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Abstract: In this study, a data-driven fault diagnosis method was developed for solid oxide fuel cell
(SOFC) systems. First, the complete experimental data was obtained following the design of the
SOFC system experiments. Then, principal component analysis (PCA) was performed to reduce
the dimensionality of the obtained experimental data. Finally, the fault diagnosis algorithms were
designed by support vector machine (SVM) and BP neural network to identify and prevent the
reformer carbon deposition and heat exchanger rupture faults, respectively. The research results show
that both SVM and BP fault diagnosis algorithms can achieve online fault identification. The PCA +
SVM algorithm was compared with the SVM algorithm, BP algorithm, and PCA + BP algorithm, and
the results show that the PCA + SVM algorithm is superior in terms of running time and accuracy, the
diagnosis accuracy reached more than 99%, and the running time was within 20 s. The corresponding
system optimization scheme is also proposed.

Keywords: SOFC; fault diagnosis; BP neural network; the reformer carbon deposition; heat
exchanger rupture

1. Introduction

A fuel cell is an energy conversion device that converts the chemical energy of fuel
directly into electrical energy, which has the advantage of high efficiency without creating
pollution or noise [1]. A solid oxide fuel cell (SOFC) operating at high temperature has a
wider range of advantages compared to other fuel cells [2]. First, SOFCs offer fuel flexibility:
SOFCs operate at high temperatures from 550 to 1000 ◦C, and therefore support internal
reforming of gaseous hydrocarbon fuels. This means SOFCs are highly flexible in fuel
selection and tolerant of a certain level of common fossil fuel impurities, such as ammonia,
chlorides, and compounds containing sulfur [3]. Second, the high quality waste heat from
SOFCs is suitable for cogeneration applications: the electrical efficiency of a stand-alone
SOFC system is about 55%, and the energy conversion efficiency can be further increased to
more than 85% by combining the cogeneration method to recycle the waste heat to generate
additional electricity [4]. Third, SOFCs have lower costs, resulting in greater profitability:
the high temperature operation eliminates the need for precious metal catalysts for SOFCs,
resulting in lower costs and resulting in greater profitability [5]. Therefore, compared with
other fuel cells, SOFCs have the advantages of high efficiency, wide fuel applicability, high
waste heat quality, and relatively low cost. They also have a wide range of application
scenarios, with power levels ranging from W-class to MW-class, mainly involving portable
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power generation, transportation, distributed power generation, and stationary power
generation [6].

As SOFC systems become less tolerant of decreasing reliability and safety, their fault
diagnosis is becoming an integral part of SOFC control systems and consists of three
main tasks: (1) detection—detecting the presence of undesired states in the system [7];
(2) isolation—locating or classifying different faults; and (3) analysis or identification—
determining the type, size, or possible cause of the fault [8]. Peng et al. [9] conducted a
detailed review and analysis of SOFC system fault diagnosis research, pointing out the
shortcomings of existing methods, and noting future research directions.

In the past decade, a large number of studies on SOFC system status monitoring and
fault diagnosis have emerged, which can be broadly summarized into two categories in
terms of approach [10–12]: model based and data based.

One approach is the model-based fault diagnosis scheme, which starts by building a
model of the SOFC system with predetermined values of several physicochemical variables
that represent the behavior of the system in a healthy state. Then, during system operation,
the predetermined values of these variables are compared with the actual values to obtain
residual values (i.e., indicators of deviation between measured and predetermined values).
Since the model and the real system receive the same inputs and the model simulates the
health of the system, when the real system is fault free, the residuals are zero, and are less
than the thresholds for model uncertainty and the measurement tolerance. Conversely,
when a fault occurs, the residuals will be larger than a certain threshold [13]. Murshed
et al. [14] proposed a monitoring method that describes the fault detection problem as a
linear matrix inequality. The method was used in a real SOFC system to detect early faults.
Polverino et al. [15–17] studied SOFC field fault diagnosis algorithms and developed a
dynamic model for simulating SOFC systems under fault conditions. The scheme compares
the fault model with the normal SOFC system to determine if a fault has occurred and to
infer the actual fault type with the help of a Fault Signature Matrix (FSM). However, this
method is not used for online fault diagnosis because the model is too complex and requires
a long processing time. Gallo et al. [18] defined health and fault states using a SOFC system
component model and used FSM for fault monitoring and identification. Based on this, a
fault mitigation strategy was developed to extend the lifetime. However, this solution can
only identify typical faults with known principles; if the faults are not typical, they must be
re-modeled, and therefore unknown faults cannot be detected. Wu et al. [19] developed
a state observer for detecting flow sensor faults and fuel input actuator faults based on a
thermal characteristic model. However, the observer can only work at pre-set operating
points, and once the system deviates from the pre-set operating points, the observer cannot
continue to detect faults. Xu et al. [20] developed a novel gas leak state estimator combined
with a Kalman filter to diagnose SOFC gas leak faults, and compared the performance
of different fault diagnosis strategies under different leak states. The results show that
the proposed fault diagnosis strategy has good practicality and can guide compensation
schemes for leaks.

