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Abstract: The improvement in city-level carbon efficiency (CE) is crucial for China to achieve its CO2

emission targets. Based on the panel data from 2003 to 2017, total factor CE values of 283 prefecture-
level cities were measured using the super-efficiency SBM model. Through the exploratory spatial
data analysis (ESDA), we found that the average city-level CE from 2003 to 2017 showed a “W”-
type growth trend. Additionally, there are significant spatial heterogeneity and spatial dependency
characteristics of city-level CE. The results of local spatial correlation analysis showed that the Low–
Low clusters are distributed in all cities of Shanxi and Northern Shaanxi, and gradually expand to
Inner Mongolia, Gansu, Ningxia, and Hebei over time, and the High–High clusters are mainly located
in the southeast coastal cities and central and eastern Sichuan. High–Low clusters are generally
scattered in cities with relatively superior political–economic status in Northeast China, North China,
and Northwest China, and gradually concentrated in North China during 2003–2017. Additionally,
the dynamic spatial econometric model was employed to investigate the influencing factors of CE,
and we found that the city-level CE has the characteristic of path dependence on time. Factors
such as industrial structure upgrading and environmental regulation have significant improvement
effects on city-level CE, while technological progress, financial development, energy intensity, and
government intervention can significantly inhibit city-level CE. Compared with short-term effects, the
long-term effects are insignificant with higher absolute values, indicating the long-term persistence
and gradual strengthening characteristics of driving factors on city-level CE; however, the acting
long-term mechanism has not been formed. Additionally, the regional spillover effect of driving
factors on CE is more significant in the short term. Based on the empirical results, some policy
implications for cities to improve CE are proposed.

Keywords: carbon efficiency; super-efficiency SBM model; spatial–temporal pattern; dynamic spatial
econometric model; driving factors

1. Introduction

Global warming caused by the continuous growth of greenhouse gas (GHG) emis-
sions has produced many environmental problems that seriously threaten human survival
and development. As the world’s largest CO2 emitter since 2006 [1], China has made a
commitment to peak CO2 emissions around 2030 and achieve carbon neutrality by 2060.
However, China is still the largest developing country in the world. Determining how to
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break environmental constraints and achieve low-carbon economic development is the key
problem that China will face in the future. From the perspective of total factor efficiency,
carbon efficiency (CE) can be understood as the degree to which carbon intensity can be
reduced under the given input of production factors. Improving CE is an effective way to
solve the problem [2–4].

With the rapid development of urbanization, cities have become the main source
of energy consumption and CO2 emissions in China. The International Energy Agency
(IEA) has predicted that China’s urban energy consumption will account for 83% of the
national consumption by 2030, generating significant CO2 emissions [5]. Cities play an
important role in reducing CO2 emissions [6,7]. However, because of the economic and
social connection between regions and pollutant spillover, the spatial spillover effect of
CO2 emissions is significant [8,9], and is more obvious with the deepening of regional
coordinated development. Therefore, based on the regional perspective and spatial analysis
theory, measuring the city-level CE, analyzing spatial characteristics, and exploring the
driving factors to formulate differentiated and scientific CO2 emission reduction policies
are important issues for China’s cities to realize green economy development.

The research on CE mainly focuses on three aspects. First, the measurement of CE.
In previous studies, scholars used a single index to define CE, such as carbon productiv-
ity [10], the proportion of CO2 emissions and energy consumption [11], and CO2 emission
intensity [12], which only reflect the influence of a single factor on CO2 emissions. A more
comprehensive CE index was later proposed [13,14], which considers all relevant indicators
of population, energy consumption, economic activity, and CO2 emissions.

It is necessary to establish the production frontier to measure relative efficiency. Data
Envelopment Analysis (DEA) and Stochastic Frontier Analysis (SFA) are widely used to
establish multiple-input and -output efficiency frontiers and measure efficiency. SFA is a
parameter method that mainly measures the effectiveness of efficiency through random
error terms. DEA is a nonparametric method with low requirements for data. It does
not require model form design [15,16], and is more and more widely used in environmental
performance evaluation [17–20]. The traditional DEA does not consider the unexpected output.
Färe et al. [21] first proposed the weak disposability of unexpected output and established
nonlinear programming based on unexpected output. However, the solution process is
complex and deviates from the actual production process. Subsequently, the directional
distance function [22] and the non-radial DEA model, i.e., the Slacks-Based Measure (SBM)
model [23], were proposed. For example, the CE values of 30 provinces in China were
calculated [24,25]. The total factor CE values of 31 manufacturing industries in China from
2012 to 2016 were calculated based on the improved non-radial distance function [26].

Second, the spatial analysis of CE. Numerous studies have found that CE has
significant spatial dependency. Yan et al. [27] used the unexpected output SBM model to
calculate the CE of the power sector in 30 provinces in China, and found significant spatial
dependency characteristics, especially in the eastern region with a developed economy.
Zhu et al. [28] calculated the CE of China’s provincial energy-intensive industries and found
that CE has significant spatial heterogeneity and spatial agglomeration characteristics, the
most significant in the eastern region. It was found that China’s industrial CE is the highest
in the east, the second highest in the middle, and the lowest in the west [29]. Several
studies found that there is significant regional heterogeneity in China’s CO2 emission
performance [25,30].

Third, the influencing factors of CE. In terms of research methods, previous studies
mainly used decomposition methods [31,32] and econometric models [33–35]. For example,
Zhou et al. [36] constructed the GVAR model of the construction industry and found that
technological progress and energy structure adjustment were conducive to improving the
CE, while the extensive economic growth mode significantly inhibited the CE. By exploring
the Tobit model, Zeng et al. [37] found that industrial structure, external development,
and scientific and technological levels were significantly positively correlated with CE,
while government intervention and energy intensity were negatively correlated with CE.
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With the verification of spatial agglomeration characteristics and the spatial spillover effect
of environmental pollution [38–40], spatial econometric models are widely used. For
example, Chu et al. [41] constructed a spatial econometric model and found that there
were significant differences in energy mismatch between regions. The impact of energy
mismatch on CE in the eastern region was positive, while the impact in the central and
western regions was mostly negative. Zhang et al. [42] constructed a spatial lag model
and found that China’s carbon productivity has an obvious positive spatial spillover
effect. Foreign trade has significantly improved China’s CE, and exports have the most
significant effect. On the whole, a large number of studies show that economic development,
urbanization, resource endowment, energy structure, technological progress, geographical
location, industrial structure, foreign trade, and environmental regulation are the main
factors affecting CE [25,28,37,43–45].

