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Abstract: Unplanned power plant failures have been seen to be a major cause of power shortages,
and thus customer power cuts, in the South African power grid. These failures are measured
as the unplanned capability loss factor (UCLF). The study of South Africa’s UCLF is almost non-
existent. Parameters that affect the future UCLF are, thus, still not well understood, making it
challenging to forecast when power shortages may be experienced. This paper presents a novel study
of South African UCLF forecasting using state-of-the-art deep learning techniques. The study further
introduces a novel deep learning ensemble South African UCLF forecasting system. The performance
of three of the best recent forecasting techniques, namely, long short-term memory recurrent neural
network (LSTM-RNN), deep belief network (DBN), and optimally pruned extreme learning machines
(OP-ELM), as well as their aggregated ensembles, are investigated for South African UCLF forecasting.
The impact of three key parameters (installed capacity, demand, and planned capability loss factor)
on the future UCLF is investigated. The results showed that the exclusion of installed capacity in
the LSTM-RNN, DBN, OP-ELM, and ensemble models doubled the UCLF forecasting error. It was
also found that an ensemble model of two LSTM-RNN models achieved the lowest errors with a
symmetric mean absolute percentage error (sMAPE) of 6.43%, mean absolute error (MAE) of 7.36%,
and root-mean-square error (RMSE) of 9.21%. LSTM-RNN also achieved the lowest errors amongst
the individual models.

Keywords: deep learning; forecasting; power outages; coal power plants; recurrent neural networks;
ensemble techniques

1. Introduction

South Africa has been seen to be a late participant in the three key industrial revolu-
tions [1]. The use of artificial intelligence (AI) and data is on the rise in South Africa [2–4].
This rise means that South Africa might not be a late participant in the fourth industrial
revolution. In 2007, 2013, 2018, and 2019, South Africa experienced a shortage in power
supply due to various challenges, leading to load shedding [1]. South Africa’s public power
utility, Eskom, has on several occasions stated its inability to accurately predict/forecast the
unplanned capability loss factor (UCLF) as one of the major factors leading to an unreliable
power supply and unpredictable load shedding [5,6]. UCLF is a term that refers to the
measure of unplanned plant breakdown. The behavior of South African UCLF has not
been well studied. Pretorius et al. studied the impact of the South African energy crisis
on emissions [7]. This study only talks about an increase in UCLF due to maintenance
deferral. The study does not talk about how to forecast UCLF, nor the major factors that
contribute to UCLF that can help in the forecasting of UCLF. The UCLF, planned capability
loss factor (PCLF), and other capability loss factor (OCLF), together with the installed ca-
pacity, determine the power available to supply customers. The PCLF is the planned plant
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outages for the maintenance or refurbishments of the plant. This is typically a planned,
set value set by the utility. The utility can decide to change their planned outage/PCLF
depending on different factors. The OCLF accounts for other or random losses and is
usually significantly smaller than the UCLF [8]. The installed capacity gives the number of
megawatts of the installed power plant units. Micali studied the prediction of new coal
power plants’ availability in the absence of data in South Africa [8]. The author mentions
that the work is a precursor to predicting UCLF in new plants. The author proposes using
expert opinion with some data from stations where data are available. However, the work
in [8] did not focus on the total UCLF, assumed limited availability of data, did not use
AI techniques, and depended on expert knowledge. In [9], the authors state that expert
knowledge can change from one expert to the next, and thus expert results can be different
from the same data. The author, in addition, did not investigate factors that affect power
supply and may influence the UCLF [8]. There is, thus, a gap in South Africa in terms
of accurately forecasting UCLF. In addition, the study of the total South African UCLF
behavior is a gap as only precursor work exists, and the precursor work is focused on new
plants. Another gap is the use of intelligent systems that are not reliant on human experts
in UCLF forecasting.

To add to the previous paragraph, the knowledge of when the power system might
experience a power shortage is still a topic of interest and is not only important for the
utility, but also customers. Knowing when there may be a power shortage, and hence a
requirement to reduce consumption, helps customers plan their operations. Unplanned
failures have been studied before. In [10], real-time prediction of distribution system
outage duration using historical outage records to train neural networks was studied. The
Netherlands collects information on unplanned outages from its utilities to inform its
maintenance and investment policies [11].

South Africa is the highest producer of electricity in Africa and is in the top 25 producers
of power in the world [12,13]. Over 80% of South Africa’s power is produced by coal-fired
power stations and a nuclear power station. The total South African power grid UCLF can,
thus, be modeled as that of the coal and nuclear power stations. Despite the recent move
towards cleaner energy, the largest power-producing countries, such as India and China,
still rely heavily on coal-fired power stations [12]. The study of coal thermal power plants
and behavior is, thus, still of interest [14–17]. The study of the South African coal-fired
power station UCLF is, therefore, important as coal power plants are still highly used and
are still a research topic of interest.

