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Abstract: Given the additional awareness of the increasing energy demand and gas emissions’
effects, the decarbonization of the transportation sector is of great significance. In particular, the
adoption of electric vehicles (EVs) seems a promising option, under the condition that public charging
infrastructure is available. However, devising a pricing and scheduling strategy for public EV
charging stations is a non-trivial albeit important task. The reason is that a sub-optimal decision could
lead to high waiting times or extreme changes to the power load profile. In addition, in the context
of the problem of optimal pricing and scheduling for EV charging stations, the interests of different
stakeholders ought to be taken into account (such as those of the station owner and the EV owners).
This work proposes a deep reinforcement learning-based (DRL) agent that can optimize pricing and
charging control in a public EV charging station under a real-time varying electricity price. The
primary goal is to maximize the station’s profits while simultaneously ensuring that the customers’
charging demands are also satisfied. Moreover, the DRL approach is data-driven; it can operate under
uncertainties without requiring explicit models of the environment. Variants of scheduling and DRL
training algorithms from the literature are also proposed to ensure that both the conflicting objectives
are achieved. Experimental results validate the effectiveness of the proposed approach.

Keywords: dynamic pricing; EV charging station; pricing and scheduling; reinforcement learning;
deep Q-learning; demand response

1. Introduction

There has been increasing concern about global warming and climate change due to
gas emissions [1]; at the same time, the energy demand is rapidly increasing [2,3], and for
the most part it is satisfied through fossil-fuel energy sources [1]. Fossil fuel combustion and
carbon dioxide (CO2) emissions are significantly contributing to environmental pollution
and global warming [1,4]. Therefore, the decarbonization of the transportation sector
has naturally arisen a potential partial solution. In particular, the adoption of electric
vehicles (EVs) is a promising option because of their benefits over standard fossil-fuel
vehicles and their sustainable qualities [5,6]. The report of the International Energy Agency
(IEA) [7] mentions that EVs are developing at a rapid pace, indicating that the global EV
fleet exceeded 5.1 million in 2018 and that the there may be 250 million units by 2030.

To that end, establishing public charging infrastructure is a critical task that could lead
to widespread EV adoption [8,9]. However, for public EV charging stations, there is a need
to develop new business models and tackle additional challenges. For example, sub-optimal

Energies 2022, 15, 2323. https://doi.org/10.3390/en15072323 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15072323
https://doi.org/10.3390/en15072323
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-1457-9610
https://orcid.org/0000-0002-7612-6123
https://doi.org/10.3390/en15072323
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15072323?type=check_update&version=1


Energies 2022, 15, 2323 2 of 24

scheduling decisions when charging multiple EVs could result in high waiting times,
while also significantly changing the demand profile of the utility by causing increased
electricity demand, particularly at peak times [10,11]. Therefore, it is crucial to investigate
different optimization strategies for EV charging stations while at the same time taking into
consideration the perspectives of different stakeholders.

A literature survey revealed that most published research focuses on single-charger
settings. According to [12], solving the global optimization problem is impractical in
the absence of the distributions of future EV arrivals, charging duration, and base loads.
Traditional approaches formulate the EV charging scheduling problem as a sequential
decision-making task [13,14] and solve it using dynamic programming [15]. However,
these conventional approaches require modeling the uncertainties, which is not necessarily
feasible under real-life conditions.

On the other hand, reinforcement learning (RL) can be leveraged to solve problems
formulated as Markov Decision Processes (MDP) [16]. In particular, deep reinforcement
learning (DRL) methods have proven to be highly effective at complex tasks, outperforming
human experts [17]. The main advantage of model-free DRL methods is that they are data-
driven; i.e., the agents learn directly from experience without requiring explicit models of
their environment. Note that different RL reward definitions lead to different optimization
objectives, such as maximizing the EV owners’ profits, focusing on the EV charging stations’
profits, prioritizing the distribution system operator’s needs, or reducing waiting times [18].