The other approach is the data-based fault diagnosis scheme, which uses historical pro-
cess data to measure the degree of interaction between process variables and then obtains
the causal relationships between the variables. This scheme does not require mechanistic
modeling, but rather extracts the underlying information from a large amount of historical
data to show the dependence of system variables [21]. The data-based diagnostic scheme
requires a sufficient training phase to enable it to distinguish between the healthy state
of the system and each fault state. This scheme has two main implementations: super-
vised classifiers [22–25] and artificial neural networks [26–28]. Moser et al. [13] designed a
support vector machine (SVM)-based fault diagnosis method for SOFC stack degradation,
air leakage, fuel leakage, and reformer degradation faults; this method works well under
different operating conditions and fault sizes. The diagnosis results show that the correct
diagnosis rate of the scheme for the faults is higher than 80%. However, the four types of
fault data used for SVM training are generated by the mechanism model, and the accuracy



Energies 2022, 15, 2556 3 of 16

of fault diagnosis can also be affected if the mechanism model is not accurate enough. Li
et al. [22] proposed a multi-label (ML) pattern recognition method to identify the simultane-
ous occurrence of multiple faults in SOFC systems. This method only requires the use of a
dataset consisting of a single fault without requiring simultaneous fault data. Experimental
results show that the proposed method is able to diagnose simultaneous SOFC system
faults with high accuracy, and requires only a small amount of training data and has a low
computational burden. However, during the training of the model, only some of the health
and fault data were intercepted, and the most comprehensive system performance could
not be obtained. Wu et al. [29] used a fault diagnosis scheme based on a square support
vector machine (LS-SVM) classifier to diagnose anode poisoning and cathode moisture
faults and to predict the remaining service life of SOFC systems. The results show that
the LS-SVM model has a maximum fault identification rate of 97% and the prediction
error of the remaining service life is within ±20%. Zhang et al. [30] established a general
SOFC system fault diagnosis method based on deep learning (DL). Experimental results
show that the accuracy of the proposed Deep Neural Network (DNN) method is very high,
reaching more than 99%, both on small and large datasets. In the methods provided by
Wu [29] and Zhang [30] et al., the data used also rely on model generation and are not
directly obtained from system experiments, so the diagnostic results obtained are affected
by the accuracy of the mechanistic model.

More studies on SOFC fault diagnosis can be found in the reviews of [7,9,12,31].
Both of these fault diagnosis schemes are currently inadequate and suffer from

several problems:

1. The model-based fault diagnosis scheme is used to determine whether the system
is faulty by building a nonlinear physical model of the SOFC system. However, the
model-based approach has some difficulties in ensuring model accuracy: (1) due to
the existence of uncertain parameters and disturbances, the model must be simplified
accordingly, which will lead to model uncertainty; (2) the SOFC system is a complex
nonlinear model having a large number of coupling relationships in the system, and
it is difficult for the model to accurately restore the performance of the system; and
(3) the actual system becomes increasingly complex, and the model runs thus often
require considerable processing time, which is not suitable for real-time diagnosis.

2. In most of the studies of data-based fault diagnosis, the data used are generated by
models. These studies face the same problems as those of the model-based schemes.
The lack of accuracy in the data generated leads to the lack of accuracy in the diagnostic
results obtained. The most accurate conclusions can only be obtained by using the
data obtained during the operation of the actual system.

3. In much of the literature that uses actual data for research, only a portion of the
experimental data is intercepted for analysis, and the entire process of the experiment
is not addressed. However, the SOFC system experimental data are a set of time series,
and the most comprehensive system performance can be obtained only by analyzing
the full phase data.