Forecasting and prediction have been topics of interest for many researchers [10,18].
This is mainly due to an interest in understanding and predicting the future behavior
of certain variables. Artificial intelligence (AI) techniques have become popular in these
forecasting/prediction tasks. One of the reasons for this popularity is their ability to
model non-linearity with high accuracy. Khoza and Marwala used an ensemble of the
multi-layer perceptron and rough set theory to predict the direction that the South African
gross domestic product (GDP) would take [18]. Galius proposed a probabilistic model
for modeling power distribution network blackouts [19]. In Egypt, power cable failures
were analyzed to help prevent future power outages [20]. In [21], bilateral long short-term
memory (LSTM) was used to forecast the short-term cycle of wafer lots for the planning
and control of wafer manufacturing. The rise of computational power and access to labeled
data has led to an increase in the utilization of deep learning techniques [22]. Deep learning
techniques have been seen to have an excellent performance in multiple areas, such as
language and speech processing, as well as computer vision [23,24]. Alhussein et al. used
a hybrid of convolutional neural networks (CNN) and long short-term memory (LSTM)
to forecast individual house loads [25]. Here, the researchers use CNN to select features
from the input data and LSTM to learn the sequence. The authors stated a mean absolute
percentage error (MAPE) improvement greater than 4% in comparison to LSTM-based
models. Kong et al. also combined CNN and LSTM for short-term load forecasting in
Singapore [26]. Pandit et al. compared LSTM and Markov chain models in weather
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forecasting for German offshore wind farms to improve their wind turbine availability and
maintenance [27]. Deep learning has also been used to forecast wind speeds at turbine
locations [28]. The authors combine CNN and the gated recurrent unit (GRU) to achieve
satisfactory results in comparison to existing models. Deep learning techniques have
also been used to forecast the Korean postal delivery service demand [29]. This observed
performance of deep learning techniques has also led to their adoption in recent load
forecasting studies [30,31]. A gap still exists in the application of the state-of-the-art
techniques in forecasting UCLF (and South African UCLF), as applied in forecasting in the
different engineering areas.

As observed, a number of studies have used a combination of techniques to achieve
improved performance [25–29]. This combination of techniques is usually termed ensemble
or hybrid techniques. Ensemble techniques have also been used for classification in different
engineering applications. Ramotsoela et al. used an ensemble of five artificial intelligence
techniques to detect intrusion in water distribution systems [32]. The ensemble model
used here combined an artificial neural network (ANN), RNN (recurrent neural network),
LSTM, GRU, and CNN in a voting system. The ensemble model classified its output as an
anomaly if at least two constituent models classified their outputs as an anomaly. CNN
models have been combined to determine driver behavior from multiple data streams [33].
The proposed ensemble model incorporated a voting system to enhance the classification
accuracy. A double ensemble model of semi-supervised gated stacked auto-encoders has
been used to predict industrial key performance indicators [34]. Drif et al. proposed an
ensemble of auto-encoders for recommendations [35]. The authors used an aggression
method to combine outputs from the sub-models to form the ensemble model output.
Bibi et al. used an ensemble-based technique to forecast electricity spot prices in the
Italian electricity market [36]. The authors estimated deterministic components using
semi-parametric techniques and then determined stochastic components using time series,
and machine learning algorithms. The final forecast is obtained from the estimates of
both components [36]. Shah et al. used a similar approach to Bibi et al. in short-term
electricity demand forecasting for the Nordic electricity market [37]. The similarity is that
the authors separated their approach into a deterministic and a stochastic component and
then combined the estimates from them to obtain the final forecast. None of the literature
covers the use of ensemble techniques in forecasting UCLF. The use of ensemble techniques
in UCLF forecasting is, thus, an existing research gap.

This paper introduces the following contributions: (i) A novel study of the South
African UCLF behavior using state-of-the-art AI (deep learning and ensemble) techniques.
(ii) An investigation of the impact of the installed capacity, historic demand, and PCLF on
the UCLF forecasting accuracy. (iii) An introduction of a novel deep-learning ensemble
total South African UCLF forecasting system.

