by adjusting pressurizer spray valve. Control

20 Maintain the pressurizer level at 50% by adjusting charging valve. Control
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Table 3. Simplified operational task for cold shutdown operation.

Task Input Output Control Type Constraints

Put back-up heater from Off to On. Back-up heater
state

Back-up heater
control

Discrete control

(1) Maintain RCS pressure
between 26 kg/cm2 and

28 kg/cm2.
(2) Maintain pressurizer level

at 50%.

Increase the power of proportional
heater from 0% to 100%.

Proportional
heater state

Proportional
heater control

Adjust letdown valve (RHR to
CVCS flow) within the RCS

pressure boundary.

RCS pressure,
Letdown valve

position

Letdown valve
control

Continuous
control

Adjusting spray valve within the
RCS pressure boundary.

RCS pressure,
Spray valve

position

Spray valve
control

Adjust charging valve to maintain
pressurizer level.

Pressurizer level,
Charging valve

position

Charging valve
control

Control tasks were also classified as discrete or continuous controls. Discrete control
has two separate states: “on or off” or “fully open or closed”. For example, the task
“controlling the proportional heater” in Table 3 is an example of discrete control because
the heater only has two states: on or off. In contrast, continuous control adjusts the state
of the component to satisfy the specific value of the parameters. In the cold shutdown
operation, controlling the charging valve, letdown valve (RHR to CVCS flow), and spray
valve belong to the category of continuous control because the positions of those valves are
adjusted between 0% and 100% to maintain the specified RCS pressure.

3. Development of a DRL-Based Controller

This section introduces the development of a DRL-based controller to create bubbles
for the pressurizer and then controls the pressurizer pressure and level during the cold
shutdown operation. The DRL-based controller comprises two DRL controllers and a rule-
based controller, as shown in Figure 3. The rule-based controller performed the discrete
controls listed in Table 4. As a result of the task analysis, if specific rules, that is, if–then
logic, can be defined, the rule-based controller is applied, as shown in Table 4. Therefore,
the back-up heaters and proportional heaters are controlled using a rule-based controller.
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Table 4. Controller tasks for cold shutdown operation.

Task type Controller Action

Discrete
control

Rule-based
controller

If the back-up heater state is “Off”, push “On” button.

If the proportional heater power is 0% or below 100%,
increase the power to 100%.

Continuous
control

Pressure DRL
controller

Maintain the pressurizer pressure between 26 kg/cm2 and
28 kg/cm2 by adjusting letdown valve.

If the pressurizer temperature reaches the saturation point
of about 200 ◦C, maintain the pressurizer pressure between
26 kg/cm2 and 28 kg/cm2 by adjusting the spray valve.

Level DRL
controller

Adjust the charging valve to maintain the pressurizer level
at 50%

DRL controllers perform continuous control, for which it is difficult to define specific
rules, for example, how much a valve should be open to maintain the pressure. DRL
controllers are divided into pressure and level controllers, as shown in Table 3. As shown in
Table 4, the pressure DRL controller aims to maintain the pressure by adjusting the letdown
and spray valve, whereas the level DRL controller adjusts the charging valve to maintain
the pressure level at 50%. DRL controllers use an LSTM network trained using the SAC
learning algorithm. The LSTM is known to show a good performance in handling time-
related, dynamic data. In addition, the authors’ previous studies also showed that the LSTM
could support well the operation of nuclear systems and the diagnosis of events [36–39].

3.1. Soft Actor Critic with Distributed Prioritized Experience Replay

Reinforcement learning (RL) is a method for training an AI network through inter-
action with its environment [5,40]. Using a controller with RL provides the possibility
of finding an optimal policy, which includes solving the given problem or achieving op-
erational goals in the sequential decision-making of the current state collected from the
environment. One of the challenges in RL is finding an optimized policy function to obtain
the maximum reward for all given states. Determining an optimized policy function may
take a long time. To resolve this issue, recent studies have suggested using a neural net-
work as an optimized policy function of the RL owing to the increased computing power
and an improved method called the deep neural network. Therefore, this study adopts
an approach that uses deep reinforcement learning (DRL), which combines RL and deep
neural network models, to find the optimal policy.

