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Abstract: This paper presents an assessment of the impact of the COVID-19 pandemic on the waste
management sector, and then, based on laboratory tests and computer calculations, indicates how to
effectively manage selected waste generated during the pandemic. Elemental compositions—namely,
C, H, N, S, Cl, and O—were determined as part of the laboratory tests, and the pyrolysis processes of
the above wastes were analysed using the TGA technique. The calculations were performed for a
pilot pyrolysis reactor with a continuous flow of 240 kg/h in the temperature range of 400–900 ◦C.
The implemented calculation model was experimentally verified for the conditions of the refuse-
derived fuel (RDF) pyrolysis process. As a result of the laboratory tests and computer simulations,
comprehensive knowledge was obtained about the pyrolysis of protective masks, with particular
emphasis on the gaseous products of this process. The high calorific value of the pyrolysis gas,
amounting to approx. 47.7 MJ/m3, encourages the management of plastic waste towards energy
recovery. The proposed approach may be helpful in the initial assessment of the possibility of using
energy from waste, depending on its elemental composition, as well as in the assessment of the
environmental effects.

Keywords: plastic waste; waste management; pyrolysis; thermal conversion; protective mask

1. Introduction

The appearance and rapid spread of the SARS-CoV-2 virus have caused an intensive
increase in the demand for personal protective equipment, especially face masks, due to the
obligation to wear them in public spaces [1]. The production of disposable food packaging
has also significantly risen during the pandemic [2]. Quarantine, isolation, and the fear
of a personal visit to the store have caused an increase in online sales of food, as well as
other products necessary in everyday life [3,4]. For practical and hygienic reasons, many
of these items are packed in disposable plastic packaging [5,6]. The necessity to ship the
ordered products involves the use of cardboard boxes, packaging, cling film, bubble wrap,
etc. to safely deliver the ordered products [7]. In addition, shoppers are encouraged to wear
disposable gloves and to pack all fresh produce separately in plastic bags when shopping in
stationery stores [8,9]. The consequence of this state of affairs is, unfortunately, an enormous
increase in the amount of plastic waste, which, as of 22 November 2020, in the 25 countries
with the highest incidence of COVID-19, reached approximately 54,000 tons [10]. This
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situation was also reflected in the production of the European plastics industry, especially
in the second half of 2020.

The presented data show that the production of plastics before the COVID-19 pan-
demic increased until 2018 and with it the amount of plastic waste (Figure 1). In contrast,
the production of the European plastics industry has decreased since 2018. However, after a
sharp decline in production due to the restrictions resulting from the COVID-19 pandemic
in the first half of 2020, in the second half of this year, the production of plastics in EU
countries began to increase rapidly, according to the Association Plastics Manufacturers in
Europe (Plastics Europe) and the European Association of Plastics Recycling and Recovery
Organisations (EPRO).
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The pandemic has also had a negative impact on the economy and the proper function-
ing of local governments [12]. Municipalities and cities are struggling with an augmenting
amount of municipal solid waste (MSW) [13] and medical waste, with a simultaneous lower
budgetary inflow of funds as a result of the economic downturn [14]. Local governments
cannot adequately manage the growing amount of hazardous waste placed in municipal
landfills because of a lack of forces and resources at their disposal [15]. It should be noted
that the challenges associated with plastics are largely owing to the fact that the ways
in which such plastics are produced and utilised are not sustainable, because personal
protective equipment (PPE) for hygiene reasons cannot be reusable, recycled, or are often
made of single-use plastic. There is no doubt that the COVID-19 pandemic has changed the
production and use of plastics [16]. These plastics significantly contribute to limiting the
spread of the virus [12]. Nonetheless, according to the authors of this publication, the rapid
increase in plastic waste due to the widespread use of masks and gloves, as well as changes
in the manufacture and use of disposable products, could, in the short term, undermine EU
efforts to reduce plastic pollution and move to more sustainable plastic handling [17,18].