The remainder of this paper is arranged as follows: Section 2 presents the techniques
used in this research. Section 3 presents the experimental setup. The proposed UCLF
forecasting system is presented in Section 4. Section 5 then presents the experimental
results and the discussion of the results. The paper conclusions are presented in Section 6.
Section 7 presents the limitations of the study as well as future work. The paper flow chart
is shown in Figure 1.
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2.1. OP-ELM

The optimally pruned extreme learning machine (OP-ELM) is the improved version
of the extreme learning machine. This improved technique, introduced by Miche et al.,
uses the leave-one-out (LOO) method to select the optimal number of neurons [38]. LOO
marginalizes the irrelevant neurons built into ELM’s network. This marginalization helps
overcome the shortfall in the approximation of the training dataset’s correlated and irrele-
vant variables. Given a training set xi, with a target vector ti, the OP-ELM’s objective is to
obtain the minimum possible error function. The OP-ELM equation is given by (1). If there
exists an input weight vector connecting the kth hidden neuron and the input (wk), a kth
hidden node’s bias (bk), and an output weight connecting the output and the kth hidden
neuron (βk), such that ∑

j
k=1 f (wk, bk, xi)βk = yi, (1) can be re-written as (2).

∑j
k=1 f (wk, bk, xi)βk = ti (1)

Hβ = T (2)

H =

 f (w1, b1, x1) · · · f (wk, bk, x1)
... · · ·

...
f (w1, b1, xm) . . . f (wk, bk, xm)


m×j

(3)

β = H∗T =
(

HHT
)−1

HTT (4)

where yi is the output vector, ti is the output target vector, H is the hidden layer’s output
matrix, and k = 1, 2 . . . j. The input weights and biases are assigned at random and do not
require tuning. The hidden layer’s output matrix parameters are also assigned random
values. If H is a square matrix, matrix inversion can be used to determine the output
weights. In a case where H is not a square matrix, the Moore–Penrose Equation (4) is used
to determine the output weights. The neurons are ranked using multi-response sparse
regression, and the LOO is then applied.

2.2. LSTM-RNN

The fading of previously learned patterns is a challenge experienced in standard RNN
architectures. The LSTM-RNN has a memory cell to overcome this shortcoming. The
memory cell is managed by non-linear gating units. The gated units of an LSTM-RNN unit
can be seen in Figure 2. These gated units, the forget gate (fn), input gate (in), and output
gate (on), are presented by Equations (5)–(7), respectively. Equations (8)–(10), respectively,
present the input node (gn), the state (sn), and the cell state (hn). Here, n is the time step, ∅ is
the tanh function, σ is the sigmoid function, and the W matrices are the respective network
activation functions’ corresponding input weights. The LSTM-RNN cells are stacked after
each other to achieve a deep layered LSTM-RNN. The memory cells give the models the
ability to sustain memory.

fn = σ
(

W f zzn + W f hhn−1 + b f

)
(5)

in = σ(Wizzn + Wihhn−1 + bi) (6)

on = σ(Wozzn + Wohhn−1 + bo) (7)

gn = ∅
(

Wgzzn + Wghhn−1 + bg

)
(8)

sn = gn � in + sn−1 � fn (9)

hn = ∅(sn)� on (10)
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2.3. DBN

The deep belief network (DBN) is built by stacking restricted Boltzmann machines
(RBM). The technique was introduced in the mid-2000s by Geoffrey Hinton. There are
no connections between the neurons on the same layer. There is a symmetrical and bi-
directional connection between the layers. The model determines the hidden state, visible
state, initial weight, and biases in the first step using unsupervised learning. Supervised
learning, using back-propagation, is used to append the unsupervised learning pre-trained
model. The joint distribution over the visible and hidden units is given by (11) [39].

P(m, h) =
e−E(m,h)

∑n ∑h e−E(m,h)
(11)

where E(m, h) is the energy function. The conditionally independent conditional probabili-
ties are given by (12) and (13). If the values of the hidden and visible units are from 0 to 1,
(12) and (13), respectively, become (14) and (15), with i = 1, 2 . . . kh and j = 1, 2 . . . km.

p(m|h) = ∏j p
(
mj
∣∣h) (12)

p(h|m) = ∏i p(hi|m) (13)

p
(
mj = 1

∣∣h) = sigmoid
(

αj + ∑kh
i=1 Wijhi

)
(14)

p
(
hj = 1

∣∣m) = sigmoid
(

βi + ∑km
j=1 Wijmj

)
(15)

2.4. Ensemble

Ensembles of models of the three techniques used in this study, LSTM-RNN, OP-ELM,
and DBN, are investigated for UCLF forecasting. Ensemble models are a combination of
multiple models to try to achieve better performance than that of the individual models.
There is a number of different ways that models can be combined to form an ensemble [30].
Figure 3 shows a summary of the aggregate method, which is commonly used in regression
problems. Here, models operate in parallel, and their outputs are aggregated to obtain
the ensemble model’s output. The aggregate ensemble model output, Oϕ, can be written
as (16). Here, Omk is the ensemble model’s kth output for models m1, m2 . . . mn, and n is
the number of models used to develop the assembly model. The equally weighted method
was used, where each model’s output into the ensemble model is given an equal weight.