This study utilized SAC to improve the training stability of a DRL-based controller
using an LSTM network model. The SAC was suggested to compensate for the deep
Q-learning network (DQN), which is a basic model of the DRL. The drawback of the
DQN is biased actions caused by predictions that rely on a single neural network. One
network in the DQN predicts actions mixed with evaluations based on action probability
and estimated reward. In contrast, SAC uses an actor-critic architecture with a separate
value (Q-network) and policy network, as shown in Figure 4. Q-networks calculate the
expected rewards for an action taken in the current state. Then, the policy network predicts
each action probability based on the expected reward and the current state. For training
stability, SAC uses two Q-networks consisting of an online network and a target network.
The target network update is delayed when updating the online network parameters over
many iterations [6]. While updating online network parameters over many iterations, the
target network parameters perform delayed updates from the online network at regular
intervals, which helps reduce biased training.
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Figure 4. Training algorithm of DQN (left) and SAC (right).

Moreover, to reduce the training time, this study also adopted a distributed training
architecture with distributed prioritized experience replay (DPER), a type of experience
replay buffer, as shown in Figure 5. In this architecture, the main network is trained
with data collected from multiple simulations using a local neural network. Each local
network contains only a policy network that regularly distributes training from the main
policy network.
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DPER was utilized to collect data simulated from local networks and improve the
efficiency of the sampled data when the main network was trained [41]. DPER enables
the DRL controller to remember and reuse experiences from the past, where observed
transitions are stored for some time, usually in a queue, and sampled uniformly from this
memory to update the network. For example, DQN training relies on randomly selected
samples from the replay buffer. In contrast to the basic experience replay buffer, the DPER
can sample data that are more frequently replayed transitions with high expected learning
progress, as measured by the magnitude of their temporal difference (TD) error. TD error is
the difference between the expected and actual rewards. Consequently, the main network
learns by sampling data with higher stochastic priorities.

3.2. Design of the Reward Algorithm

This section presents the reward algorithm for the DRL-based controllers. In DRLs,
the reward is an essential element used to update the weights of the neural networks. A
reward algorithm was used to evaluate the actions predicted by a network and provide
guidance for updating the weights of the neural network [42,43]. DRL-based controllers
obtain rewards by evaluating the actions performed within given states. Thus, the reward
algorithm evaluates the performed action under the given state and creates training datasets
that consist of pairs of states, actions, and rewards.

Two reward algorithms for the level and pressure controllers were suggested to reflect
the operational constraints identified in Table 3. Reward algorithms aim to minimize
the distance from the current state to the desired state, for example, the midpoint of the
pressure boundary or the specified pressurizer level.

As the level controller does not operate until the saturation point is reached, the level-
reward algorithm provides a reward when the level controller starts control. As shown in
Figure 6, the reward value is defined as the difference between the current pressurizer level
and desired level (50%), as shown in Equation (1). The pressure level in the pressurizer
was varied between 0% and 100%. To provide a reward range between 0 and 1, the scaling
value is defined as 50, which is the maximum distance from the desired pressurizer level to
the limits of range (0% to 100%). For instance, the level reward is zero for the lowest reward
when the current level is within the limits of the level range (Points A and B in Figure 6).
As the current level increases from Point C to D, approaching the desired value, the level
reward increases from 0.8 to 1. The level reward algorithm provides a maximum reward of
one when the level controller is running successfully to maintain the current level at the
desired pressure level:

Level reward =

(
1 − |Current level − Specified pressurizer level|

Scaling value

)
(1)
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The pressure-reward algorithm provides a reward for the pressure controller to main-
tain a pressure between 25 kg/cm2 and 29 kg/cm2. The reward value was calculated as
the difference between the current RCS pressure and the desired condition, as shown in
Equation (2). The scale value is defined as 2, which is half the desired range of pressure.
Because the pressure changes slightly during the cold shutdown operation, the pressure
reward uses the squared reward to consider pressure changes sensitively. For instance, in
Figure 7, the reward value at Point C is the difference between the current RCS pressure and
the lower desired pressure (25 kg/cm2), which is 0.25 at the current pressure 26 kg/cm2.
In the case of point D, that is, at a current pressure of 27.5 kg/cm2, the reward value is
the difference between the current pressure and the upper desired pressure (29 kg/cm2),
which is 0.56. Therefore, the pressure reward increased as the pressure approached the
middle of the pressure boundary, with a maximum of 1. When the current pressure exits
the desired pressure boundary, e.g., Point E and F in Figure 7, the training is terminated.