In order to improve the relevance and physical realizability of fault diagnosis methods,
in this study, a data-driven fault diagnosis method for SOFC systems was constructed. It is
divided into the following steps: (1) Conducting kW-level SOFC system experiments and
analyzing experimental data under full working conditions. (2) Dimensionality reduction in
experimental data using principal component analysis (PCA). PCA is an analysis technique
that simplifies data, converting originally complex multidimensional data into simple,
intuitive, and relevant low-dimensional data through dimensionality reduction, effectively
reducing the difficulty and complexity of data analysis. Zhang et al. [32] proposed a fault
diagnosis strategy combining PCA, simulated annealing genetic algorithm fuzzy c-means
clustering (SAGAFCM), and a deep belief network (DBN) to diagnose faults occurring in
fuel cell powered vehicles, in which PCA simplifies a large amount of data, and greatly
optimizes the diagnosis results and improves the diagnosis speed. (3) The support vector
machine (SVM) classifier and the BP neural network classifier are trained separately to
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obtain the fault diagnosis model, and the performance of the model is examined. The
SVM and BP algorithms are the two most representative and easy-to-implement algorithms
among supervised classifiers and artificial neural networks, respectively, so these two
algorithms were chosen in the current study as the base models for comparison with
Long Short-Term Memory (LSTM) and Recurrent Neural Network (RNN) algorithms. Xu
et al. [33] proposed a fault diagnosis algorithm based on SVM to diagnose faults occurring
in tracks and gearboxes, and the results showed that the diagnostic accuracy reached
96.7%; compared with other algorithms, SVM was superior in fault diagnosis, which is
of great importance for industrial safety and reliability. Xiao et al. [34] also developed a
fault diagnosis algorithm based on a BP neural network for faults in gearboxes, and also
achieved an accuracy above 90%, illustrating the superiority of the BP algorithm.

The research solution proposed in this paper has the following main innovations:
(1) For SOFC systems, this paper solves the problem of faults that are difficult to distinguish
and diagnose, which is caused by the large amount of raw data and the complex system
mechanism, and provides a new way of thinking for system performance optimization.
(2) This scheme does not rely on complex system mechanism models, and only requires
experimental data to locate, mark, and diagnose faults. It can be used not only for SOFC
systems, but also for numerous systems where faults are difficult to diagnose directly, such
as proton exchange membrane fuel cell systems, rolling bearing systems, and gearbox
systems. (3) In this paper, the two most representative approaches in supervised classifiers
and artificial neural networks are compared, reflecting the characteristics of each of the
two schemes.

This paper is organized as follows: In Section 2, the structure of the SOFC system is
described. In Section 3, the SVM-based fault diagnosis algorithm is introduced. In Section 4,
the fault diagnosis scheme based on the BP neural network is presented. In Section 5, the
proposed fault diagnosis scheme for SOFC systems is analyzed and discussed based on the
obtained experimental results. The SVM and BP methods with and without PCA are also
compared. Finally, conclusions are presented.

2. SOFC System Architecture

This experiment used a 1 kW SOFC system, whose main components include an
SOFC stack, reformer, air–exhaust gas heat exchanger, fuel–air heat exchanger, exhaust gas
combustion chamber, desulfurizer, dehumidifier, air compressor, air storage tank, electric
lighter, cooling water tank, and monitoring system, as shown in Figure 1.

Figure 1. The SOFC system with the stack.
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The reformer used in this system not only has combustion reactions of natural gas
and air, but also high temperature reforming chemical reactions that produce CO and
H2. The combustion and reforming reactions take place in two separate chambers in the
reformer. Electric firing triggers the combustion of natural gas and air, which provides high
temperatures of approximately 600 to 700 ◦C to provide heat for the reforming reaction.

Inside the exhaust gas combustion chamber, the remaining fuel in the stack, which
is not involved in the electrochemical reaction, is fully burned and its main function is
to supply heat to the entire SOFC system. At the beginning of the system operation, it
heats the stack to above 600 ◦C, thus enabling the discharge function of the stack. During
system operation, it is mainly used to maintain the temperature balance in the SOFC
system, while the excess heat it generates can be used for external cogeneration. To prevent
tempering from causing temperature safety problems in SOFC stacks and pipes, the tail
gas combustion chamber is filled with a porous medium.

The SOFC system studied in this paper contains two heat exchangers: an exhaust
gas–air heat exchanger and a fuel–air heat exchanger, respectively. The two heat exchangers
perform different functions. The function of the exhaust–air heat exchanger raises the
temperature of the cathode air by exchanging heat between the high temperature exhaust
gas coming from the exhaust combustion chamber and the cold cathode air that has just
been introduced into the system. In this case, the temperature of the cathode air is raised to
500–700 ◦C after the first heat exchange. The function of the fuel–air heat exchanger is to
exchange heat between the reformed high temperature fuel and the cathode air after the
first heat exchange in order to reduce the temperature difference between the anode gas
and the cathode air.