To summarize, there are some deficiencies and differences in scalability of current
research on CE. (1) From the research perspective, the current studies are conducted at
a national scale, provincial scale, or industrial scale. There are few studies focusing on
city-level CE due to data accessibility. As the main places of production and life, taking
cities as units is more conducive to the implementation of emission reduction policies.
Therefore, in this paper, we focus on city-level CE. (2) Numerous studies use SBM to
measure environmental efficiency, but the values are between 0 and 1, so it is impossible
to specifically distinguish the situation where multiple decision-making units are 1 at the
same time. Based on the research of Andersen et al. [46], Tone [47] proposed a super-
efficiency SBM model, which overcomes the aforementioned flaw and is widely used in
environmental efficiency evaluation [48–51]. Therefore, this paper employs the super-
efficiency SBM model to calculate the city-level total factor CE. (3) In terms of analyzing
the driving factors of CE with spatial econometric models, previous studies mainly adopt
static models, which neglect the inter-temporal effect of environmental pollution and
cannot provide a basis for the dynamic law in the temporal and spatial patterns. In
addition, few studies consider the role of financial development in environmental efficiency.
An increasing number of studies posit that financial development has a key effect on
environmental quality, especially the evolution of CO2 emissions [52,53]. According to the
research of Chen, Y. (2020), this study assumed SSP2 as a baseline scenario, which can be
considered a business-as-usual scenario and maintains historical development features [54].
Referring to the research of Zhou et al. [55], this study defines the carbon efficiency as the
ratio of potential carbon intensity to actual carbon intensity within the full factor framework.
Therefore, in this paper, we take China’s 283 prefecture-level cities into account and use the
super-efficiency SBM model to measure the city-level total factor CE. Then, we employ the
exploratory spatial data analysis (ESDA) to explore the spatial–temporal characteristics and
construct a dynamic spatial econometric model to explore the driving factors of city-level CE.

The rest of the paper is organized as follows. Section 2 introduces the research methods.
Section 3 presents the data sources and variable selection methods. Section 4 presents the
results and analysis, including the spatial–temporal characteristics and driving factors of
city-level CE. Section 5 provides conclusions and policy recommendations.

2. Methods
2.1. Environmental Production Technology

Environmental production technology is a production possibility set including desirable
outputs and undesirable outputs. Assuming that each decision unit invests capital (K), labor
(L), and energy (E) in the production process, desirable output (Y) and undesirable output
CO2 emissions (C) are produced. The production technology set T can be expressed as:

T = {(K, L, E, Y, C) : (K, L, E) can produce (Y, C)} (1)

The production technology set cc: closed sets, bounded sets, strong disposability
of inputs and desirable outputs, null-jointness, and weak disposability of desirable and
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undesirable outputs [22]. Assuming constant returns to scale, environmental production
technology set T can be expressed as:

T =

{
(K, L, E, Y, C) :

N
∑

n=1
ZnKn ≤ K;

N
∑

n=1
ZnLn ≤ L;

N
∑

n=1
ZnEn ≤ E;

N
∑

n=1
ZnYn ≥ Y;

N
∑

n=1
ZnCn = C; Zn ≥ 0, n = 1, 2, · · ·N

} (2)

where Zn indicates the intensity variable for constructing the environmental production
technology set. Referring to the research of Zhou et al. [55], we construct the following
non-radial directional distance function for cities

→
D(K, L, E, Y, C; g) = sup

{
wT β : ((K, L, E, Y, C) + g·diag(β)) ∈ T

}
(3)

where wT = (wK, wL, wE, wY, wC) and g = (gK, gL, gE, gY, gC) indicate the normalized
weight vector and explicit directional vector, β = (βK, βL, βE, βY, βC) denotes a scale vector.
By solving the following DEA model, the non-radial directional distance function can
be obtained:

→
D(K, L, E, Y, C; g) = max wKβK + wLβL + wEβE + wY βY + wCβC (4)

subject to:
N
∑

n=1
ZnKn ≤ K + βKgK

N
∑

n=1
ZnLn ≤ L + βLgL

N
∑

n=1
ZnEn ≤ E + βEgE

N
∑

n=1
ZnYn ≥ Y + βYgY

N
∑

n=1
ZnCn = C + βCgC

Zn ≥ 0, n = 1, 2, · · · , N, βK, βL, βE, βY, βC ≥ 0

(5)

If
→
D(K, L, E, Y, C; g) = 0, it indicates that the city evaluated is at the best frontier in the

g direction. In this study, we set g = (−K,−L,−E, Y,−C). Based on Zhou et al. [55], the
CE can be expressed as:

CE =
(C− β∗CC)/(Y + β∗EY)

C/Y
=

1− β∗C
1 + β∗E

(6)

where β∗C and β∗E are the optimal solutions to Equation (4) with (0, 0, 0, Y, −C) being
the direction. Obviously, CE lies between zero and unity. A larger CE represents better
carbon efficiency.