Pressure reward =

(
1 − |Current pressure − Middle of pressure boundary|

Scaling value

)2
(2)
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In addition to this termination condition of pressure, another termination condition
was defined during the training. If the operation time in the training reaches eight hours,
the episode is terminated because the GOP instructs that the operation should be completed
within 8 h.

3.3. Design of Long Short-Term Memory Network

A neural network-based architecture, that is, a part of the DRL-based controller, was
developed to perform continuous controls. To generate control actions from the DRL-based
controller, this study used LSTM cells that can calculate time-series data [44]. LSTM cells
were developed from recurrent neural networks (RNNs).

An RNN is a powerful network that can naturally represent dynamic systems and
capture their behavior [45]. However, a problem that gradient values drastically vanish
to zero may be observed when the network has many layers [46]. To complement this
drawback, LSTM cells have been proposed.

The structure of a typical LSTM cell consists of cell state and three gates, i.e., cell state,
input, output, and forget gates, as shown in Figure 8 [47]. The cell state retains the prior
state information across time steps. The input, forget, and output gates determine which
prior cell state will be saved, dumped, and sent out in the next cell state, respectively. The
output of the input gate (it), forget gate (ft), output gate (ot), and cell state (ct) are expressed
as shown in Equations (3)–(6). Then, the hidden state (ht) is updated with Equation (7) and
sent to the next cell:

it= σ(x tWxi+ht−1Whi+bi

)
(3)
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ft= σ(x tWxf+ht−1Whf+bf

)
(4)

ot= σ(x tWxo+ht−1Who+bo

)
(5)

ct= ft · ct−1+it · tan h(x tWxc+ht−1Whc+bc

)
(6)

ht= ot · tan h(c t) (7)

where Wxi, Wxf, Wxo, and Wxc denote weights between the input of the LSTM cell and
units (input, forget, output, and cell state), while Whi, Whf, Who, and Whc denote weights
between the prior hidden recurrent layer and units (input, forget, output, and cell state),
xt is the input of the LSTM cell, and bI, bf, bo, and bc represent the additive bias of
units. This set of activation function include the sigmoid function, σ, and the hyperbolic
activation function.
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Figure 8. Structure of an LSTM cell.

LSTM cells allow the DRL controller to handle the NPP parameters and control the
components with high performance because the NPP data exhibit the characteristics of
non-linearity and time-series data. Figure 9 illustrates the structure of the LSTM network
applied to the DRL controller policy. Value networks have the same structure as the policy
network, except for the output layer that generates the expected reward. Generally, an
LSTM network model consists of an input layer, an LSTM layer, and an output layer.
The sizes of the input and output layers are defined according to the number of plant
parameters. The number of LSTM cells is equal to the size of the time window.

The input layer of the LSTM network has a time window of 10 s, which considers the
trend of the plant parameters by exploiting the collected historical data. Therefore, the DRL
controller uses states that include the current and previous states as a two-dimensional
array. Thus, the number of LSTM cells is equal to the size of the time window.
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As shown in Figure 9, the proposed DRL controller includes two policy networks
composed of LSTM networks to manage the pressurizer pressure and level. The DRL
controller used five plant parameters and two specified pressures and levels. The plant
parameters consisted of three component states (letdown/charging/spray valve positions)
and two pressurizer states (pressure and level). The pressure policy network uses four
plant parameters (pressurizer pressure, pressurizer level, letdown valve position, and spray
valve position) and two modified variables that include the distance from the pressure
boundary. The level-policy network uses two plant parameters (pressurizer level and
charging valve position) and two distance values from the specified level.

The output layer consists of a set of actions for controlling the target components,
such as the letdown, spray, and charging valves. The control strategies of one valve are
threefold, that is, open, closed, or no control. If a control strategy selects “open valve”, the
valve position will increase. In the case of “no control”, the valve maintains the current
position. Therefore, the level policy network output is one of the three control strategies
shown in Figure 9. However, because the policy network for pressurizer pressure aims to
control the letdown and spray valves, the set of actions includes nine cases that combine
the three control strategies of the two valves. To select a control strategy, the output size
of the output layer should be equal to the number of control strategies. Therefore, in the
case of the DRL pressure controller, nine control strategies for controlling the letdown and
spray valves were mapped to the output valves for the output layer of the LSTM network.