In addition to the above components, other auxiliary components—air flow meters,
fuel flow meters, pumping pumps, desulfurizers, water evaporators, industrial control
equipment, and electronic loads—are required to perform the functions of the SOFC
system for power generation. The flow meter controls the amount of fuel and air entering
the system; the pump passes cooling water and deionized water into the system; the
desulfurizer desulfurizes the natural gas to prevent the sulfur in the fuel from poisoning
the SOFC stack; the water evaporator vaporizes the liquid deionized water into water
vapor; the industrial control equipment collects the signals returned through the various
sensors installed on the SOFC system and sends real-time control signals; and the electronic
load applies an external power demand and collects information, such as the current and
voltage of the SOFC stack.

In order to diagnose the faults occurring in the SOFC system, in this study, an experi-
ment using the SOFC system in full working condition was conducted to obtain the system
data under actual operation conditions. A share of 80% of the data was randomly selected
as the training data of the diagnostic model, and the remaining 20% of the data was used as
the test data. Then, the obtained data were subjected to PCA data dimensionality reduction,
retaining the low-order principal components and removing the high-order components to
achieve the purpose of reducing the dimensionality of the dataset. Next, the dimensionality
reduction data were used to train SVM, BP and other classifiers to obtain fault diagnosis
models; finally, the test data were used to verify the accuracy of each diagnosis model and
to compare them, as shown in Figure 2.
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Figure 2. Research framework.

3. PCA-Based Data Dimensionality Reduction

In the real data collected, the data are usually affected by noise. In addition, when
the dataset is large, it is likely to contain data triggered by exceptions. Low-quality data
can affect the results of the fault diagnosis algorithm, so it is important to pre-process the
data before training the model. The first step is to clean the data, fill in the missing values,
smooth the noisy data, and identify and remove outliers. The data were then normalized to
place all variable values between [0,1] to eliminate the effect of dimensional and numerical
differences between different variables.

In the SOFC system experiments, 82 variables were collected by sensors in the cold
and hot zones, and it is thus difficult for the fault diagnosis algorithm to quickly diagnose
faults from the multidimensional information. Therefore, we need to first reduce the
dimensionality of the data by a priori knowledge and principal component analysis (PCA),
and then divide the reduced data into two parts, one for training the fault diagnosis model
and one for verifying the accuracy of the model.

During the experiment, the PLC in the SOFC system recorded a total of 82 variables,
namely, 21 variables in the cold box and 61 variables in the hot box, as shown in Figure 3.

Figure 3. Sensor distribution in the system.

In order to perform rapid diagnosis of faults, the data needs to be downscaled first.
The first step is to perform a primary screening of the data by a priori knowledge. For
example, eight Boolean state variables (ON/OFF status of valve units, system operating
status, etc.) are removed because they have no impact on the training of the fault diagnosis
model. After the initial screening, 10 variables were retained that were representative of the
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system performance: fuel input flow rate, fuel input flow rate to the combustion chamber,
air input flow rate to the reformer, bypass air flow rate, deionized water input flow rate,
reformer temperature, heat exchanger temperature, combustion chamber temperature,
current, and voltage.

Principal component analysis (PCA) is then applied to the 10 variables for dimension-
ality reduction; PCA is an analysis technique that simplifies the data by transforming the
problem from high to low dimensions through linear transformations, retaining low-order
principal components and removing high-order components for the purpose of reducing
the dimensionality of the dataset. The original complex multidimensional data are con-
verted into simple, intuitive, and relevant low-dimensional data through dimensionality
reduction, effectively reducing the difficulty and complexity of data analysis. The flow of
PCA implementation is shown in Figure 4.

Figure 4. PCA implementation flow chart.

Assuming that after normalizing the original data, the resulting matrix is DN×m =(
x(1), x(2), . . . , x(m)

)
:

(1) Calculate the covariance matrix of the matrix D: DDT .
(2) Obtain the eigenvalue decomposition of the matrix DDT .
(3) Analyze the eigenvalues of the matrix DDT , take out the eigenvectors (ω1, ω2, . . . , ωn′)

corresponding to the largest n′ eigenvalues, and normalize them to form the eigenvec-
tor matrix W.

(4) Transform each sample x(i) into a new sample z(i) = WTx(i).