Oϕ =
1
n ∑k=1

k=1 Omk (16)
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3. Experimental Setup

This section presents the experiment setup via two sub-sections. The first sub-section
presents the South African coal generation plants overview. The second sub-section presents
the experimental approach.

3.1. South African Key Coal Power Generation Plants Overview

South Africa has 15 key coal-powered thermal power stations. These stations are
owned and operated by Eskom. Two of these stations are the new supercritical power
stations, Medupi and Kusile, which are still under construction and at different stages of
completion. The power stations are mostly concentrated in Mpumalanga Province, mainly
due to the large availability of coal in this province. Twelve coal power stations are located
in Mpumalanga, two in Limpopo Province, and one in Free State Province. Figure 4 shows
the location of the South African coal-fired power stations [40]. South Africa also has
one nuclear power generation station located in the Western Cape Province. This power
station has an installed capacity of 1940 MW. This nuclear station and the coal-fired power
stations contribute to over 80% of South Africa’s installed capacity and supply the country’s
baseload. The PCLF and UCLF data used in this research are from these coal-fired powered
stations and the nuclear power station, collected from a centralized database.

3.2. Data Description

The data used in this study were real utility data collected from January 2010 to
December 2019. Figure 5 shows the different periodicities of the UCLF over time. Figure 5c
shows the periodicity over weeks in parts of the South African winter (June–July) and
summer (November–December) season in the year 2019.

The collected data were for four variables: the installed capacity, demand, PCLF, and
UCLF. To investigate how these variables affect the UCLF forecast accuracy of the different
techniques, the variables were arranged into five experiments, as shown in Figure 6. A
tick indicates that a variable is used in the respective experiment and a cross indicates that
the variable was not used in the experiment. The experiment with the best performance
will, thus, indicate which variables should be used with which technique to achieve the
lowest year-ahead UCLF forecasting error. The installed capacity is the total power that
can be generated by the installed power generation plants in megawatts. The demand
is the historic total national power demand in megawatts. The PCLF and UCLF are the
respective historic variables in megawatts. The UCLF data used for the input in the training
and testing of the models were split into the UCLF two years before the target UCLF,
UCLF T-2 Years, and the UCLF a year before the target, UCLF T-1 Year. The UCLF data
used was a daily peak value. A variable indicating if it is a weekend or a weekday, the
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Weekend Index, was also used as an input. This variable was a 1 for weekends and a 0 for
weekdays. This variable was included for the models to be able to differentiate the data for
a weekday and the weekend, respectively. This resulted in six input variables. The training
period was between 1 January 2012 and 31 December 2018. The testing period was between
1 January 2019 and 31 December 2019. Thus, the forecasts were a daily peak UCLF for the
year-ahead forecast period. All the variables, except the weekend index, were normalized
to be between 0 and 1. The training input data were, thus, a 2555 × n matrix, where the
2555 is the daily input values over 7 years and n is the number of variables used in the
respective experiment, as described next.
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The training input variable matrix sizes were, thus, 2555 × 6 for Exp 1, 2555 × 5 for
Exp 2 to Exp 4, and 2555 × 3 for Exp 5.

3.3. Experimental Approach

The different techniques’ models were, respectively, developed using various approaches.
The OP-ELM models were trained by tuning the model dimensions. A different num-

ber of hidden nodes were used to train the model in the respective experiments. Optimal
pruning using the LOO method was key in determining the model’s dimensions. Various
dimensions were investigated and the model with the lowest errors in each experiment
was captured and is presented in the results section.

LSTM-RNN models were trained with different numbers of stacked hidden LSTM
units. The variation of the hidden units was consistent in all the different experiments.
Similar to the OP-ELM, the performance results for the model with the lowest obtained
UCLF forecast errors were captured.

Single layered DBN models were developed with the number of hidden units being
varied for the respective models, the lowest number of hidden units used was four with
the highest number of hidden units being sixteen.
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Figure 5. The South African UCLF (MW—normalized): (a) UCLF for a period between January 2010
and December 2019; (b) monthly periodicity of UCLF between January 2018 and December 2019;
(c) weekly periodicity for June–July 2019 and November–December 2019.
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Figure 6. Variables used in the different experiments conducted per technique.
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The aggregation ensemble approach was used for the ensemble of the three techniques.
These ensembles were of two techniques at a time. Here, the various respective parameters
per technique are tuned and combined to form different ensemble models. The performance
results of the forecast results with the lowest errors are captured per experiment. For each
technique and experiment, the other hyperparameters, such as training rate and the number
of layers, were kept the same. In future work, the effect of optimizing the hyperparameters
can be investigated.