2.2. Super-Efficiency SBM Model

It should be noted that when the efficiency values are simultaneously equal to 1,
the effective decision-making units (DMUs) cannot be further distinguished. To further
rank efficient DMUs, Tone [47] proposed the super-efficiency SBM model under which
the efficiency values can be larger than 1. The super-efficiency SBM model is employed
to explore CE across China’s cities. Assuming there are n decision-making units (DMUs),
each DMU is composed of m inputs, s1 desirable outputs, and s2 undesirable outputs,
which are represented by vectors x ∈ Rm, yg ∈ Rs1 , and yb ∈ Rs2 , respectively. The
matrix form is expressed as X = [x1, . . . xn] ∈ Rm∗n, Yg = [yg

1, . . . yg
n] ∈ Rs1

∗n, and
Yb = [yb

1, . . . yb
n] ∈ Rs2

∗n.
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The super-efficiency SBM model is expressed as follows:

ρ∗ = min

1
m

m
∑

i=1

xi
xik

1
s1+s2

(
s1
∑

r=1

yg

yg
rk
+

s2
∑

l=1

yb

yb
lk
)

(7)

subject to:

x ≥
n
∑

j=1, 6=k
xijλj i = 1, 2, · · ·m

yg ≤
n
∑

j=1, 6=k
yg

rjλj r = 1, 2, · · · s1

yb ≥
n
∑

j=1, 6=k
yb

ljλj l = 1, 2, · · · s2

x ≥ xk, yg ≤ yg
k , yb ≥ yb

k

λj ≥ 0, ∑
j=1, 6=k

λj = 1

(8)

where xk, yg
k , and yb

k indicate the input, desirable output, and undesirable output of effi-
ciency DUM, respectively. λj indicates the weight vector.

2.3. ESDA Method

The key methods of ESDA are spatial heterogeneity and spatial dependency analysis.
The spatial dependency analysis can be divided into global spatial autocorrelation analysis
and local spatial autocorrelation analysis. In this study, we computed the global Moran’s I
to identify the global spatial autocorrelation, as follows:

IG =

n
∑

i=1

n
∑

j=1
Wij(xi − x)(xj − x)[

1
n

n
∑

i=1
(xi − x)2

]2 n
∑

i=1

n
∑

j=1
Wij

(9)

where xi is the CE of city i and x is the average CE value of all observations. Wij is the spatial
weight matrix, which is constructed using the square of the reciprocal of geographical
distance with the following equation:

Wij =

{
1/d2

ij, i 6= j
0 i = j

}
(10)

where dij indicates the geographical distance between the two cities. The value of IG ranges
from −1 to 1. The greater the absolute value of IG, the stronger the spatial autocorrelation.
If IG is greater than 0, there is a positive correlation between cities’ CE. If IG is less than 0,
there is a negative spatial correlation.

In this paper, we introduce the local indicators of spatial association (LISA) to analyze
the local spatial correlation. On the basis of local Moran’s I, Moran scatter plots are
employed to identify the spatial agglomeration type, and the LISA cluster maps are drawn
to reflect the local spatial correlation characteristics of each region. The local Moran’s I is
calculated using Equation (11):

IL =

n(xi − x)
n
∑

j=1
Wij(xj − x)

n
∑

i=1
(xi − x)2

(11)
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2.4. Dynamic Spatial Dubin Model

Due to the significant spatial correlation of CE, it is necessary to use the spatial econo-
metric methods for empirical research to prevent the biased empirical results from ignoring
the spatial spillover effect in the traditional econometric model. In addition to the explained
variables, the spatial correlation may come from the explanatory variables and error terms.
The spatial Dubin model can reflect the spatial correlation from different sources [56] and is
more general than the spatial lag model and spatial error model. Therefore, the spatial Dubin
model should be adopted. Moreover, the lagged explained variable is added, considering
that CE may have the characteristics of path dependence on time, or the time lag effect,
and the endogenous problem caused by the two-way causal relationship between CE and
economic growth, technological progress, and other factors [57]. The dynamic spatial Dubin
model of this study is defined as follows:

ceit = α + τcei,t−1 + γ
n

∑
j=1

wijceit +
→
β
→
xit +

→
θ

n

∑
j=1

wij
→
xit + µi + νt + εit (12)

where ceit is the CE of city i at year t; cei,t−1 is the first-order time-lagged term of CE; wijceit

denotes the spatial interaction term of the interpreted variable;
→
xit is the independent

variable vector and
→
β is the regression coefficient of the independent variable vector;

→
θ is

the spatial regression coefficient vector of independent variables; and µi, νt, and εit refer to
regional effect, time effect, and error term, respectively.

Since the time lag term and spatial term of the explained variable are introduced into
the model, the traditional fixed effect and random effect estimation will deliver biased
estimation results. Coupled with the possibility of variable endogeneity, traditional maxi-
mum likelihood estimation (MLE) cannot effectively estimate the dynamic spatial panel
data. The system-generalized method of moments (GMM) is widely adopted to solve the
problem. First, it automatically identifies reasonable instrumental variables using time
variation in variables and, thus, improves the estimation efficiency. Secondly, it can help to
avoid the bias problem in different GMM estimators and improve explanatory power.

3. Data Sources and Variable Selection

Based on data availability, we selected the panel data of 283 prefecture-level cities from
2003 to 2017 as the research sample. In view of the complexity of the results, we adopted
a geographical divide of seven regions: East China, South China, Central China, North
China, Northwest China, Southwest China, and Northeast China (Figure 1).

Figure 1. Study area.
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3.1. Input–Output Variables

The super-efficiency SBM model was used to measure the city-level CE. The input
variables were labor, capital, and energy; the expected output was the GDP; and the
unexpected output was the CO2 emissions.

The labor input is expressed by the number of employees, energy input is expressed
by the total energy consumption, and capital input is expressed by capital stock. Referring
to the practice [58], we employed the perpetual inventory method to measure the capital
stock. For unexpected output, there are insufficient CO2 statistics at the city level and only
a few cities have published energy consumption lists; therefore, we used energy statistics
and nighttime light data to retrieve city-level CO2 emissions with reference to Su et al. [59]
and Wang and Li [60]. Firstly, the CO2 emissions of cities with energy consumption data
were calculated according to the IPCC greenhouse gas emission inventory. Then, according
to the DMSP/OLS nighttime light image, we obtained the city-level nighttime light data.
Finally, the city-level nighttime light data were fitted with the corresponding CO2 emission
statistics, and the CO2 emissions of all cities were inverted according to the fitting results.

3.2. Driving Factors of CE

Based on the research results of scholars, the potential variables affecting CE were
constructed as follows:

(1) Economic development (pgdp) is measured using the logarithm of per capita GDP.
According to environmental Kuznets curve (EKC) hypothesis, there is an inverted
U-shaped relationship between income and environmental pollution. An increasing
number of studies have verified the nonlinear relationship between economic growth
and CE [61]. Therefore, the per capita GDP and its square term (pgdp2) are both
introduced to the model.