(5) Finally, the reduced dimensional dataset D′n′×m =
(

z(1), z(2), . . . , z(m)
)

is obtained.

4. SVM-Based Fault Diagnosis Solution

To extend the life of a solid oxide fuel cell system and maximize the performance of
the cell, it is important to develop a troubleshooting system that can detect and identify
faults early. When a SOFC system fails, it can cause a significant degradation in system
performance. Therefore, finding a fast fault detection method for SOFC systems is a
prerequisite to ensure stable, efficient, and long-life operation. In this study, a support
vector machine (SVM)-based fault diagnosis algorithm was designed, and the SVM model
was trained and validated with the data obtained by dimensionality reduction in the
previous section.

A support vector machine (SVM) is a supervised learning model that is commonly
used to deal with binary classification problems. The multi-classification problem can also
be implemented by training multiple binary classifiers. The method has good robustness,
and therefore is widely used in many tasks and shows strong advantages.

To implement the m classification problem using SVM, m two-class classifiers need
to be trained. Classifier i is sets the label of the i-th class of data as class 1 (positive class),
and the labels of all other m−1 classes other than class i are jointly set as class 2 (negative
class), so that a two-class classifier needs to be trained for each class and, finally, we have a
total of m classifiers. For data x that needs to be classified, the category with the highest
confidence level is usually chosen to label the classification result. The flow chart of the
implementation of the multiclassification SVM algorithm is shown in Figure 5.
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Figure 5. SVM implementation flow chart.

The mechanism of SVM is to find an optimal classification hyperplane that satisfies
the classification requirements such that the hyperplane can maximize the blank area on
both sides of the hyperplane while ensuring the classification accuracy.

Suppose there is a binary dataset R =
{(

x(n), y(n)
)}N

n=1
where yn ∈ {+1,−1}. If

the two classes of samples are linearly separable, then there exists a hyperplane ωTx+ b = 0,
which separates the two classes of samples, and then each sample has y(n)

(
ωTx(n) + b

)
> 0.

The distance from each sample x(n) in the dataset R to the segmentation hyperplane is

γ(n) =
|ωT x(n)+b|
||ω|| =

y(n)(ωT x(n)+b)
||ω|| . Assume that γ = min

n
γ(n) is the shortest distance from

all samples in the entire dataset R to the segmentation hyperplane. A larger γ means a
more stable division of the two datasets and less susceptibility to noise. The goal of the
SVM is to find a hyperplane (ω∗, b∗) such that γ is the maximum:

max
ω,b

s.t.
y(n)(ωT x(n)+b)

||ω|| ≥ γ, ∀n ∈ {1, . . . , N}
(1)

Since simultaneous scaling of ω and b does not change the distance from the sample
to the segmented hyperplane, here restricting ||ω|| · γ = 1. For linearly divisible datasets,
there are multiple segmentation hyperplanes, but the hyperplane with the largest interval
is unique. SVM can solve nonlinear problems by mapping the original data to a higher
dimensional space using kernel functions. The commonly used kernel functions are the
linear kernel function, radial basis function (RBF), and polynomial kernel function. The
RBF kernel function is usually used to deal with nonlinear differentiability problems. The

RBF kernel function can be expressed by the following equation: k(x, z) = exp− ||x−z||2
2σ2 .

where σ is the width of the RBF.
In the optimization problem of support vector machines, the constraints are more

stringent. If the samples in the training set are not linearly separable in the feature space,
the optimal solution cannot be found. In order to be able to tolerate some of the samples
that do not satisfy the constraints, slack variables can be introduced, transforming the
optimization problem into:
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min
ω,b

1
2 ||ω||2 + C

N
∑

n=1
ξn

s.t.1− y(n)
(

ωTx(n) + b
)
− ξn ≤ 0, ∀n ∈ {1, · · · , N}

ξn ≥ 0, ∀n ∈ {1, · · · , N}

(2)

where ξn is the relaxation factor and C is the penalty factor to control the balance of the
interval and relaxation variables.

5. Fault Diagnosis Scheme Based on a BP Neural Network

The BP neural network was proposed in 1986 by a group of scientists led by Rumelhart
and McCelland as a multilayer feedforward network trained by an error backpropagation
algorithm. The input data are gradually processed by the hidden layer until the output, and
the parameters of each neuron and the threshold are adjusted backwards according to the
output and the expected error, so that the output is closer and closer to the expected value.
BP networks have become the most widely used artificial neural networks to date because
of their excellent nonlinear mapping ability, generalization ability, and fault tolerance.
The BP neural network is a variant of the perceptron and is highly capable of classifying
and dividing nonlinearities. BP networks are supervised feed-forward networks, so the
prediction of the network has to be trained first, and the associative memory and prediction
ability are acquired through training, like in the human brain.