In [19], kernel density estimation, was used to model the joint probability distribution
of the arrival times and charging duration of EVs at a public charger. Then, a deep Q
network (DQN) agent was trained to decide the charging/discharging rate in each time
slot by choosing from a discrete number of levels. The observation space consists of the
24 h electricity price history, the remaining energy until the EV is fully charged, and the
remaining time until departure. At the same time, the optimization objective takes into
account minimizing charging costs and satisfying charging demands. In [20], arrival and
departure times, and charging demand at a single charger, were modeled as truncated
normal distributions. The observation space was similar to the one of [19], and a long-short-
term-memory network was used to predict future electricity prices based on historical data.
A modified deep deterministic policy gradient algorithm, called control deep deterministic
policy gradient, allows the agent to choose charging/discharging rates from a continuous
interval, aiming at maximizing the EV owner’s profit and satisfying the charging demand.

The proposed solution in [21] uses a combination of two networks, one for extracting
representative features on the electricity price time series, and a DQN agent to control the
EV real-time charging/discharging actions. The rewards’ definition considers both the
charging costs and a penalty component proportional to the amount of uncharged energy,
representing the “range anxiety” factor. The state information comprises the presence
of the EV at home or not, the remaining battery energy, and the price time series for the
past 24 h. Reference [22] introduces an EV charging station environment model and an
admission system, where different types of EVs are modeled (simulating different customer
profiles) and are presented with charging prices, accordingly to demand. The RL agent
decides the amount of energy to purchase (which will be used to charge some of the parked
EVs) and the price to announce to new EVs that arrive in each time slot. The models
are trained using a variant of the well-known state–action–reward–state–action (SARSA)
algorithm [16], called Hyperopia SARSA. The state information includes residual charging
demands and parking times, and the reward is modeled towards optimizing the profit of
the charging station.

The scope of this paper is to present an intelligent agent that optimally decides,
in real-time and under uncertainties (such as the distribution of future EV arrivals and the
electricity price), the pricing and scheduling actions needed to maximize a particular EV
charging station’s profit. Simultaneously, the EV owners’ expectations and needs are taken
into account. The main contributions of this paper are:
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• In contrast to prior strategies [19–22], the proposed strategy is a win–win for both
stakeholders, i.e., the EV owners and the EV charging station operators. Fulfilling
charging demands under agreed conditions is prioritized, and profit maximization
from the charging station operator’s perspective follows.

• Although direct bench-marking against pre-published literature is difficult because of
the different operating conditions and data used, the financial benefit that is achieved
for the charging station herein is considerable and comparable to the profit achieved
in the literature [22].

• A new training scheme is proposed for the Q-learning algorithm. The constraints
imposed guarantee customer satisfaction, which is removed from the optimization
objective to allow the RL agent to maximize EV charging station profit.

• The proposed strategy is easy to adjust, and a different balance/prioritization between
stakeholders needs can be selected (see Equation (13)).

• The strategy takes into account real-time conditions and data. In contrast, some of
the implementations already proposed in the literature [18,23] do not do so, and they
mainly focus on the day-ahead time window.

The remainder of the paper is structured as follows: Section 2 presents the environment
that was developed to represent the operations of an EV charging station, with regard to
the pricing and scheduling decisions that are made. The problem is formulated as an MDP.
Section 3 describes the proposed solution that is able to both decide the optimal sequence
of actions and ensure that customers’ demands are being fulfilled. Furthermore, the archi-
tecture of the DRL agent is detailed in that section, along with the training algorithm used.
Section 4 details the datasets on which the proposed approach was trained, and the settings
of the experiments carried out. Section 5 presents the results of the training experiments
that validate the effectiveness of the proposed approach. The agent’s decision-making
ability is analyzed, and implications are discussed in the context of two case studies. Finally,
Section 6 concludes the paper by stating the primary findings of this work.