(2) Foreign trade ( f t) is expressed as the proportion of total imports and exports to GDP.
A large number of studies have shown that foreign trade is conducive to improving
productivity and energy utilization and reducing the negative impact on the envi-
ronment [42,62–65]. However, many studies have also verified the hypothesis of
“pollution paradise” [66–68].

(3) Environmental regulation (er). Following the method of Ren et al. [69], we build
a comprehensive environmental regulation index based on five indicators: sulfur
dioxide removal rate, soot removal rate, comprehensive utilization rate of industrial
solid waste, domestic sewage treatment rate, and harmless treatment of domestic
waste. According to the “green paradox” [70], strengthening environmental regulation
is not conducive to the improvement in CE. A number of studies have also proved
this conclusion [71–73]. However, the continuous improvement in environmental
regulation will increase the production cost of enterprises, and then force enterprises
to improve energy utilization, which will lead to the growth of CE [74–78].

(4) Industrial structure (is) is measured using the proportion of secondary industry
output value to GDP. Compared with the primary and tertiary industries, the en-
ergy consumption of secondary industry is higher and will, thus, lead to higher
CO2 emissions.

(5) Industrial structure upgrading (isa). To alleviate the negative impact of industrial
structure on environmental efficiency, industrial structure upgrading is vital. Existing
studies generally believe in the positive effect of industrial structure upgrading on
environmental efficiency [79–81]. Referring to Wu [82], we adopt the ratio of tertiary
industry output value to secondary industry output value to measure the industrial
structure upgrading.

(6) Population density (pd) is expressed as the logarithm of the average number of resi-
dents per square kilometer of urban area. Higher population density may increase
energy consumption and worsen environmental quality [83]; however, it is also con-
ducive to the realization of the scale effect through the sharing of public infrastructure
to reduce per capita carbon emissions [84,85].
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(7) Energy intensity (ei) is measured using the energy consumption per unit of GDP. Low
energy intensity means that the cost of energy input to create the same output is lower.
Existing studies generally postulate that energy intensity plays an important role in
carbon efficiency [86–89].

(8) Technological progress (tp). Technological progress is conducive to improving
the productivity and clean technology level to improve the CE. The significant
positive effects of technological progress on environmental efficiency have been
extensively studied [43,90–92]. Considering that patents are important output of
innovation and R&D activities, we adopt the number of patents authorized to express
technological progress.

(9) Financial development ( f d) is measured using the ratio of the balance of deposits
and loans of financial institutions to GDP. Some believe that financial development
improves environmental quality by promoting enterprises to develop environmental
protection technologies and strengthen corporate governance [93,94]. Others believe
that financial development is conducive to promoting economic growth; thus, leading
to the growth of energy consumption and carbon emissions [95,96].

(10) Government intervention (gi). Government intervention reflects the government’s
resource allocation and indirectly affects pollution emissions. Yan et al. [97] de-
termined the inhibitory effect of environmental intervention plans on pollution.
The significant effects of China’s government expenditure on CO2 emissions have
been examined [98,99]. Following the practice of Fan et al. [100], we adopt the
ratio of government general public budget expenditure to GDP to measure the gov-
ernment intervention.

The data of indicators were extracted from China City Statistical Yearbook (2004–2018)
and the statistical yearbooks of provinces and cities over the years. To eliminate the price
effect, all monetary indicators were deflated at constant prices in 2003. The descriptive
statistics of all variables are presented in Table 1.

Table 1. Descriptive statistics of variables, 2003–2017.

Variable Mean Std. Dev. Min Max

GDP 1275.856 1912.396 31.446 23,402.05
Capital 2544.254 4025.465 17.32 52,548.78
Labor 260.1852 612.287 9.17 38,230
Energy 1292.399 1299.467 26.248 11,858.96
CO2 emission 34.1974 35.583 0.546 265.208
Carbon efficiency 0.371 0.225 0.028 1.484
Economic development 9.91 0.852 7.244 12.698
Industrial structure 0.484 0.111 0.09 0.91
Industrial structure upgrading 0.868 0.511 0.094 10.766
Population density 5.729 0.908 1.547 7.886
Technological progress 6.163 1.845 0.693 11.578
Financial development 2.315 1.504 0.142 31.586
Foreign trade 0.253 0.476 0.00002 7.018
Energy intensity 1.515 1.211 0.121 14.842
Government intervention 0.208 0.152 0.031 2.422
Environmental regulation 0.659 0.158 0.1639 0.978

4. Results and Analysis
4.1. Spatio-Temporal Patterns of City-Level CE

The changes in city-level average CE during the research period are shown in Figure 2.
From the national perspective, the average CE is low, with the highest at 0.43, and shows
a W-shape growth trend that can be divided into four periods: 2003–2006, 2007–2009,
2010–2011, and 2012–2017. Average CE continues to decline at an average annual rate
of 8.27% from 2003 to 2006, then rises at an average annual rate of 5.8% in 2007–2009, and
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briefly declines with an average annual rate of 5.63% from 2010 to 2011. After 2012, CE
shows a steady increase, and grows rapidly at an average annual rate of 5.39% after
2015. In the earliest period, the extensive economic growth mode has brought a series of
problems such as low resource utilization and serious environmental pollution, resulting
in the continuous decline of city-level CE. In 2006, China declared in its Sixth National
Environmental Protection Conference to shift the focus from economic growth to paying
equal attention to environmental protection and economic growth. Additionally, the
2008 Beijing Olympic Games created great opportunities for China’s ecological protection,
resulting in an average carbon efficiency growth of 9.46% in 2008. However, in response to
the global financial crisis, the Chinese government invested about CNY 4 trillion in 2008,
which flowed into high-carbon industries such as real estate, infrastructure construction,
and heavy industry. Under the lag effect of environment, the CE decreased rapidly from
2010 to 2011. Since the 11th Five-Year Plan period, the Chinese government established
the binding indicators of energy intensity and carbon intensity to deal with environmental
problems. In 2015, China has declared in its Nationally Determined Contributions to peak
carbon emissions by approximately 2030, which have promoted the continuous growth of
CE. from 2012 to 2017.