3.4. Performance Measures Used

Each model’s performance was measured using three key performance measures:
symmetric mean absolute percentage error (sMAPE), mean absolute error (MAE), and
root-mean-square error (RMSE). Motepe et al. state that the MAE, RMSE, MPE, MAPE, and
sMAPE are common forecasting error measurements [30]. They further state the challenge
that the MAPE faces when target values are too small, which leads to errors being too large.
The three used performance measurements in this research are presented in (17)–(19).

sMAPE =
2
N ∑N

k=1
|Fk − Tk|
|Fk|+ |Tk|

(17)

MAE =
∑N

k=1|Fk − Tk|
N

(18)

RMSE =

√
∑N

k=1(Fk − Tk)
2

N
(19)

where Fk is the forecasted value, Tk is the target value, and N is the number of forecasted values.

3.5. Statistical Significance Test

After the model performance is measured, the model results can be found to not be
statistically different from each other. This means that despite one model achieving results
with a lower error in comparison to the next model’s results, the model with the lower
error does not necessarily outperform the model it is being compared to. A statistical test
can be used to determine if model results are statistically significantly different. One such
test is the t-test. The t-test uses the mean and the variance to check if two samples are
from the same sample. The test calculates a significant value, also termed the p-value.
A p-value less than the acceptable value means that the samples being compared have a
significant difference, and vice versa. A p-value of 0.05, which is a commonly used value
in scientific studies, was used in this study. The statistical significance test is performed,
for each technique between the results with the lowest overall errors and results with the
lowest errors from Exp 1, Exp 2, Exp 3, Exp 4, and/or Exp 5.

4. Proposed UCLF Forecasting System

Figure 7 presents the proposed UCLF forecasting system. The power stations monitor
their plant’s performance and report this locally at the station and centrally. These data are
then stored in a central database. The UCLF data are part of these stored power station data.
A record of the power station units that are on planned outages, PCLF, for maintenance
or refurbishment is also stored centrally. These PCLF data are then provided by a central
planning department in conjunction with the central operations department. The planning
department also provides the installed capacity data to the central database. The system
operator or an equivalent department would then provide the demand data. The data are
pre-processed, and the variables are then consolidated for input into the deep learning (DL)
ensemble UCLF forecasting module. The DL ensemble UCLF forecast module contains a
DL ensemble model that forecasts the UCLF. The UCLF forecast is then stored and used by
the planning, operations, and system operator. The DL ensemble model is developed and
tested offline, and then deployed in the system. The UCLF forecast data together with the
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actual UCLF data are then used by a model performance evaluation module to periodically
check if the model’s accuracy is still acceptable based on the utility’s requirements.

Energies 2022, 15, x FOR PEER REVIEW 10 of 18 
 

 

studies, was used in this study. The statistical significance test is performed, for each tech-
nique between the results with the lowest overall errors and results with the lowest errors 
from Exp 1, Exp 2, Exp 3, Exp 4, and/or Exp 5. 

4. Proposed UCLF Forecasting System 
Figure 7 presents the proposed UCLF forecasting system. The power stations monitor 

their plant’s performance and report this locally at the station and centrally. These data 
are then stored in a central database. The UCLF data are part of these stored power station 
data. A record of the power station units that are on planned outages, PCLF, for mainte-
nance or refurbishment is also stored centrally. These PCLF data are then provided by a 
central planning department in conjunction with the central operations department. The 
planning department also provides the installed capacity data to the central database. The 
system operator or an equivalent department would then provide the demand data. The 
data are pre-processed, and the variables are then consolidated for input into the deep 
learning (DL) ensemble UCLF forecasting module. The DL ensemble UCLF forecast mod-
ule contains a DL ensemble model that forecasts the UCLF. The UCLF forecast is then 
stored and used by the planning, operations, and system operator. The DL ensemble 
model is developed and tested offline, and then deployed in the system. The UCLF fore-
cast data together with the actual UCLF data are then used by a model performance eval-
uation module to periodically check if the model’s accuracy is still acceptable based on 
the utility’s requirements. 

 
Figure 7. Proposed deep learning UCLF forecasting system. 

5. Experiment Results and Results Discussion 
This section presents the results of the five different experiments for the four tech-

niques. The results are then discussed. 