2. System Model
2.1. EV Charging Station Environment

We use a DRL-based approach to tackle the problem, since it is data-driven and does
not require explicit modeling of the uncertainties, as mentioned previously.

The entity of interest and the basis of the proposed model is an EV charging station
environment. The environment is observed in discrete time slots (indexed by t). The length
(duration) of each time slot in minutes is denoted by tlen. The notation and formulation
that follows are based on [22].

At the beginning of each time slot t (meaning during the entire slot t− 1), a set of
EVs It arrives at the station. We denote by Jt the set of EVs that are already parked in the
station before time slot t and have not yet finished charging. Thus, the EVs that require
charging at time slot t are denoted by Kt := It ∪ Jt.

Each EV i ∈ It that arrives at the beginning of time slot t is presented with the
price rate rt (determined by the charging station and measured in the currency/kWh) and
accordingly responds with its charging demand, di and maximum desired waiting time pi.
The following assumptions are made:

• EVs are price-sensitive; i.e., they adjust their charging demands based on the value
of rt provided by the station. Thus, di = Di(rt), where Di(·) : $/kWh → kWh is
the demand–response function of EV i. Obviously, if EV i decides not to accept the
presented rate, then di = 0. Additionally, note that the demand–response function is
EV-specific in the general case.

• The price rate rt presented to It will be constant for each EV in It during its parking time.
• There is a fixed and finite number of individual chargers at the station, N. Thus, for all

time slots t, |Kt| ≤ N, which means that at any given time, at most N EVs are parked
at the station. Suppose the number of EVs, |It|, that arrive at the station overflow the
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available chargers. In that case, a subset of It is selected, in a first-come-first-served
manner, to meet the parking capacity of the station.

It directly follows from the above that if
(
ta
i , pi, di

)
denote the arrival time, parking

time, and charging demand of EV i ∈ It, then di must be fulfilled before the departure of
the EV at time ta

i + pi.
In time slot t, the station also determines the charging rate xi,t at which each EV i ∈ Kt

will be charged during the time slot.
Let xmax be the maximum individual charging rate (limited by the specifications of

every single charger) and emax be the maximum total charging rate for the charging sta-
tion. (It is assumed that the charging rate limit of the EV itself is always higher than the
charger limit).

The following constraints hold:

0 ≤ xi,t ≤ xmax, t = 1, 2, . . . , ∀i ∈ Kt (1)

∑
i∈Kt

xi,t ≤ emax, t = 1, 2, . . . (2)

α

t=ta
i +pi

∑
t=ta

i

xi,t ≥ di, ∀i (3)

where the coefficient α := tlen
60 converts the charging rate xi,t (kW) assigned to each EV for

the current time slot t to the total amount of energy (kWh) that it will have received by the
end of the time slot.

Equations (1) and (2) follow by definition. Equation (3) ensures that the charging
demand of each EV i is fulfilled by the time it is set to leave the station. In general,
the optimal pricing and scheduling policy might result in an EV not being charged at all
for several time slots (when the electricity price is expected to be increased, for example),
though of course, still being charged in the end. As explained in [24], these idle times could
potentially negatively affect the charging infrastructure in terms of its availability, sizing,
and cost. That aspect is not studied in the context of this work.

Finally, for each time slot t, the set of newly arrived EVs It pay a total of:

∑
i∈It

rtDi(rt) (4)

to the charging station, according to the price rate rt and the requested charge di = Di(rt)
of each EV i (of course, this is not valid unless the charging demand is actually satisfied by
the departure time).

At the same time, in order to charge EVs in each time slot t, the charging station pays
an electricity bill of

ct ∑
i∈Kt

αxi,t (5)

where ct is the electricity price ($/kWh). It is assumed that ct varies under the real-time
pricing scheme [25].

The interactions between the different components of the charging station environment
can be seen in Figure 1.
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Figure 1. The RL environment for an EV charging station.