To select one control strategy among the nine cases, the DRL-based controller for
pressurizer pressure also calculates the expected reward acquisition probability for each
action in the LSTM network. The softmax function was used to calculate the probability
of each control strategy in the output layer. The softmax function can map the network
output to a probability distribution between zero and one. Therefore, the sum of the values
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of the generated output is one. Therefore, the LSTM network can calculate the probability
value for each control strategy.

3.4. Training of a DRL-Based Controller

A compact nuclear simulator (CNS) was used as a real-time testbed to train and
validate the developed DRL-based controller. The CNS was originally developed by
the Korean Atomic Energy Research Institute (KAERI) with reference to a Westinghouse
930 MWe three-loop PWR [48]. Figure 10 shows the interface of the chemical and volume
control system (CVCS) and reactor coolant system (RCS) in the CNS.
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Figure 11 shows the multi-CNS environment for training and validating the DRL-based
controller. Two desktop computers were used to construct the multi-training environment.
A DRL-based controller is installed on the main computer. CNSs were installed on a
subcomputer with an Intel Core(TM) i7-8700K and 16 GB of memory. Twenty CNSs were
simultaneously simulated. One of the local networks is connected to a CNS simulation
through user datagram protocol (UDP) communication. The global network was trained
on two Nvidia Geforce GTX1080Ti graphic cards, whereas the SAC training algorithm
was trained using a 10 CPU core on Intel CoreX i7-7820X. The DRL-based controller was
programmed using Python. PyTorch, which is a well-known Python machine-learning
library, was used to develop a DRL-based controller.
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To achieve acceptable performance of the proposed DRL-based controller, it was
trained until it reached a stable training state. DRL-based pressure and level controllers
are trained through many episodes, each of which is completed if at least one controller
reaches the termination condition. All controllers stop training when the average maximum
probability converges to a certain value, or when the value stabilizes. The average maxi-
mum probability is the mean value of the probability of the actions selected by the DRL
controller in one step. In one step, the DRL-based controller learns using 256 sample data
from the DPER. In this study, the experimental results considering the entire operation time
confirmed that operational goals could be reached when 256 data points were sampled. If
there are more (512) or less (128) than this, learning fails. The average maximum probability
refers to the degree to which the DRL controller completes the training. If the average
maximum probability is higher than the previous step, it implies that the DRL controller
selects actions that are more likely to succeed. Figure 12 shows the trend of the average
maximum probability per step over time. Figure 13 shows the trend in the rewards per
episode. The y-axis represents the total reward earned in each episode.
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The pressure and level controllers reached a stable value after 2000 episodes. Approxi-
mately 84 h of training were required until the DRL-based controllers learned how to adjust
the charging, letdown, and spray valves to achieve the operational goal. At approximately
500 episodes, the rewards reached 400 (pressure controller) and 275 (level controller).

4. Development of a PID-Based Controller

A PID-based controller was designed as shown in Figure 14. The PID-based controller
should manage five components (charging, letdown, spray valves, and back-up and pro-
portional heaters) to achieve two operational goals (pressurizer pressure and level). If-then
logic was applied to control the two heaters. Therefore, three PID controllers are developed
for the three valves.
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Figure 14. PID-based system block diagram.

In general, a PID controller is applied to a single-input, single-output system without
considering the disturbance and nonlinearity of the system [49]. Thus, three PID controllers
must be developed to adjust the charging, letdown, and spray valves. In Figure 14, PID
Controllers 1 and 2 adjust the letdown and spray valves for pressurizer pressure, whereas
PID Controller 3 manages the charging valve at the pressurizer level. Because the spray
valve can be operated after pressurizer bubble creation, a condition switch was added
to avoid unnecessary operations. The operational goal of PID controllers 1 and 2 was to
regulate the pressurizer pressure within a specified pressure (rp(t)). The pressure deviation
error (ep(t)) between the actual pressure value (yp(t)) and pressure set-point (rp(t)) is
commonly used in PID controllers 1 and 2. PID controller 3 controls the charging valve to
satisfy the pressurizer level.