5.1. OP-ELM Results 
The different experiments were conducted with different OP-ELM models, as de-

scribed in Section 3. The lowest obtained errors per experiment are captured in Table 1. It 
was found that the OP-ELM model developed using variables for Experiment 2 and 50 
hidden nodes achieved the lowest errors. This model achieved an sMAPE of 10.21%, MAE 
of 11.57%, and RMSE of 14.65%. These performance results are in bold in Table 1. This 
model was, therefore, developed without the demand as an input. Experiments 4 and 5’s 
lowest obtained errors were higher than the lowest obtained errors in the other three ex-
periments. The exclusion of the installed capacity, in Experiments 4 and 5, was observed 

Model 
Performance 

Evaluation  

Database to Store 
UCLF Forecast Data

Data 
Preprocessing

DL Ensemble UCLF 
Forecasting Module

UCLF
Forecasts

UCLF 
Data

Installed 
Capacity 

Data

PCLF 
Data

Demand 
Data

Power
Station 1 

Power
Station 2 

Power
Station n 

…
.

Planning 

Operations

System 
Operator

Figure 7. Proposed deep learning UCLF forecasting system.

5. Experiment Results and Results Discussion

This section presents the results of the five different experiments for the four tech-
niques. The results are then discussed.

5.1. OP-ELM Results

The different experiments were conducted with different OP-ELM models, as de-
scribed in Section 3. The lowest obtained errors per experiment are captured in Table 1.
It was found that the OP-ELM model developed using variables for Experiment 2 and
50 hidden nodes achieved the lowest errors. This model achieved an sMAPE of 10.21%,
MAE of 11.57%, and RMSE of 14.65%. These performance results are in bold in Table 1.
This model was, therefore, developed without the demand as an input. Experiments 4 and
5’s lowest obtained errors were higher than the lowest obtained errors in the other three
experiments. The exclusion of the installed capacity, in Experiments 4 and 5, was observed
to lead to an increase in the errors. In these experiments, the sMAPE increased by over 90%
in comparison to the sMAPE in the other experiments. This increase in the errors was also
observed to be approximately twice the observed errors in Experiment 2.

Table 1. OP-ELM experiments results.

Experiment Hidden Nodes
Performance

sMAPE MAE RMSE

Exp 1 81 0.208919 0.124393 0.157294

Exp 2 50 0.204172 0.115727 0.146514

Exp 3 50 0.231884 0.134929 0.173026

Exp 4 125 0.405396 0.198972 0.228686

Exp 5 18 0.519556 0.246778 0.27476

A statistical significance test was conducted to determine if the results with the lowest
errors from each experiment had a significant difference from the results with the overall
lowest errors. The statistical significance test results are captured in Table 2. From the
significance test results, a p-value of less than 0.05 was observed. Thus, the results are
significantly different from each other. The exclusion of the demand, therefore, increases
model forecasting error.
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Table 2. OP-ELM models’ lowest errors statistical significance test.

Exp 1 Exp 3 Exp 4 Exp 5

p-value 0.020517 0.001810 2.0375 × 10−91 7.4004 × 10−118

5.2. LSTM-RNN Results

LSTM-RNN models were developed using the different variables per respective ex-
periment. The performance of the different LSTM-RNN models was observed. The lowest
obtained year-ahead UCLF forecast errors, per experiment, are captured in Table 3.

Table 3. LSTM-RNN experiments results.

Experiment Hidden Units
Performance

sMAPE MAE RMSE

Exp 1 511 0.15897 0.091421 0.114164

Exp 2 64 0.173154 0.097143 0.117865

Exp 3 511 0.168273 0.09699 0.122862

Exp 4 256 0.343999 0.179548 0.214021

Exp 5 767 0.407081 0.206088 0.237777

A model with 511 hidden units and Experiment 1 variables had the lowest errors.
Here, an sMAPE of 7.95%, MAE of 9.14%, and RMSE of 11.42% were achieved. Higher
errors were observed in Experiments 4 and 5, where the installed capacity was excluded.
These errors were approximately twice the errors in Experiment 1. A statistical significance
test was conducted to determine if the results with the lowest errors in each experiment
were significantly different from the results with the overall lowest errors. The results were
found to be statistically different from each other as a p-value of less than 0.05 was observed
in all four cases. The obtained p-values are captured in Table 4.

Table 4. LSTM-RNN models’ lowest errors statistical significance test.

Exp 2 Exp 3 Exp 4 Exp 5

p-value 0.022794 9.3999 × 10−14 9.2587 × 10−211 7.8709 × 10−256

5.3. DBN Results

The DBN models were developed as discussed in Section 3. The errors for the models’
year-ahead UCLF forecast results were observed and the lowest obtained errors per exper-
iment are captured in Table 5. A model with nine hidden nodes developed using all the
variables was found to achieve the lowest errors, with an sMAPE of 9.74%, MAE of 11.52%,
and RMSE of 13.74%. Experiments 4 and 5 showed an increase that was approximately
three times the errors observed in Experiment 1.