The shock of the outbreak and expansion of the virus on a global scale poses enormous
challenges to economies, public finances, and health systems with the threat of a possible
recession [19]. The solid waste management sector is particularly susceptible, especially
in EU countries, including Poland, which do not meet the requirement of recycling 50%
of municipal waste (in 2020, recycling of MSW amounted to 26.7%, according to GUS
data) [20,21]. Taking the example of Poland, it can be seen that during the pandemic
there was a clear slowdown in the amount of processed waste, resulting in lower incomes
in waste management treatment (WMT). Moreover, the situation in the secondary raw
materials market had a negative impact on the entire waste industry. The prices of new
commodities also fell, which resulted in their greater demand. On the other hand, the
waste-to-energy industry (WTE) achieved good ratings and results. For example, the solid
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waste disposal sector in the Chinese market did not experience large deviations from the
turnover recorded in 2019 [22].

The demand for personal protective equipment (PPE) has grown enormously world-
wide since the start of the pandemic [23]. Such a high demand for PPE has led to the
generation of huge amounts of plastic waste. For example, in Singapore, during 2 months
of lockdown, an additional 1400 tons of plastic was generated [24]. Estimated calculations
performed by Sazzadul Haque et al. [25] in Bangladesh have resulted in forecasts that the
combined production of disposable face masks and other personal protective equipment
is 3.4 billion units per month. This, in turn, translates into the production of 472.3 tons
of plastic waste. According to estimates provided by Benson et al. [26], in Africa alone,
assuming that people used at least one mask every day, it is estimated that the number of
masks produced and disposed of during the day per person is around 412 million. Thus,
more than 12 billion medical or textile masks are thrown away every month. Assuming
that the average mass of the mask is 8.58 g, this gives the probability that about 105 Mt of
masks per month only on the African continent may be discharged into the environment.
According to Aragaw et al. [27], each month, around 129 billion masks and 65 billion
disposable gloves are used and discarded worldwide.

The waste produced during the pandemic mainly consists of plastics such as polypropy-
lene (PP), polyethylene (PE), polyester (PEs), polycarbonate (PC), polyethylene terephtha-
late (PET), polyvinyl chloride (PVC), and high-density polyethylene (HDPE), in addition to
a small amount of paper, textiles, cotton, and natural rubber (Table 1) [28,29]. As can be
seen from the literature review (Table 1), plastic waste can be a valuable fuel due to its high
calorific value (38–46 MJ/kg).

Table 1. Proximate and ultimate analysis of plastic waste.

Plastic Proximate Analysis
(wt% Dry Basis)

Elemental Analysis
(wt% Dry Basis)

LHV
(MJ/kg) Source

Volatile Matter Ash C H N S O

HDPE 98.2 1.8 84.5 13.8 0.1 0.1 1.5 43.0

[30]
LDPE 99.8 0.0 86.8 12.9 0.1 - 0.2 43.6

PP 99.6 0.4 85.0 13.9 0.1 0.0 1.0 43.6
PS 99.8 0.1 90.5 7.9 0.4 0.2 1.0 38.8

PET 92.9 6.9 62.5 4.0 0.1 0.0 33.5 21.1
PET-12 - 4.9 77.1 12.6 0.2 - 5.2 -

[31]PET-28 - 12.1 67.2 9.7 0.1 - 10.9 -
PET 86.75 6.83 63.94 4.52 0.01 0.04 31.49 - [32]
PS 98.81 - 92.2 7.8 - - - 41.25

[33]PE 99.96 - 85.5 14.5 - - - -
HDPE 91.88 3.9 83.4 12.71 1.08 0.002 2.8 46.48

[34]PP 93.84 3.68 83.28 13.81 1.01 0.001 1.90 44.43
PS 94.33 0.84 89.2 8.78 0.01 0.00 2.01 40.34

“-” No data available.

Disposable face masks account for a significant share of the plastic waste stream
generated during the pandemic [35]. As reported by Benson et al., the global production
of disposable face masks is around 1.6 million tons/day, which means around 3.4 billion
are thrown away daily due to the COVID-19 pandemic [26]. Protective masks are made of
heterogeneous material, i.e., they consist mainly of several layers of PP and PE [36] (and
additionally, they are equipped with an elastic band for the ears and a stiffening wire on
the nose), which hinders their safe and quick recycling [37,38].