4.1. Background of the PID Controller

The PID controller is based on classical optimal control theory that uses a control loop
feedback mechanism to control the process variables [50]. PID controllers are typically used
in industrial control applications to regulate temperature, flow, pressure, speed, and other
process variables. To increase plant performance and safety, a PID controller is also one of
the most commonly used process controllers in NPPs [51].

As shown in Figure 15, the PID controller is designed to minimize the deviation error,
e(t), between the set value, r(t), and the actual value y(t). With the deviation, the control
output, u(t), is obtained by integrating the proportional, integral, and differential of errors.
The proportional regulation is to increase the speed of control, the integral regulation is
to minimize the steady-state error, and the differential regulation is to the stability of the
system [52]. The regulation performance of classical PID controllers is described with the
regulation time, overshoot, and system stability [53].



Energies 2022, 15, 2834 16 of 25

Energies 2022, 15, x FOR PEER REVIEW 15 of 25 
 

 

 
Figure 14. PID-based system block diagram. 

In general, a PID controller is applied to a single-input, single-output system without 
considering the disturbance and nonlinearity of the system [49]. Thus, three PID control-
lers must be developed to adjust the charging, letdown, and spray valves. In Figure 14, 
PID Controllers 1 and 2 adjust the letdown and spray valves for pressurizer pressure, 
whereas PID Controller 3 manages the charging valve at the pressurizer level. Because the 
spray valve can be operated after pressurizer bubble creation, a condition switch was 
added to avoid unnecessary operations. The operational goal of PID controllers 1 and 2 
was to regulate the pressurizer pressure within a specified pressure (rp(t)). The pressure 
deviation error (ep(t)) between the actual pressure value (yp(t)) and pressure set-point 
(rp(t)) is commonly used in PID controllers 1 and 2. PID controller 3 controls the charging 
valve to satisfy the pressurizer level. 

4.1. Background of the PID Controller 
The PID controller is based on classical optimal control theory that uses a control loop 

feedback mechanism to control the process variables [50]. PID controllers are typically 
used in industrial control applications to regulate temperature, flow, pressure, speed, and 
other process variables. To increase plant performance and safety, a PID controller is also 
one of the most commonly used process controllers in NPPs [51]. 

As shown in Figure 15, the PID controller is designed to minimize the deviation error, 
e(t), between the set value, r(t), and the actual value y(t). With the deviation, the control 
output, u(t), is obtained by integrating the proportional, integral, and differential of er-
rors. The proportional regulation is to increase the speed of control, the integral regulation 
is to minimize the steady-state error, and the differential regulation is to the stability of 
the system [52]. The regulation performance of classical PID controllers is described with 
the regulation time, overshoot, and system stability [53]. 

 

PID-based controller

Condition 
Switch

PID Controller 1

Nuclear Power Plant

Letdown Valve

Spray Valve

Charging Valve

PID Controller 2

PID Controller 3

Pressure Set-point
(ݐ)௣ݎ Σ+ ݁௣(ݐ) (ݐ)1௣ݑ

(ݐ)2௣ݑ

௟ݑ (ݐ)
Σ

Level Set-point
(ݐ)௟ݎ +

௟݁(ݐ)

Actual Pressure Value
(ݐ)௣ݕ

Actual Level Value
(ݐ)௟ݕ

-

-

Rule-based system Heaters

Heater States

Integral error (I)

Differential error (D)

Proportional error (P)

Σ
Set value

Σ
+

+

+

Plant /
Process

Actual value

+

Figure 15. Block diagram of the PID controller principle.

4.2. PID-Based Controller Tuning Using the Ziegler–Nichols Rule and DRL Algorithm

This study applies the Ziegler–Nichols closed-loop tuning method and DRL tuning
method to achieve an acceptable performance of PID-based controllers. As a traditional
tuning method, the Ziegler–Nichols method is well known as a suitable tool for nuclear
power plants whose mathematical models are unknown or difficult to obtain [54]. Despite
many design methods for PID controllers, the Ziegler–Nichols rule is one of the most
widely used design methods in the literature [55,56]. In addition, the Ziegler–Nichols
tuning method is used for automatic control in Korean NPPs [51].