BP networks can learn and store a large number of input–output pattern mapping
relationships without the need to describe the mathematical equations of such mapping re-
lationships in advance. Its learning rule is to use the fastest descent method to continuously
adjust the weights and thresholds of the network by back propagation to minimize the
sum of the squared errors of the network. The topology of the BP neural network model
includes an input layer, hidden layer, and output layer, as shown in Figure 6.

Figure 6. Structure of a BP neural network.

The main idea of BP neural network implementation is to input the learning samples,
and then use the back propagation algorithm to iteratively adjust the weights and deviations
of the network training, so that the output vector is as close as possible to the desired vector.
The training is completed when the sum of squared errors of the output layer of the network
is less than the specified error, and the weights and deviations of the network are saved, as
shown in Table 1.
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Table 1. Implementation process of a BP neural network.

1. Network initialization: assign a random number in the interval (−1,1) to the connection weights, set the error functione, and give the
computational accuracy ε and the maximum learning number M.

2. Random selection: the kth output sample is randomly selected along with the corresponding expected output:
x(k) = (x1(k), x2(k), . . . , xn(k)), do(k) =

(
d1(k), d2(k), . . . , dq(k)

)
(3)

3. Hidden layer computation: Compute the input and output of each neuron in the hidden layer, h = 1, 2, . . . , p, o = 1, 2, . . . , q:
hih(k) = ∑n

i=1 wihxi(k)− bh, hoh(k) = f (hih(k)) (4)
yio(k) = ∑

p
h=1 whohoh(k)− bo , yoo(k) = f (yio(k)) (5)

4. Find the partial derivative: Using the expected and actual outputs of the network, the partial derivative δo(k) of the error function is calculated
for each neuron in the output layer.

5. Corrected weights: the connection weights ωho(k) are corrected using δh(k) of each neuron in the output layer and the output of each neuron in
the hidden layer.

∆ωho(k) = −µ ∂e
∂ωho

= µδo(k)hoh(k), ωN+1
ho = ωN

ho + ηδo(k)hoh(k) (6)

6. Corrected weights: use the δo(k) of each neuron in the hidden layer and the input of each neuron in the input layer to correct the connection
weights.

∆ωih(k) = −µ ∂e
∂ωih

= δh(k)xi(k), ωN+1
ih = ωN

ih + ηδh(k)xi(k) (7)

7. Calculation of global error:
E = 1

2m ∑m
k=1 ∑

q
o=1 (do(k)− yo(k))

2 (8)

8. Judging the reasonableness of the model: judge whether the network error meets the requirements, and end the algorithm when the error reaches
the preset accuracy or the number of learning steps is larger than the designed maximum number. Otherwise, select the next learning sample and

the corresponding output expectation, return to step 3, and enter the next round of learning.

Input variables: x = (x1, x2, . . . , xn), hidden layer input variables: hi =
(
hi1, hi2, . . . , hip

)
, hidden layer output variables: ho =

(
ho1, ho2, . . . , hop

)
,

output layer input variables: yi =
(
yi1, yi2, . . . , yiq

)
, output layer output variables: yo =

(
yo1, yo2, . . . , yoq

)
, expected output vector:

do =
(
d1, d2, . . . , dq

)
, connection weights of the input layer and the hidden layer: ωih, connection weights of the hidden layer and the output layer:

ωho , threshold value of each neuron in the hidden layer: bh, threshold of each neuron in the output layer: bo , number of sample data: k = 1, 2, . . . , m,
activation function: f (•), error function: e = 1

2 ∑
q
o=1 (do(k)− yoo(k))

2.

The implementation flow of a BP neural network is shown in Figure 7.

Figure 7. BP neural network implementation flow chart.
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6. Results and Discussion
6.1. SOFC System Experimental Results and Analysis

The full-scale experiments of the system include long-term power generation experi-
ments of the stack, gradually from low current to high current. The current, voltage, and
power characteristics of the SOFC system for the full working condition experiment are
shown in Figure 8.

Figure 8. Power generation characteristics of the SOFC system under full working conditions.

From the experiment, it is known that 0–300,000 s (A) is the current pull-up phase
and, after 300,000 s, it is the stable discharge phase. During the stable discharge phase, it
is known that the reformer carbon deposition and heat exchanger rupture failure occur
in the system based on the change in the system electrical characteristics and the system
condition after disassembly, as shown in Figure 9.