Figure 2. Temporal variations in average city-level CE from 2003 to 2017.

From the regional perspective, the temporal trends of average CE in seven regions
are consistent with the national level during the research period. However, there were
significant regional differences. The lowest value region was North China, which was
significantly lower than the national average level. However, the CE of Southwest China,
South China, and East China is higher than the national average level. The efficiency of
South China was higher and was surpassed by Southwest China from 2015 to 2017. For
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Northeast China, the CE was at a higher level after 2007, surpassing the efficiency of East
China. The CE of Northwest China was at the middle or high level before 2012, but then
ranked the second lowest. The CE of Central China was at a low level but then became
higher than the national average after 2012.

The results could be explained by the economic and social development between the
seven regions in different periods. As China’s main industrial and coal base, North China
has been the focus of environmental pollution prevention and control in China in recent
years with its rapid economic development and rapid growth of energy consumption.
Northwest China had a small economy scale before 2012, but a large number of high-energy
consumption and high pollution industries transferred to the area from developed regions
after 2012. The extensive energy and resource utilization has led to a continuous decline in
CE. South China and East China are located on the east coast of China, gathering a large
number of developed cities that realized the transformation of industrial structure early.
In 2007, the Northeast Revitalization Plan proposed many measures, such as accelerating
structural adjustment and upgrading and accelerating the economic transformation of
resource exhausted cities, which are conducive to the improvement in CE in Northeast
China. After 2013, the difference in CE between Southwest China and Northwest China
was gradually significant. Compared with the single industrial structure in Northwest
China, the industrial structure in Southwest China is more reasonable and has obvious
advantages of high-quality development [101].

In terms of spatial pattern, Figure 3 displays the CE of each city in 2003, 2010, and
2017. In 2003, the CE of most cities was lower than 0.64, showing the characteristics of “low
in the north and high in the South”. In 2010, the high-value area of CE showed an obvious
reduction trend, and there were continuous low-value areas in North China, North Central
China, and South China. In 2017, the area with high CE expanded significantly. In general,
city-level CE shows significant spatial heterogeneity and the spatial distribution of adjacent
cities’ efficiencies shows a certain similarity. This finding provides initial evidence of the
existence of spatial dependence on the geography of city-level CE.

Figure 3. Cont.



Energies 2022, 15, 2536 11 of 24

Figure 3. Spatial distributions of city-level CE (a) 2003, (b) 2010, (c) 2017.

4.2. Spatial Correlation Tests

The spatial correlation test results of city-level CE are shown in Table 2. The global
Moran’s I values from 2003 to 2017 are significantly positive at the 1% level and show
an overall growth trend, which indicates that the primary assumption of “no spatial
autocorrelation” has been significantly rejected, and there is a significant spatial dependency
of city-level CE.

The results of Moran scatter plots and LISA cluster maps in the selected years are
displayed in Figures 4 and 5, respectively. In Figure 4, the sample cities are mainly located
in the first and third quadrants, with most located in the third quadrant. The spatial
agglomeration type in the first quadrant is High–High (H-H), which indicates that cities
with high CE are surrounded by other cities with high CE, while the cities in the third
quadrant are of the Low–Low (L-L) agglomeration type. In Figure 5, cities belonging to
L-L clusters are mainly located in the whole territory of Shanxi and Northern Shaanxi, and
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gradually expanded to Inner Mongolia, Gansu, Ningxia, Hebei, and other regions. With
the depletion of coal resources in the eastern region, the layout of China’s coal industry is
accelerating to the west, leading to the expansion of low-CE cities to the northwest. H-H
clusters are mainly located in the southeast coastal cities and central and eastern Sichuan,
and new H-H clusters emerged in Northeast China in 2010, which is closely related to the
adjustment of the economic growth model. With the relatively developed economy and
high resource utilization, cities in southeast coastal areas have high CE and generate a strong
positive radiation effect on the surrounding areas. High–Low (H-L) clusters are scattered
over Northeast China, North China, and Northwest China, such as Karamay, Urumqi,
Ordos, Beijing, Tianjin, Zhangye, Jiayuguan, Dongying, Dalian, and gradually concentrated
in North China during 2003–2017. Zhangye and Jiayuguan have small economy scale.
Their environmental pollution is not serious in the process of industrial development. On
the contrary, other cities have relatively superior political–economic status in their regions;
thus, the CE level can significantly differ from neighboring cities. As the political and
economic center of China, although the environmental pollution in the surrounding areas
is more serious, strict environmental governance ensures that Beijing is always located in
the High–Low CE gathering area.

Table 2. Global Moran’s I of city-level CE from 2003 to 2017.

Year 2003 2004 2005 2006 2007 2008 2009 2010

I 0.088 0.085 0.108 0.1 0.104 0.119 0.125 0.103
Z(I) 4.912 4.744 6.008 5.593 5.803 6.58 6.888 5.739

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Year 2011 2012 2013 2014 2015 2016 2017

I 0.098 0.093 0.115 0.132 0.156 0.174 0.165
Z(I) 5.477 5.173 6.39 7.288 8.537 9.518 9.004

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Figure 4. Cont.
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Figure 4. Moran scatter plots of citylevel CE (a) 2003, (b) 2010, (c) 2017.

Figure 5. Cont.
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Figure 5. LISA map of city-level CE in (a) 2003, (b) 2010, and (c) 2017.

4.3. Estimation Results

The spatial effect test results based on the residuals of ordinary OLS estimation results
show that the statistics of the Spatial Lag Model (SLM) and the Spatial Error Model (SEM)
significantly reject the null hypothesis of “no spatial lag” at the 1% level, which indicates the
rationality of using a spatial economic model. The results of Wald and LR tests show that
the Spatial Dubin Model (SDM) should be adopted. The Hausman test results significantly
reject the primary hypothesis of random effect. As a form of technological progress, CE is
inevitably affected by the early CE values. Therefore, in this paper, we used the dynamic
SDM model (Model D) with double fixed effects in time and space for parameter estimation.
The regression results are shown in Table 3. Meanwhile, the estimation results of the
ordinary panel model (model A), static SDM model (model B), and non-spatial dynamic
panel model (model C) are listed for comparison.
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Table 3. The estimation results of spatial econometric models.