2.2. Problem Formulation Using the MDP Framework

The MDP definition [16] provides the basic framework on which RL agents are for-
mally developed.

In particular, at each time step t, the environment is at state St; the agent interacts with
the environment by selecting an action At; the environment responds by transitioning to
the next state St+1, which is returned to the agent along with the reward Rt+1. The latter
is a scalar signal that depends on the environment and the selected action At. In turn,
the agent uses the information of St+1, Rt+1 to decide the next action At+1, so the above
steps are repeated. This process is illustrated in Figure 2.

Figure 2. Interactions between an agent and its environment in an RL setting.
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The optimization objective of an RL algorithm is to train an agent that selects a series
of actions that maximize the total expected return. Equivalently set, the optimization
criterion is:

maxE
[
∑

t
γtRt

]
(6)

where γ ∈ [0, 1) is the discount rate, which is used to decrease the importance of distant
future rewards, compared to immediate ones. We proceed to formulate the problem of opti-
mal real-time scheduling and pricing in EV charging stations using the MDP framework.

State/Observation Space

The system state at time slot t is defined by:

St =
(
Jt, {d̃t

j}
∣∣∣

j∈Jt
, { p̃t

j}
∣∣∣

j∈Jt
,

It, (7)

ct:t−t24 h

)
and includes:

• The EVs that are parked at the station Jt, along with the residual charging demand d̃t
j

and parking time p̃t
j for each EV j ∈ Jt

• The newly arrived EVs, It
• The last 24 h of values of the electricity price time series. Under the assumption that

electricity price changes every ∆t slots, the 24 h historical values can be represented by:

ct, ct−∆t, ct−2∆t, . . . , ct−M∆t (8)

where M∆t = 24 60
tlen

. Equivalently, the number of samples M is given by:

M = 24
60

tlen∆t
(9)

Action Space

At each time slot t, the action to be determined by the agent is the tuple

At = (rt, et); (10)

that is, the price rate for new EVs that arrive at the station, and the total charging rate
et := ∑i∈Kt xi,t to be distributed among parked EVs.

As proved in [22], under certain conditions it is sufficient to determine, at each time
slot t, the value of et instead of the individual charge amounts xi,t. In turn, those can be
found by applying the least laxity first (LLF) algorithm.

The laxity li,t of EV i at time slot t is defined as:

li,t := p̃t
i −

d̃t
i · 60
xmax

(11)

d̃t
i is multiplied by 60 so as to convert the energy measured in kWh to kW·min, which in

turn is divided by the maximum individual charging rate, xmax measured in kW. Intuitively,
li,t represents the “headroom” between the remaining parking time and the minimum
charging time required to fulfill the remaining demand.

Having determined the value of et, LLF schedules the values of xi,t by assigning higher
priority to those EVs presenting the least laxity. In other words, according to LLF, the station
should first charge those EVs that are most urgent to finish charging. For more details on
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the LLF algorithm, the reader is referred to [22]. An improved implementation of the LLF
algorithm, called constrained LLF, is described in Section 3.1.

Reward Modeling

The definition of the reward function is related to the optimization objective of the
desired solution. In this work, the problem is studied from the points of view of the EV
charging station and the EV owners; thus, the first objective is to maximize the station’s
profit. Taking into account Equations (4)–(6), the reward at each time slot t is defined as the
total payment the station collects from new EVs minus the cost for charging all parked EVs:

Rt := ∑
i∈It

rtDi(rt)− αctet (12)

Equation (12) is valid only as long as each EV i ∈ It is indeed fully charged with its
required demand. Otherwise, the difference between the requested charging Di(rt) and
the actual charge provided should be introduced in the calculations. It should be noted
that the use of the constrained total charging rate e′t that is obtained via the constrained
LLF algorithm, presented in the next section, ensures that the laxity of each EV remains
positive, leading to a successful charge.