Figure 9. Heat exchanger rupture and reformer carbon build-up failure.

Therefore, 300,000–410,000 s (B) is marked as a healthy condition, 410,000–590,000 s
(C) is marked as the reformer carbon deposition fault condition, and 590,000 s–shutdown
(D) is marked as the heat exchanger rupture fault condition, as shown in Table 2.
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Table 2. SOFC system operation status.

Time 0–300,000 s 300,000–410,000 s 410,000–590,000 s 590,000–Shutdown

Num A B C D

Status Current pull-up phase Health Reformer carbon deposit failure Heat exchanger rupture failure

The data of each state are divided into two groups, one for fault diagnosis model
training and the other for model validation. Among the healthy data, 45,000 data were
randomly selected for model training and 5000 data were randomly selected for model
validation; among the reformer carbon deposition failure data, 60,000 data were selected for
model training and 6000 data were selected for model validation; among the heat exchanger
rupture failure, 35,000 data were selected for model training and 5000 data were selected
for model validation, as shown in Table 3.

Table 3. Data for training and validation.

Status Amount of Training Data Amount of Test Data

Health 45,000 5000

Reformer carbon deposit failure 60,000 6000

Heat exchanger rupture failure 35,000 5000

6.2. Analysis of PCA Data Dimensionality Reduction Results

The variables in the SOFC system are coupled with each other, and the variables
contain information that is duplicated between them. A small number of principal compo-
nents extracted from all variables can describe the data characteristics of the whole system,
so data dimensionality reduction by PCA can greatly reduce the complexity of the data.
After the initial screening, the fuel input flow rate, fuel input flow rate to the combustion
chamber, air input flow rate to the reformer, bypass air flow rate, deionized water input
flow rate, reformer temperature, heat exchanger temperature, combustion chamber temper-
ature, current, and voltage were selected to indicate the system performance. The reformer
temperature was measured by sensors at five different locations and therefore contains
five variables; the heat exchanger temperature is represented by six variables; and the
combustion chamber temperature is represented by seven variables. Thus, there are a total
of 25 variables to describe the performance of the system. PCA dimensionality reduction
in these 25 variables revealed that all variables can be represented using six principal
components, and Figure 10 represents the contributions of the six principal components.

Figure 10. The contribution of the 6 principal components in representing all variables.
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As can be seen from the above figure, the cumulative contribution of the first six
principal components is 95.4%, with principal component 1 accounting for a significantly
higher proportion of the contribution than the other principal components, with a value
of 59.5%. After feature fusion by PCA, the original 25-dimensional features are reduced
to 6-dimensional, and the number of feature dimensions is reduced by 76%, which is a
remarkable effect in compressing the amount of information and reducing the number of
feature dimensions. PCA-based feature fusion methods are also effective in reducing the
training time of classifiers, which is of great value when dealing with massive amounts of
data, as shown in the next subsection.

6.3. Comparison of the Results of SVM and BP Neural Network Fault Diagnosis

SVM, BP, LSTM, and RNN classification algorithms are used to compare and ana-
lyze the accuracy of fault diagnosis before and after data dimensionality reduction. The
classification results are shown in Table 4.

Table 4. Accuracy of fault diagnosis before and after data downscaling.

Parameters Precision Recall F1 Time Cost

SVM Decision function shape = OVR
Penalty factor = 1, Kernel = RBF

C(1,2,3) = 0.2391, 1.8508, 0.0951
σ(1,2,3) = 4.1167, 9.2878, 687.7935

0.952 0.963 0.957 35.795 s

SVM + PCA 0.998 1 0.998 17.588 s

BP Input node = 7
Hidden layer node: (16, 64), (64, 256),

(256, 256), (256, 32), (32, 7)

0.867 0.864 0.865 145.23 s

BP + PCA 0.909 0.909 0.909 95.47 s

LSTM Input layer = 7, Hidden layer = 16
Sequence length = 100 0.824 0.826 0.825 378.17

RNN Input layer = 7, Hidden size = 64
Hidden layer = 8, Sequence length = 100 0.822 0.822 0.822 164.28

In order to evaluate the generalization performance of a fault diagnosis model, some
metrics to measure the quality of the model are needed. Taking the binary classification
problem as an example, the samples are classified into four cases: true positive (TP), false
positive (FP), true negative (TN), and false negative (FN), based on the combination of
their true categories and the classifier prediction results. TP, FP, TN, and FN denote their
corresponding sample numbers, respectively. With these four cases, precision (P), recall (R),
and the F1 metric can be calculated.