According to the Ziegler–Nichols tuning method, a PID controller is tuned by first
setting it to the P-only mode, which means that the integral gain (Ki) and derivative gain
(Kd) are set to zero. The proportional gain (Kp) increases until the ultimate gain (Ku), where
the system starts to oscillate, and an ultimate oscillation period (Tu), as shown in Figure 16.
Then, Kp, KI, and Kd were approximated using Table 5 [10].
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Table 5. Ziegler–Nichols formula for PID controller tuning rules.

Controller Kp Ki Kd

P 0.50 Ku
1 0 0

PI 0.45 Ku
1 0.54 Ku

1/Tu 0
PID 0.60 Ku

1 1.20 Ku
1/Tu 3 Ku

1 Tu/40
1 Ku = Kp.
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As an alternative for the intelligent tuning methods, the DRL-based tuning was applied.
This uses a DRL approach to obtaining the gains of controllers (Kp, Ki, and Kd). Figure 17
shows the process of the DRL-based tuning method. At the first step, the method initializes
the gains as Kp = 0.1, Ki = 0, and Kd = 0. Then, in the second step, the policy network with
simple DNN layers generates the gains, and the Q-network generates the expected reward
by using initialized gains. The third step applies the gains to the PID controller and runs
the CNS with the controller. In the fourth step, the cumulative rewards resulting from the
simulation are calculated by using Equations (1) and (2). The fifth step calculates the loss
value by the deviation between the cumulative rewards and the reward expected from the
Q-network. Then, the policy and Q-network weights are updated by using the loss value in
the sixth step. The seventh step evaluates whether the cumulative reward reaches a stable
training state. If it is evaluated to be satisfactory, the generated gains are finally selected as
the final gains of the controller.
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Figure 17. Flowchart of the DRL tuning algorithm.

The PID controllers for the letdown, spray, and charging valves were tuned by using
the DRL-based tuning algorithm. Figure 18 shows the history of cumulative reward per
episode. The y-axis represents the total reward earned in each episode. Each PID controller
is tuned until it reaches a stable training state.
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Table 6 shows the tuning results for the PID controllers by using the Ziegler–Nichols
and DRD-based tuning method. Figure 19 also compares the performances of the different
tuning results for the pressure and level of pressurizer. Because the pressure is managed by
the letdown and spray valves, the letdown valve controller was tuned first and then the
spray valve was tuned later. The comparison indicates that the DRL-based tuning shows
better performances in time and accuracy than the Ziegler–Nichols method.

Table 6. Tuning results based on Ziegler–Nichols method and DRL tuning method.

Controller Initial
Parameter

Tuned Parameter
(Ziegler–Nichols Method)

Tuned Parameter
(DRL Method)

Letdown valve
Kp = 0.2
Ki = 0
Kd = 0

Tu = 60 s
Kp = 0.12 Ki = 0.004 Kd = 0.9 Kp = 1.487 Ki = 1.155 Kd = 0.106

Spray valve
Kp = 0.1
Ki = 0
Kd = 0

Tu = 70 s
Kp = 0.06 Ki = 0.001714 Kd = 0.525 Kp = 1.657 Ki = 0.198 Kd = 0.078

Charging valve
Kp = 0.1
Ki = 0
Kd = 0

Tu = 300 s
Kp = 0.06 Ki = 0.004 Kd = 2.25 Kp = 0.833 Ki = 2.522 Kd = 0.105
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5. Comparison of Performances of DRL-Based and PID-Based Controllers

A comparison of the performance of the developed DRL-based and PID-based con-
trollers was conducted for the automation of the cold shutdown operation. The data were
sampled from the simulator per second and the components could be manipulated every
10 s, which is considered enough time for the pressure and level of the pressurizer to
change. The data sampling frequency was chosen by taking into account the computation
time (0.5 s) of the simulator and the time transmitted to the controller (0.1 milliseconds).