Model A Model B Model C Model D

w.ce 0.38 ***
(9.52)

0.59 ***
(8.25)

l.ce 0.71 ***
(7.44)

0.407 ***
(5.81)

pgdp 0.176 ***
(3.01)

0.235 ***
(3.43)

−0.52 ***
(−3.54)

−0.347 ***
(−2.42)

pgdp 2 −0.007 ***
(−2.63)

−0.009**
(−2.9)

0.027 ***
(3.69)

0.02 ***
(2.83)

is −0.088 **
(−2.14)

−0.037
(−0.82)

−0.014
(0.28)

−0.22
(0.98)

isa 0.016 ***
(2.77)

0.007 *
(1.42)

0.01 *
(1.52)

0.07 *
(1.25)

pd −0.022
(−1.55)

−0.01
(−0.77)

−0.008
(−1.53)

−0.002
(0.2)

tp −0.008 **
(−2.29)

−0.008 **
(−1.85)

−0.004
(−0.91)

−0.007 *
(−1.17)

fd −0.007 ***
(−3.99)

−0.007 ***
(−4.25)

−0.007 ***
(−3.07)

−0.01 **
(−2)

ft −0.021 ***
(−2.42)

0.001
(0.14)

−0.013
(−1.5)

−0.004
(−0.22)

ei −0.016 ***
(−4.6)

−0.018 ***
(−4.59)

−0.017 **
(−2.19)

−0.04 ***
(−3.58)

gi −0.068 ***
(−2.97)

−0.071 ***
(−3.31)

−0.006 ***
(−0.31)

−0.005 ***
(0.14)

er 0.054 ***
(3.32)

0.008
(0.52)

0.103 ***
(4.47)

0.069 ***
(−2.43)

α
−0.407
(−1.36)

0.007 ***
(0.1)

2.63 ***
(3.51)

−0.62
(−0.35)

AR (1) 0.028 0.026
AR (2) 0.334 0.332
Hansen
Over-identification 0.107 0.165

Notes: (1) values in () denote the t or z values; (2) ***, **, * denote the significance at the 1%, 5%, and 10% levels;
(3) w.ce and l.ce stand for the first-order lag and spatial lag term of city-level CE.

As shown in Table 3, the coefficient symbols of most variables in the four models
are consistent. In model B, the coefficient of w.ce is positive at the 1% significance level,
indicating that city-level CE has a significant spatial spillover effect. There is a certain
strategic competition effect in regional CE, and the CE of surrounding areas can form a
positive leading effect on the local area. In model C, the coefficient of l.ce is positive at the
1% significance level, which indicates that CE has the characteristic of path dependence
on time. If the CE of the previous period is at a high level, the efficiency level of the next
period may continue to rise. The endogeneity and spatial dependency of city-level CE
are simultaneously introduced in Model D, which shows better statistical characteristics.
Therefore, this paper will focus on the regression results of Model D. The main findings are
as follows:

The coefficients of economic development and its square term are significantly negative
and positive at the 1% level, respectively; that is to say, there is a significant “U” relationship
between economic development and CE. In 2003, 205 of the 283 sample cities exceeded
the inflection point of GDP per capita, while in 2017, this was all cities, indicating that
economic growth has significantly improved city-level CE in recent years. The higher the
economic development, the more obvious the spillover effects of economic agglomeration,
energy conservation and emission reduction technology innovation, and environmental
governance. Therefore, it is not desirable to improve CE at the expense of city-level
economic growth.
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The coefficient of industrial structure is negative but not significant, demonstrating
that increasing the ratio of secondary industry inhibits the growth of CE to a certain extent,
which is consistent with the results of Zeng et al. [37], while the coefficient of industrial
structure upgrading is significantly positive. The secondary industry with high energy
consumption is still the main driving force of the economic development of most cities in
China. With the deepening of supply-side reform, the utilization rate of industrial capacity
continues to rise. High-tech manufacturing and equipment manufacturing have brought
new comparative advantages to China’s industrial development. In addition, against the
background of accelerating the upgrading of industrial structure, the tertiary industry with
high added value and low pollution has gradually developed into a new driving force for
China’s economic development.

The influence of population density is found to be insignificantly negative on CE.
With the development of urbanization, the growth of population density will lead to the
expansion of city infrastructure construction scale and energy consumption; thus, increasing
CO2 emissions. However, the population agglomeration brings a certain agglomeration
effect, which is conducive to the sharing of city infrastructure to improve the technical level,
resource utilization, and CE. At present, the agglomeration effect of city population density
growth has not fully appeared.

The coefficient of technological progress is significantly negative at the level of 10%.
The results prove the rebound effect of China’s city-level technological progress on CE—
that is, the potential energy-saving effects caused by technological progress are offset by
economic effects, resulting in rapid growth of energy consumption. This is consistent with
the research of Huang et al. [102] based on the traditional perspective and the conclusion
of Wang et al. [103]. The reason is that the low allocation rate of technological innovation
resources, the low conversion rate of scientific and technological achievements, and the
significant gap between core key technologies and foreign countries have always restricted
China’s technological innovation effect. In addition, the development and application of
new technologies often have a time lag.

The coefficient of foreign trade is negative but not significant, which may be attributed
to the transformation of China’s trade structure. China’s foreign trade has long been domi-
nated by industrially manufactured products, which accounted for 83% of the total import
and export trade in 2017. Against the background of high-quality economic development,
the environmental protection requirements of China’s trade products have been contin-
uously improved, and the import and export of high-tech products and low pollution
products have been continuously expanded, gradually lowering CO2 emissions. In 2017,
the total import and export of high-tech products accounted for 30.6% of the total import
and export trade. With the interaction of these two mechanisms, the inhibitory effect of
foreign trade on CE is not significant.