Precision (P): Precision indicates the proportion of predicted positive samples relative
to the true positive samples in the total sample. Its definition is shown as follows:

P =
TP

TP + FP
(9)

Recall (R): Recall indicates how many positive examples in the sample were correctly
predicted, and is defined as follows:

R =
TP

TP + FN
(10)

In practical model evaluation, a model cannot be fully evaluated with precision or
recall alone; both values of precision/recall must be used to evaluate the model. Therefore,
a comprehensive evaluation metric, F1, is introduced, which is defined based on the
harmonic mean of precision and recall:

F1 =
2PR

P + R
(11)
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The research results show that SVM, BP, LSTM, and RNN algorithms are able to obtain
a fault recognition rate of more than 80%. The LSTM neural network algorithm has a
relatively large time complexity, uses the longest time to complete model training and
state identification, and may not be able to complete time-critical online applications. The
state recognition accuracy of BP neural network is higher than that of LSTM and RNN
models because the feature extraction ability of BP neural network is higher than that of the
other two models, and the superior feature extraction ability leads to better classification
ability [35]. The SVM model has the highest accuracy in state identification due to its
ability to map the problem to a high-dimensional space by means of kernel functions,
which yields excellent classification of nonlinear problems. The SVM model has two main
hyperparameters that enable constrained optimization to process the outliers and more
accurately distinguish between categories.

The dimensionality of the features of the dataset fused by PCA was reduced substan-
tially, and the experimental results of PCA + SVM and PCA + BP showed that the training
and classification time of the classifier was greatly reduced and did not affect the accuracy
of the classifier. On the contrary, the reduction in redundant features after fusion results in a
small increase in accuracy. This is because the system data before dimensionality reduction
contain redundant features and features containing error information, which will affect the
accuracy of the fault classifier, in addition to increasing the computation of the classifier
and increasing the running time of the classifier. The runtime reduction after fusion is very
large, which indicates that the simple and effective feature set significantly reduces the
computational effort of the classifier.

The combination of PCA and SVM has advantages over other algorithms in terms
of diagnostic accuracy and time, with an accuracy of over 99% and a runtime that can
be controlled within 20 s. Therefore, the combination of the two can make full use of
the complementarity between the features, eliminate the redundant information in the
feature information, and maximize the amount of compressed information to improve
the ability to characterize the operation status and thus improve the fault diagnosis rate.
The method combines the excellent fusion of principal component analysis to remove
redundant information and the good classification performance of the support vector
machine classifier, which enables the method to achieve feature dimensionality reduction
while effectively characterizing the operation status of the equipment. The classifier can
be used in future experiments to monitor the operational status of the SOFC system in
real time. According to the operation status of the system to provide the corresponding
control strategy, when the system again detects the occurrence of a carbon deposition
fault, the water-to-carbon ratio of the system should be adjusted in time to prevent further
carbon accumulation; when the system again detects the heat exchanger rupture fault, the
operation of the system should be stopped immediately and the damaged heat exchanger
should be replaced.

7. Conclusions

This paper presents a data-driven fault diagnosis scheme for SOFC systems. This
study began with the design of system experiments and performed fault diagnosis on the
data obtained from the experiments. First, the system experiments were designed; then,
PCA dimensionality reduction was performed using the obtained data; finally, the SVM
and BP neural network fault diagnosis models were trained and validated. The experiment
yielded a total of 629,999 s of experimental data, with the first 300,000 s being the current
pull state, in which a thermal standby occurred at about 150,000 s; the period from 300,000
to 410,000 s was the healthy operation state; a reformer carbon buildup failure occurred
in the period from 410,000 to 590,000 s; and a heat exchanger rupture failure occurred at
590,000 s, which led to a system shutdown. These data were divided into training data
and test data for fault diagnosis in SVM and BP neural networks. The fault diagnosis
results show that both SVM and BP fault diagnosis algorithms can achieve online fault
identification. The results of comparing the PCA + SVM algorithm with the SVM, BP, and
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PCA + BP algorithms show that the PCA + SVM algorithm is superior in terms of running
time and accuracy, the diagnostic accuracy can reach more than 99%, and the running time
is within 20 s. The program provides a fault diagnosis scheme that provides guidance
for subsequent experimental improvements and controller design. Using this solution for
subsequent experiments can effectively prevent failures, improve system life, and reduce
system costs.
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