Figure 20 shows the comparison of the performances in controlling the pressurizer
pressure by the DRL-based and PID controllers. As shown in Figure 21, the DRL-tuned
PID controller shows smaller accumulated error than the PID controllers tuned by the ZN-
and DRL-based controller. The comparison for the pressurizer level also shows similar
results, as shown in Figures 22 and 23. The DRL-tuned PID controller shows the smallest
error in the level. For the time to reach the desired state, it appears that the DRL-tuned PID
controller is faster than the other controllers.
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6. Discussion

This section discusses some interesting findings from this comparison study.

1. The DRL-tuned PID controller exhibited best performances in terms of error and time.

Table 7 compares the DRL- and PID-based controllers in terms of the average deviation
error from the target value of the parameters and the time taken to reach the target value.
For the pressurizer pressure and level, the DRL-tuned PID controller generally exhibited
the smallest error and fastest reaching time than both the ZN-tuned PID controller and the
DRL-based controller.
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Table 7. Comparison result of operational performances.

Performance PID-Based Controller DRL-Based Controller

Pressurizer Pressure
Average deviation error from 27 kg/cm2 ±0.3248 kg/cm2 (ZN)

±0.1805 kg/cm2 (DRL) ±0.2816 kg/cm2

Reaching time to 27 kg/cm2 32 min (ZN)
10 min (DRL) 10 min

Pressurizer Level
Average deviation error from 50% ±9.56% (ZN)

±6.55% (DRL) ±8.79%

Reaching time to 50% +144 min (ZN)
+38 min (DRL) +93 min

2. Although PID-based controllers are dedicated to one component, DRL-based con-
trollers manage the parameters and control multiple components simultaneously.

To control the pressurizer pressure to the desired value, three PID-based controllers
were designed for three components: the charging valve, letdown valve, and spray. The
controllers opened these values and the spray simultaneously to reduce pressure, as shown
in Figure 24. On the other hand, two DRL-based controllers were developed for the control
of pressure, not the control of components. Thus, the DRL-based controllers manipulate
the three components in an interactive manner. For instance, as shown in Figure 24, the
DRL-based controllers closed the letdown value at approximately 260 min and instead
maintained the charging valve closed, while the PID-based controllers consistently opened
these valves at the same time.
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3. PID-based controllers manipulate components more frequently than DRL-based
controllers.

Figure 25 shows a comparison of the number of manipulations for the three com-
ponents. As shown in the figure, PID-based controllers control the components more
frequently than DRL-based controllers. This may be related to the second finding described
above. DRL-based controllers work interactively and can satisfy the operational goal with
fewer manipulations.
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Less frequent manipulation is desirable in NPPs. First, frequent manipulation is likely
to lead to component failures. From the perspective of probabilistic safety assessment,
once a component starts to work (e.g., open/close or start/stop)., the probability of failing
to work increases. Second, frequent manipulation accelerates the aging or fatigue of
components. Thus, the replacement period is shortened because of aging.

4. Licensing is one of the unsolved issues for the DRL-based controllers.

The application of NPPs requires proven technologies. In particular, for safety-critical
systems, controllers need to be approved by regulations. PID-based controllers have
been acknowledged as a proven technology, because they have been used in NPPs for
decades. However, it is common knowledge that AI technologies have not been sufficiently
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proven. Therefore, solving the licensing issue is the largest problem for applying DRL-based
controllers to NPPs.

Even though the licensing issue is beyond the scope of this study, it is worth inves-
tigating some approaches to proving AI. The first is the use of an explainable AI called
XAI. XAI can show how the AI produces the result and makes the AI closer to a whitebox.
The second is the application of the software development process. The software used in
the safety-critical system of NPPs should follow a very strict development process recom-
mended by various standards, such as IEEE Standards 1012 [57] and 7-4.3.2 [58]. Because
AI-based controllers can also be regarded as software, they are considered to apply the
software development process to them.

7. Conclusions

This study compares the performance of DRL- and PID-based controllers in the cold
shutdown operation of NPPs. This study conducted a task analysis for the bubble cre-
ation operation based on the operating procedures. Subsequently, PID- and DRL-based
controllers were developed to satisfy the operational goal of the operation. The PID-based
controllers were tuned by using the Ziegler–Nichols and DRD-based tuning method. This
study compared the performances of the controllers. In general, the DRL-tuned PID con-
troller exhibited the smallest error and fastest reaching time than both the ZN-tuned PID
controller and the DRL-based controller. Finally, we presented some interesting findings.
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