The financial development coefficient is significantly negative and passed the 5%
significance test, indicating that financial development has significantly inhibited the im-
provement in city-level CE. In recent years, financial development has stimulated rapid
economic expansion, which has also brought a series of environmental problems. The rea-
sons can be summarized as follows. First, the rapid development of finance has stimulated
residents’ demands for large commodities such as cars and houses and reduced the financ-
ing cost of enterprises. Second, driven by profits, more funds flow into energy-intensive
industries with high energy consumption. However, because of the long investment cycle
and low rate of return, environmental enterprises cannot obtain strong financial support.
Third, excessive intervention from local governments in the financial system has led to the
distortion of financial resources.

The coefficient of energy intensity is significantly negative at the 1% level, indicating
that the lower the energy intensity, the higher the CE. As a large energy consumption coun-
try dominated by fossil energy, coal still occupies a dominant position in China’s energy
consumption structure. Uncovering how to realize the clean production and utilization of
coal is still a key issue in CO2 emission reduction in the future.
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The government intervention coefficient is significantly negative at the level of 1%,
indicating that the higher the degree of government intervention, the lower the CE. In order
to pursue economic development and political power, city-level governments have shown
a productive expenditure bias in the fiscal expenditure structure, investing more funds in
the production fields closely related to economic development. Moreover, most orders are
undertaken by state-owned enterprises whose investment efficiency is much lower than
that of private enterprises [104]. The long-term financial intervention and protectionism
from local governments have worsened the local trading environment, resulting in serious
resource mismatch and overcapacity, which seriously damage the CE.

The environmental regulation coefficient is positive and significant at 1%, indicat-
ing that environmental regulation has a significant improvement effect on city-level CE.
Strengthening environmental regulation will help eliminate some backward enterprises
with high pollution, and encourage some polluting enterprises to improve their manage-
ment, technology, and production process to improve resource use efficiency and stimulate
the flow of production resources to enterprises with low pollution, low energy consumption,
and high efficiency.

4.4. Short- and Long-Term Marginal Effects

Table 4 presents the estimated results of direct effects, indirect effects, and total effects
of Model D, which are further decomposed into short- and long-term effects in the time
dimension. The direct effect refers to the impact of local factor changes on local CE, and the
indirect effect, namely the spatial spillover effect, refers to the impact of local factor changes
on the CE of surrounding regions. Overall, the absolute values of long-term effects are greater
than short-term effects, indicating the long-term persistence and gradual strengthening
characteristics of driving factors on city-level CE. The significance of the short-term effects
is relatively high, while the long-term effects are insignificant, implying that the long-term
mechanism acting on regional CE has not been formed. In addition, the absolute values of
indirect effects are greater than direct effects in the short term, suggesting that the regional
spillover effect of driving factors on CE is more significant in the short term.

Table 4. Direct, indirect, and total effects.

Short-Term Effects Long-Term Effects

Direct Indirect Total Direct Indirect Total

pgdp −0.1521 ***
(−3.01)

0.2727 *
(1.5)

0.1206
(0.7)

−0.4827
(−0.65)

−1.6483
(−0.08)

−2.167
(−0.11)

pgdp 2 0.0085 ***
(3.63)

−0.0129 *
(−1.47)

−0.0045
(−0.53)

0.0265
(0.59)

0.0647
(0.08)

0.0912
(0.11)

is 0.0563
(1.84)

−0.0716
(−0.6)

−0.0153
(−0.13)

0.1545
(0.21)

−0.813
(−0.05)

−0.0685
(−0.04)

isa 0.0031
(0.86)

0.0161
(0.79)

0.0192
(0.92)

0.0012
(0.01)

−0.4625
(−0.19)

−0.4613
(−0.19)

pd −0.0008
(−0.08)

−0.0201
(−0.43)

−0.0209
(−0.46)

−0.0057
(−0.03)

−0.294
(−0.02)

−0.2997
(−0.02)

tp 0.0004
(0.14)

0.0207 **
(2.11)

0.0211 ***
(2.3)

−0.0025
(−0.02)

−0.2422
(−0.06)

−0.2447
(−0.07)

fd −0.0039 **
(−2.27)

−0.0416 ***
(−4.09)

−0.0455 ***
(−4.45)

−0.0031
(−0.01)

0.4196
(0.05)

0.4166
(0.05)

ft 0.0031
(0.54)

0.0476 *
(1.65)

0.0507 *
(1.74)

0.0057
(0.02)

−0.5668
(−0.09)

−0.5611
(−0.09)

ei −0.0041 *
(−1.34)

0.0222 **
(1.83)

0.0181 *
(1.62)

−0.019
(−0.11)

−0.2324
(−0.13)

−0.2514
(−0.14)

gi −0.00007 *
(−0.00)

−0.1145 *
(−1.23)

−0.1146 *
(−1.22)

0.0393
(0.04)

2.2759
(0.15)

2.3151
(0.15)

er 0.003 3*
(0.27)

0.1956 ***
(4.55)

0.1989 ***
(4.71)

−0.0403
(−0.03)

−2.1032
(−0.06)

−2.1434
(−0.07)

Notes: (1) values in () denote the t or z values; (2) ***, **, * denote the significance at the 1%, 5%, and 10% levels.
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Firstly, the short-term effects of economic growth and its square term on local CE are
significantly negative and positive at the level of 1%, respectively, with the opposite effects
on surrounding regions. Local economic growth has produced a significant scale effect,
resulting in the increase in local energy consumption and resource agglomeration from
surrounding regions. The extensive resource utilization mode inhibits the growth of local
CE. With the economic development and the improvement in city environmental gover-
nance, high energy-consuming industries have been eliminated or transferred, promoting
the progress of environmental efficiency. In the long run, the direct and indirect effects
of economic growth on CE are gradually strengthened, and a robust U-shaped curve is
formed. The positive externalities produced by economic development have a satisfactory
demonstration and driving effect on the surrounding regions, and effectively release the
potential of spatial environmental effects. Secondly, the direct effect in the short term of
technological progress is insignificant, while the indirect effect is significantly positive
at the level of 5%. Because most of China’s technological innovation is dominated by
improving economic efficiency, this cannot effectively improve the local CE. Benefiting
from the demonstration effect of technological innovation, the CE of surrounding regions
shows a spatial positive correlation with the local technological progress. Thirdly, the
direct and indirect effects of financial development are significantly negative, which is the
result of scale expansion effect brought by financial development. With the acceleration of
infrastructure construction, funds flow into high energy-consuming industries, resulting
in the rapid growth of energy consumption in the local and surrounding regions. Fourth,
the indirect effect of foreign trade is significantly positive. Local governments unilaterally
pursue economic effects, resulting in the “pollution shelter” effect, which is unfavorable
for local CE. At the same time, the technology spillover effect caused by foreign capital
has brought favorable demonstration effects and significant environmental effects to the
surrounding areas. However, the technology spillover effect brought by foreign capital
has a significant environmental effect on the surrounding regions. Fifth, the direct and
indirect effects of energy intensity are significantly negative and positive, respectively.
Sixth, the direct and indirect effects of government intervention are significantly negative.
The local government expenditure structure dominated by productive expenditure causes
a large amount of funds to flow into the production field. At the same time, the excessive
intervention of the government distorts the local resource allocation. Under the competition
mechanism, in order to achieve the political performance indicators, the surrounding areas
have further increased the degree of pre-intervention, resulting in a situation of “one loss
for all”. Seventh, the direct and indirect effects of environmental regulation are significantly
positive, implying that strengthening environmental regulation is conducive to achieving
win–win environmental effects in local and surrounding regions.