The most appropriate method of neutralising PPE should be material recycling, but
due to the difficulty of separating the individual layers from each other, it would be a very
time-consuming process [39]. Considering all the emerging difficulties that may arise in
the recycling of PPE, one of the most effective methods of their disposal is the thermal
transformation process [40–42]. Thus, effective waste management is a global concern
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that necessitates a reassessment of current technology and solutions. [43]. According to
the introduced regulations, among others in Poland, waste generated during a pandemic
and ending up in the mixed waste stream should be thermally neutralised by incineration,
pyrolysis, or gasification [44,45]. In addition, mobile installations using the method of
the thermal conversion of waste, i.e., pyrolysis, may occur to be an effective solution that
responds to the needs of the waste industry during the pandemic. Mobile installations
could be successfully utilised by entities collecting waste during the COVID-19 epidemic to
neutralise hazardous (infectious) waste directly at the place of its collection, thus minimising
the risk to public health and the environment. The above solution may also be used in the
case of municipal waste contaminated with a biological agent from quarantine facilities and
from places of isolation of patients at home. For the safe disposal of post-COVID-19 waste,
a novel and sustainable approach is needed. As indicated in the literature, one of the most
perspective methods of the thermal conversion of solid municipal waste, including plastic
waste is pyrolysis, which can be a promising route to sustainable waste management. It is
a thermochemical process carried out in the absence of oxygen in a pyrolysis reactor, in
which waste decomposes at a temperature of 400–900 ◦C. This method enables the effective
neutralisation of hazardous waste, but also leads to the formation of valuable solid (char)
and gaseous (high-calorific pyrolysis gas) products that can be used, thus reducing the total
cost of pyrolysis. The share and quality of individual products varies, depending, among
others, on the type of pyrolysis reactor, type of waste, temperature, and residence time in
the reactor [45].

The advantage of a pyrolysis installation compared with a waste incineration plant
is its greater flexibility in terms of the amount of processed waste. These installations are
economically justified also in the case of disposing of smaller amounts of waste than in
the case of incineration plants, which gives opportunities, for example, to small municipal
corporations operating, among others, in Polish conditions, for effective and profitable
solid waste management. The proposed disposal method is also characterised by lower
financial outlays and environmental fees, compared with incineration plants, as well as
lower emissions of pollutants, i.e., SO2 and NOx. Hence, pyrolysis is considered to be
a sustainable solution that may be economically profitable on a large scale and could
minimise environmental concerns [46]. According to available data, with the limited
number of possible solutions in this area, there is a great need for innovation enabling it
to meet the key challenges in the field of plastic waste management in the pandemic era
and to integrate new solutions in the field of thermal waste treatment technologies into the
existing waste management system.

Taking into account above mentioned facts, pyrolysis seems to be the most promising
thermal conversion method for such kind of waste into an environmentally inert, as well
as valuable product from the energy point of view. Furthermore, considering the latest
research results obtained by the authors of the article [47], in the case of RDF pyrolysis, it is
justified to develop pyrolysis technology with simultaneous management of the products
of this process.

Pyrolysis gas’s high calorific value (30 MJ/m3) encourages its use in both heating and
the iron and steel industry. The gas produced by RDF pyrolysis can be co-incinerated with
natural gas in industrial heating chambers, reducing the consumption of that fossil fuel.
Pyrolysis gas can also be a substitute for coke oven gas for heating furnaces. This gas could
be a viable alternative to conventional fuels, helping to reduce the role of waste storage
while also improving environmental protection. The liquid fraction, in turn, is a potential
source of valuable chemicals such as benzene and toluene. It can also be used as liquid fuel
with properties similar to fuel oil or diesel fuel. Moreover, the preliminary technological
tests carried out by the authors have shown the possibility of using the solid pyrolysis
product in the production of insulating building materials, which increases the economic
attractiveness of pyrolysis compared with other methods, e.g., combustion.
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Bearing in mind the above, the authors of this study undertook this study to assess
the impact of the COVID-19 pandemic on the waste management sector and to identify an
effective method of managing selected waste generated during the pandemic.