The statistical significance test was conducted as described in Section 3.5 and the test
result showed that the forecasting results were significantly different. Table 6 shows the
statistical significance test results. The p-value can be seen to be less than 0.05 in each case,
indicating a significant difference in the respective cases.
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Table 5. DBN experiments results.

Experiment Hidden Nodes
Performance

sMAPE MAE RMSE

Exp 1 9 0.194736 0.115172 0.137397

Exp 2 8 0.328704 0.172461 0.172461

Exp 3 8 0.300888 0.159492 0.189725

Exp 4 4 0.608786 0.279951 0.304046

Exp 5 4 0.588584 0.273245 0.298614

Table 6. DBN models’ lowest errors statistical significance test.

Exp 2 Exp 3 Exp 4 Exp 5

p-value 7.3796 × 10−268 1.7369 × 10−253 9.7011 × 10−264 3.9572 × 10−259

5.4. Ensemble Results

Ensemble models of the three techniques were developed using the aggregate method
with two individual developed models at a time; that is, from Equation (16), n = 2. All
the individual models developed in this research were ensembled in this manner and
their performance was observed. The performance parameters for the ensemble model
whose year-ahead UCLF forecast achieved the lowest errors per experiment are presented
in Table 7. Thus, not all results are included in Table 7, just the results with the lowest errors
per experiment. The ensemble technique name is constructed by combining the name of the
original technique used and the number of hidden nodes, for the OP-ELM and DBN, and
the number of hidden units, for the LSTM, next to the name. The lowest obtained errors
were achieved using an ensemble model of two LSTM models with 192 and 26 hidden
units, respectively. This model achieved an sMAPE of 6.43%, MAE of 7.36%, and RMSE
of 9.21%, which are bolded in Table 7. The respective errors in Experiments 4 and 5 were
approximately twice the errors in Experiment 1. The accuracy of the model in Experiment
2 was higher than that for the models in Experiment 3. The models in Experiments 2 and 3
had lower accuracy than the model in Experiment 1, and higher accuracy than the models
in Experiments 4 and 5.

Table 7. Ensemble experiments results.

Experiment Ensemble Technique
Performance

sMAPE MAE RMSE

Exp 1

LSTM192-LSTM26 0.1286794 0.073588 0.092046

LSTM192-DBN9 0.143504 0.080100 0.099055

LSTM383-OPELM16 0.163263 0.093770 0.120741

DBN9-DBN8 0.155915 0.089143 0.11129

DBN9-OPELM16 0.168854 0.096859 0.122968

OPELM81-OPELM16 0.198971 0.108824 0.140945

Exp 2

LSTM383-LSTM64 0.161214 0.092327 0.112328

LSTM128-DBN8 0.170443 0.097098 0.124192

LSTM64-OPELM50 0.167899 0.095670 0.118292

DBN8-DBN8 0.328704 0.172461 0.205681

DBN8-OPELM80 0.217165 0.118987 0.150817

OPELM50-OPELM15 0.206886 0.114157 0.147775
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Table 7. Cont.

Experiment Ensemble Technique
Performance

sMAPE MAE RMSE

Exp 3

LSTM511-LSTM511 0.168272 0.096990 0.122861

LSTM511-DBN8 0.210692 0.118462 0.148410

LSTM511-OPELM50 0.185430 0.106055 0.130075

DBN8-DBN8 0.300887 0.159491 0.189725

DBN9-OPELM50 0.225704 0.123672 0.153060

OPELM50-OPELM15 0.229431 0.127089 0.160191

Exp 4

LSTM256-LSTM256 0.343998 0.179547 0.214021

LSTM256-DBN4 0.466254 0.228923 0.257488

LSTM256-OPELM100 0.359248 0.184216 0.223038

DBN4-DBN4 0.608786 0.279950 0.304045

DBN4-OPELM100 0.480638 0.230885 0.263031

OPELM100-OPELM125 0.392240 0.194914 0.232011

Exp 5

LSTM767-LSTM767 0.407080 0.206087 0.237776

LSTM767-DBN4 0.4929245 0.239221 0.267542

LSTM767-OPELM18 0.459199 0.225823 0.254908

DBN4-DBN4 0.588584 0.273245 0.298614

DBN4-OPELM18 0.551643 0.259683 0.285607

OPELM18-OPELM18 0.519555 0.246777 0.274759

Table 8 presents the results for a statistical significance test conducted as discussed in
Section 3.5. A p-value less than 0.05 was observed for each test conducted. This observation
indicated that all the results being compared were significantly different from each other.

Table 8. Ensemble models’ lowest errors statistical significance test.