5. Conclusions and Policy Recommendations

With the deepening of city economic and social relations, it is important in the pursuit
of low-carbon development to investigate city-level CE from a spatial perspective and
achieve the win–win goal of economic and social development and environmental benefits.
Employing a panel dataset of China’s 283 prefecture-level cities from 2003 to 2017, we used
the ESDA methods to explore the temporal and spatial characteristics of city-level CE and
constructed the dynamic spatial econometric model to investigate the driving factors. The
main conclusions are as follows:

(1) Overall, the average city-level CE from 2003 to 2017 showed a “W”-type growth trend.
There were significant spatial heterogeneity characteristics of city-level CE. In 2003,
city-level CE was low in the north and high in the south. In 2010, North China, North
Central China, and South China formed a continuous low-value area. In 2017, the
high-value area of CE expanded significantly.

(2) There is a significant spatial dependency of city-level CE. Cities belonging to L-L
clusters are mainly located throughout the territory of Shanxi and Northern Shaanxi,
and gradually expand to Inner Mongolia, Gansu, Ningxia, Hebei, and other regions.
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The H-H clusters are mainly located in the southeast coastal cities and central and
eastern Sichuan, and new H-H clusters emerged in Northeast China in 2010.

(3) The empirical results of the dynamic spatial econometric model show that the spatial
dependence characteristics of city-level CE co-exist with path dependence on time.
There is a significant “U” relationship between economic development and CE. Factors
such as industrial structure upgrading and environmental regulation have signifi-
cant improvement effects on city-level CE, while technological progress, financial
development, energy intensity, and government intervention can significantly inhibit
city-level CE.

(4) The long-term effect of driving factors on city-level CE is greater than the short-term
effect, and the short-term indirect effect is greater than the direct effect. Factors such as
economic development, foreign trade, technological progress, financial development,
energy intensity, government intervention, and environmental regulation generate
significant spatial spillover effects on city-level CE.

According to the findings above, some policy implications are proposed for improving
city-level CE.

Although the average CE values of Chinese cities show an upward trend, there is great
potential for improvement. According to the spatial–temporal characteristics of city-level
CE, it is necessary to formulate differentiated CE promotion strategies. Cities in South
China, East China, and Southwest China should maintain their current CE levels, strengthen
technological innovation and city governance, and promote high-quality economic and
social development. In addition, their successful policies and measures should be promoted
to cities with low CE. Although there has been a short period of high CE in cities in Northeast
China, system innovation and industrial structure optimization should still be the key issues
of low-carbon development in Northeast China. As the main energy supply areas, cities in
North China and Northwest China should focus on improving CE by optimizing industrial
and energy structure and improving energy efficiency, for example, by optimizing the
development of the modern coal chemical industry, promoting clean and efficient utilization
of coal resources, and accelerating the construction of clean energy bases [105].

According to the estimation results of the dynamic spatial econometric model, efforts
should be focused on multiple dimensions to improve city-level CE. These dimensions
include: facilitating rapid economic growth; promoting the optimization and upgrading
of industrial structure, vigorously developing “high-precision and advanced” high-tech
industries; supporting the development of strategic emerging industries; advocating a
low-carbon lifestyle; strengthening city governance; and improving residents’ awareness
of and support for green and low-carbon development. The rebound effect of technologi-
cal progress on energy consumption cannot be ignored, and it can be alleviated through
electricity price reforms [106] and resource taxes [107]. At the same time, optimizing the
energy structure and vigorously increasing the proportion of non-fossil energy is also
effective [103,108]. Other strategies include deepening low-carbon finance, raising the loan
threshold for enterprises with high energy consumption and high emissions, reducing local
government intervention in the financial market, and increasing capital market support
for low-carbon industries through CO2 emission exchanges, raising the “threshold” of
foreign technology introduction and strengthening the spillover effect of advanced technol-
ogy, strengthening environmental regulation, strengthening the comprehensive effect of
industrial policy and market mechanisms in environmental regulation, and enhancing the
“precision” regulation effect.

According to the spatial dependency characteristics of city-level CE and the spatial
spillover effect of driving factors on city-level CE, it is imperative to establish a regional
collaborative emission reduction mechanism and promote the collaborative linkage of
energy conservation and emission reduction policies among regions. On the one hand, the
joint treatment of pollutants can be carried out through industrial cooperation and resource
sharing; on the other hand, when formulating emission reduction policies, we should fully
consider neighboring cities, carry out regional docking of relevant energy conservation
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and emission reduction policies, and strengthen the linkage effect of the implementation of
environmental policies among cities. In addition, we should accelerate the construction
of low-carbon pilot cities to give full play to their demonstration and leading role. At the
same time, the path dependence of carbon efficiency in the time dimension shows that
the work of energy conservation and emission reduction is quite urgent and arduous. A
long-term mechanism must be established to maintain the continuity and consistency of
energy conservation and emission reduction policies over time to continuously promote the
regional economy along the path conducive to energy conservation and emission reduction.
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