2. Materials and Methods

The subject of the research was non-medical, three-layer, biologically uncontaminated
disposable face masks presented in Figure 2, produced by Quanzhou Ruoxin Hygiene
Products Co. Ltd. Caicuo, Luoyang, Huian Country, Quanzhou City, Fujian Province,
China, manufactured according to the GB/T 32610-2016 standard, model NS-2020.
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2.1. Experimental Procedures
2.1.1. Proximate Analysis

Proximate analysis, e.g., the total moisture and ash content, were determined in the
studied material. The total moisture content was determined by drying a sample in a
laboratory dryer to a constant weight at 105 ± 3 ◦C. The ash content of the samples was
determined by sample incineration. The investigated sample was put in a muffle furnace
and heated in an air atmosphere at 600 ± 10 ◦C. This temperature was maintained until the
sample reached a constant weight [48].
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2.1.2. Ultimate Analysis

The elementary Ct
a, Ht

a, Na, St
a, and Ot

a compositions in the examined material
(protective mask) were measured using a Vario MACRO Cube automatic elemental anal-
yser [49]. At 1150 ◦C, the material was put through an automated quantitative combustion
process in an oxygen stream. Then, the combusted gases were transferred to a reduction
tube (filled with copper) in which the sulphur and nitrogen oxides were reduced to SO2
and N2. The combustion gases were sent to a dynamic separation system after passing
through the reduction tube. The absorption columns were desorbed thermally in order
in the separation system. A thermal conductivity detector was used to identify gases
including N2, CO2, H2O, and SO2 (TCD). An NDIR detector was used to examine low SO2
concentrations [47].

The oxygen concentration was measured quantitatively using sample pyrolysis at
1120–1150 ◦C in an H2O-, CO2-, and O2-free reductive environment (95% N2 and 5% H2).
The sample was put in a pyrolysis tube containing elemental carbon, and carbon dioxide
was produced as a result of the interaction between the oxygen in the sample and the carbon
in the filler (Boudouard equilibrium). Granulated NaOH absorbed the acidic compounds
obtained during the pyrolysis process, such as H2S, HCN, and HCl, while a dehumidifier
absorbed the generated water. The other gases did not need to be separated because the
NDIR detector was only sensitive to CO. The inert pyrolysis products (N2 and CH4) might
be immediately transported into a carbon monoxide measuring device.

2.1.3. Chlorine Determination

The chlorine content in the studied sample was determined by a potentiometric
method [50]. The approach involves thoroughly burning a sample in an oxygen bomb
calorimeter with an Eschka mixture (MgO and Na2CO3, ratio 2:1). The generated chlorides
(combustion products) were extracted in nitric acid (V) and titrated for chloride ions with
0.1 mol/L AgNO3. The potentiometric titration method used a silver sulphide electrode
with a potential that was dependent on that of a reference electrode. The concentration of
chloride ions is measured by the potential difference between the electrodes.

3. Results and Discussion

The results of the above-mentioned studies are summarised in Table 2.

Table 2. Proximate and ultimate analysis of plastic waste of protective masks.

Material Proximate Analysis
(wt% Dry Basis)

Elemental Analysis
(wt% Dry Basis)

Ash Moisture Voltaire Matter C H N S O Cl

Plastic waste of
protective mask 4.76 1.23 95.24 76.4 11.65 1.12 0.16 4.65 0.03

3.1. TGA Analysis

The tested material (protective mask) was homogenised and then pulverised with a
cryogenic mill for thermogravimetric analysis. A Luxz 409 PG thermogravimetric analyser
was used in conjunction with a Netzsch QMS 403D Aëolos mass spectrometer. The experi-
ments were conducted in an argon environment with a 25 mL/min flow rate. Measurement
began at a temperature of 40 ◦C. During the research, water jacket testing was used to
stabilise the equilibrium. The pyrolysis operations reached a maximum temperature of
700 ◦C. The sample was 5.0 0.1 mg in weight. The samples were put in 6 mm diameter
Al2O3 crucibles. The mass loss (TG) and maximum rate of mass loss (DTG) during the
reaction, as well as the beginning and final temperatures at each step of the pyrolysis
processes, could all be calculated using the data acquired (Figure S1 in Supplementary
Material). To illustrate the differences between the various materials, in Figure 3, in addi-
tion to the protective mask test sample, the results of thermogravimetric analysis for pure
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polypropylene and pure polyethylene terephthalate are shown, as well as three biomass
samples [49].