Exp 2 Exp 3 Exp 4 Exp 5

p-value 7.3796 × 10−268 1.7369 × 10−253 9.7011 × 10−264 3.9572 × 10−259

5.5. Results Discussion

The lowest obtained year-ahead UCLF forecasting errors from each technique are
summarized in Table 9. These results show that the lowest UCLF forecasting errors were
obtained by the ensemble model. The ensemble model was then followed by the LSTM-
RNN, DBN, and then OP-ELM. The two deep learning techniques, thus, achieved higher
accuracies than the non-deep learning technique, OP-ELM. It was observed that with
all techniques, apart from OP-ELM, the lowest errors were attained in Experiment 1.
Experiments 4 and 5 showed a sharp increase in errors, relative to the rest of the experiments
with all the techniques. Thus, the exclusion of the installed capacity as an input variable
decreased the accuracy of the models of the techniques used. The plots of the target UCLF
and the year-ahead forecasted UCLF for the models with the lowest errors per technique
are presented in Figures 8–11. These plots are plotted for the period of 1 January 2019 to
31 December 2019. Each plot of the individual models also includes the ensemble model
with the lowest forecasting error. The plots of the UCLF forecast by the models that make
up the ensemble model are plotted in Figure 9.
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Table 9. Summary of lowest obtained errors per used technique.

Technique Experiment
Performance

sMAPE MAE RMSE

OP-ELM Exp 2 0.204172 0.115727 0.146514

LSTM-RNN Exp 1 0.15897 0.091421 0.114164

DBN Exp 1 0.194736 0.115172 0.137397

Ensemble Exp 1 0.128679 0.073588 0.092046
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Figure 8. A plot of the OP-ELM and ensemble lowest error model year-ahead UCLF forecast against
the target UCLF.
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Figure 9. A plot of the LSTM-RNN and ensemble lowest error model year-ahead UCLF forecast
against the target UCLF.
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Figure 10. A plot of the DBN and ensemble lowest error model year-ahead UCLF forecast against the
target UCLF.
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Figure 11. A plot of the ensemble lowest error model and the two aggregated models’ year-ahead
UCLF forecast against the target UCLF.

6. Conclusions

This paper contributed to the body of knowledge about South African UCLF fore-
casting. (i) A novel study of the South African UCLF behavior using state-of-the-art AI
(deep learning and ensemble) techniques was presented. LSTM-RNN, DBN, OP-ELM, and
ensembles of these three techniques’ models were investigated in South African UCLF
forecasting. (ii) An investigation of the impact of the installed capacity, historic demand,
and PCLF on the UCLF forecasting accuracy was presented. It was found that the installed
capacity had the biggest impact on the UCLF forecasting error, with the exclusion of this
variable doubling the errors with the respective techniques used. (iii) A novel deep-learning
ensemble total South African UCLF forecasting system was introduced. It was found that
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an ensemble of LSTM models achieved the lowest errors with an sMAPE of 6.43%, MAE of
7.36%, and RMSE of 9.21%. The lowest achieved LSTM model UCLF forecast errors were
an sMAPE of 7.95%, MAE of 9.14%, and RMSE of 11.42%. The lowest achieved DBN model
UCLF forecast errors were an sMAPE of 9.74%, MAE of 11.52%, and RMSE of 13.74%. The
lowest achieved OP-ELM model UCLF forecast errors were an sMAPE of 10.21%, MAE of
11.57%, and RMSE of 14.65%. The lowest attained error was, thus, given by the ensemble
model, followed by LSTM-RNN. The non-deep learning techniques’ lowest achieved error
was higher than that of the lowest errors achieved by the other techniques. Thus, ensemble
deep learning techniques can be used to effectively forecast the total South African UCLF
and, thus, load shedding.

7. Limitations of the Study and Future Work

This section presents the limitation of this study. As with most research, not all
research-related aspects can be covered in a single study. As mentioned in Section 1, the
study of South African UCLF behavior and UCLF forecasting is a new research area. This
study does not focus on the speed of training the models, but rather on how well the models
forecast the UCLF. Future work can include looking at the model training performance from
the training speed perspective. The study forecast period is a year. This period was selected
as it gives a wide enough window for the utility, at a daily resolution, to understand the
UCLF behavior for the year. This understanding allows the utility company to plan over the
year. The study does not research the performance of the models in shorter-term forecast
windows, e.g., hourly, daily, weekly, etc. The performance of the models can, in the future,
be studied for different forecast windows. Future research work should also consider
looking at recent state-of-the-art techniques, such as temporal convolutional networks
(TCN), gated recurrent units (GRU), and quasi-recurrent neural networks (QRNN). Given
the performance of the equally weighted ensemble techniques in this paper, weighted
ensemble techniques should be considered in future work. This future work can also
investigate the ensemble models’ performance when combining more than two models.
Other benchmark techniques, such as naïve and multilayer perceptron, can be considered
in future work.
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