3.2. Computational Simulation

Calculations were made for the pyrolysis process carried out in a pilot continuous
pyrolysis reactor, described in detail in [47], using licensed Ansys CHEMKIN-PRO software.
Surgical masks with the elemental composition presented in Table 2, as well as PET and
PP, the elemental composition of which were taken from studies of [51] and [49] were
analysed. A detailed mechanism for the thermal conversion of solid fuels was implemented
for the calculations, based on the Arrhenius equation for the rate constant of a reaction [52],
developed by the CRECK Modeling Group, including 169 compounds and 4656 chemical
reactions [53]. The mechanism was based on the detailed mechanism of HCl and Cl2 high-
temperature chemistry reported in [54]. The chemical mechanism adopted for calculations
has been used many times by Ranzi [55,56], Faravelli [57], as well as by the authors of
this article to model the thermal conversion of fuels and waste [47,58,59]. The calculations
assume that pyrolysis occurs in a reactor with perfect reactant mixing, i.e., a perfectly
stirred reactor (PSR) [60]. A diagram of the performed calculations with the input data and
the conditions of the pyrolysis process is shown in Figure 4.
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As part of the computer simulations, the chemical composition of the gaseous pyrolysis
products of the above-mentioned waste was determined, on the basis of which the calorific
value of the pyrolysis gas was calculated. The following compounds were analysed in
detail: CO, CO2, H2, CH4, C3H8, C4H4, C6H6, C2H2, C2H4, C2H6, and C3H6. The obtained
results were compared with the experimental data obtained from RDF pyrolysis with a
high content of plastic waste (over 60%).

3.3. TGA Analysis

Thermogravimetric analysis (TGA) quickly shows the subsequent phases of the ther-
mal conversion process of the studied sample. The mass loss of the examined material
during heating is explained by this analysis. The TGA function’s second derivative, which
is mass change as a function of temperature (DTG), is used to determine the temperature at
which the decomposition rate (in the considered example) is highest. The type of studied
material is determined by the temperature and the shape of the DTG curve (e.g., one small
and sharp peak or a wide peak).

The outcomes of the obtained repetitions are comparable, as can be shown (Figure 5.).
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As a result, further research may be conducted.
To optimise the number of gaseous products generated during the pyrolysis process,

thermogravimetric analysis was carried out at a final temperature of 700 ◦C for the TGA
analysis and 900 ◦C for the TGA-MS study. The face mask might degrade in four stages,
according to TGA data (Figure 4).

The temperature ranges for the four stages were 50–200 ◦C, 201–392 ◦C, 393–500 ◦C,
and 501–700 ◦C. The first stage represents minor degradation regions due to the occurrence
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of moisture evaporation (~2 wt%). The second stage indicates the sample’s first substantial
decomposition zone, with a mass loss of 16.11 wt% due to organic material degradation
below 392 ◦C, caused by the release of pyrogenetic water from the research material made
from polypropylene and a melt blown filter (PP). The third stage represents the second
major decomposition region of the investigated sample, with a mass loss of 72.55 wt%,
owing to the decomposition of organic materials below 455 ◦C, which corresponds to
polypropylene thermoplastic material [61]. The last decomposition stage represents minor
degradation regions due to char devolatilisation/decomposition (~2 wt%). The decomposi-
tion of the mineral portion present in the sample, magnesite (MgCO3), which is used as a
filler in polymer processing, is connected with the DTG peak detected at 677.6 ◦C in this
location. The DTG curve (Figure 6) shows that the components included in the material
from which the investigated face mask were made decompose into two main components
(two major degradation peaks), but both corresponded to PP pyrolysis products. During
the decomposition of the polypropylene portion at 403.8 ◦C, one of the most significant
emissions of gaseous chemicals from the examined sample is detected—pyrogenetic water
(m/z 18) and carbon dioxide (m/z 44). The gaseous fraction, rich in alkanes (CnH2n+1

+),
alkenes (CnH2n-1

+), is observed at a higher temperature of 455.3 ◦C during the pyrolysis
process. They correspond to the mass ions at m/z 43, 55, 56, 57, 69, and 70, respectively, for
C3H7

+, C4H7
+, C4H8

+, C4H9
+, C5H9

+, and C5H10
+. The mass ion m/z 53 corresponds to

C3H3N+, which may come from the degradation of a pigment added to the plastic material
of one side of the mask. The results from mass spectrometry are shown in Figures 6 and 7.
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3.4. Results of Computational Simulation

As part of the computer simulations, the effect of temperature was investigated on
the proportion of primary pyrolysis gaseous products determining the calorific value of
the pyrolysis gas—namely, CO, H2, CH4, C3H8, C4H4, C6H6, C2H2, C2H4, C2H6, and C3H6
(Figure 8).

The calculations show that the concentration of all the analysed compounds strongly
depends on the process temperature. The largest share is observed for CO (up to 65%) in
the entire temperature range but only for polyethylene terephthalate (PET). On the other
hand, for PP and protective masks, a high proportion of hydrogen, even 50%, is visible,
but only in the lower temperature range, i.e., from 400 ◦C to 500 ◦C. At the temperature of
700 ◦C, there is a clear decrease in the H2 concentration to 15% for the masks and 22% for
PP. At the same time, an increase in the hydrogen content from PET pyrolysis is observed;
however, it does not exceed 5%. The opposite situation is observed for CH4, the share of
which increases with the rise in the process temperature, reaching a concentration of approx.
35% for both masks and PP at 700 ◦C, with a simultaneous low concentration (less than 5%)
for PET. Noteworthy is the high proportion of C6H6 benzene in the pyrolysis gas for all the
analysed wastes, at the level of approx. 20% for PP and masks and 17% for PET. From the
energy point of view, the significant content of C2H4 is also significant, which grows with
the temperature to approx. 9% at 800 ◦C for the masks and PP, and C6H6, reaching even 7%
at the temperature of 650 ◦C for polypropylene. For the remaining compounds—namely,
C3H8, C4H4, and C2H2 (except for PET), with increasing temperature, a sharp decrease in
the concentration is observed for all the waste, and it does not exceed a 5% share in the
pyrolysis gas.

The results of the model were compared with those of experimental research for RDF
pyrolysis at 900 ◦C, presented in [47] (Figure 9).
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Comparing the results obtained by modelling with the results from the experiment, the
potential resulting from the pyrolysis of plastic waste, in particular polypropylene, the main
component of protective masks, is visible. The high proportion of flammable compounds
such as H2, CH4, and C6H6 translates into the high calorific value of the pyrolysis gas,
amounting to 49.73 MJ/m3 for PP pyrolysis gas, and 47.74% for mask pyrolysis (Figure 10).
It should be mentioned that the presence of heavy organic molecules and their derivatives in
the wet pyrolysis gas, which can account for up to 30% of the gas volume, has a substantial
impact on the high calorific value. As a result of the condensation of these chemicals,
pyrolysis oil is produced. According to preliminary research undertaken by the article’s
authors, direct management of wet pyrolysis gas (i.e., a mixture of pyrolysis gas and
gaseous oil) in high-temperature heating chambers with temperatures exceeding 1300 ◦C is
possible. The disposal of the problematic liquid portion, i.e., pyrolysis oil, is favoured at
such a high temperature, resulting in considerable economic gains. The proposed method
is described in great detail in [62].
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1. The pyrolysis of plastic waste generated during the COVID-19 pandemic is an effective
and environmentally safe solution with great application potential.

2. Thermal conversion of waste by pyrolysis is characterized by a high yield of high-
calorific pyrolysis gas. This gas can potentially be used as a substitute for natural gas
for energy production.

3. It is possible to forecast the chemical composition of gaseous pyrolysis products of
plastic waste and on this basis to estimate the calorific value of the pyrolysis gas
produced in the process.

4. The pyrolysis of polypropylene, the main component of protective masks, allows one
to obtain high-calorific pyrolysis gas (47.7 MJ/m3), the main components of which
are H2, CH4, and C6H6.

5. The results of the conducted research and computer simulations show the enormous
energy value of plastic waste, especially those generated during the COVID-19 pan-
demic. Increasing the share of the above-mentioned waste in the municipal waste
stream from which the so-called overflow and RDF fraction will increase the calorific
value of the pyrolysis gas.

6. Effective disposal of the new category of waste is both a technological- and material-
related challenge. Solving this challenge and creating technological techniques and
know-how will enable the safe treatment of municipal waste in the COVID-19 era,
and will also point the way to effective thermal conversion products management.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/en15072629/s1. Figure S1 clarified the data of mass loss (TG) and
maximum rate of mass loss (DTG) during the reaction, as well as the beginning and final temperatures
at each step of the pyrolysis processes.
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