3. Proposed Solution
3.1. Constrained Least Laxity First

As the agent can freely choose the total charging rate et, a situation could arise in
which the EVs have not been adequately charged. Equivalently, the residual charging
demand d̃t

i of some EVs would not reach zero by the time they are set to leave the station
(p̃t

i = 0).
In that case, the constraint mentioned in Equation (3) is not satisfied, and EV owners

could be discontent with the amount of energy they received during a charging session,
thereby violating the second objective set in the previous section. Note that this case is not
explicitly handled in [22].

It can be observed that, if at any time slot t, the laxity of an EV i, li,t, is negative, that
EV can no longer be satisfied in its initial energy demand.

Constraining the total charging rate et could prevent such an event from occurring.
With that in mind, a lower bound for et is introduced when applying the LLF algorithm,
as described in Algorithm 1. Essentially, the constrained LLF algorithm first charges EVs
with the least laxity with the maximum individual charging rate (xmax) until the total
charging rate et is distributed. The algorithm then constrains the total charging rate if
needed to prevent any negative laxities from occurring in the next time slot. It should
be noted that the use of constrained LLF requires that the charging station is capable of
charging all EVs at the maximum charging rate concurrently; i.e., emax = N · xmax.

It should also be mentioned that the constraints of the LLF algorithm could be relaxed,
allowing the agent to slightly undercharge EVs, with the aim of improving the charging
station profit. Specifically, each laxity could be allowed to reach sub-zero levels, meaning
that the residual demand of some EVs might not be met by the end of a charging session.
The logical expression for the residual demand given the statement in Algorithm 1 would
be written as:

li,t+1 < ξ (13)

where ξ < 0 is the relaxation coefficient. The maximum amount of residual demand that
could potentially be unfulfilled is analogous to |ξ|.
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Algorithm 1 Constrained least laxity first.

Require: Total charging rate et
Require: Total number of chargers N
Require: Residual demand d̃t

i , i ∈ Kt
Require: Residual parking time p̃t

i , i ∈ Kt
Initialize remaining total charging rate ẽt ← et
for i = 1, N do

Initialize xi,t ← 0

Calculate laxity li,t ← p̃t
i −

d̃t
i ·60

xmax
Initialize li,t+1 ← li,t

end for
while ẽt > 0 do

Find EV î with the least laxity that has xî,t = 0

Update charging rate of EV î: xî,t ← min
(

ẽt, xmax, d̃t
î
· 1

α

)
Calculate laxity of EV î for next time slot t + 1: lî,t+1 ← lî,t +

xî,t ·tlen
xmax

− tlen
Update remaining total charging rate ẽt ← ẽt − xî,t

end while
for i = 1, N do

if li,t+1 < 0 then

Constrain charging rate of EV i: xi,t ← min
(

xmax, d̃t
i ·

1
α

)
end if

end for
Calculate constrained total charging rate e′t ← ∑N

i=1 xi,t

3.2. Agent Architecture

The agent is modeled as a deep neural network, whose architecture is shown in
Figure 3. The state information (Equation (7)) is provided as input to the agent. In particular,
the network has:

• N input nodes, each of which is the laxity of an EV at charger i, li,t.
• M input nodes corresponding to the values of the electricity price over the last 24 h,

according to Equations (8) and (9).
• One node corresponding to the number of EV arrivals observed at the admission zone

of the station.

The network’s output approximates the total expected return for each action that the
agent can choose in the current state. Since the total expected return per action provides
information about the value of each action, it is called the action value. As will be described
in Section 3.3, the training objective of the deep neural network is based on the Q-learning
algorithm [26].

Most straightforward DRL algorithms, including standard deep Q-learning [17], oper-
ate on discrete action spaces; i.e., the set of all available actions At = {At}, ∀t is countable
and finite. However, by definition (Equation (10)), the action space in this case is continuous.
Therefore, actions are discretized as shown below:

• Let wr = {wr,1, wr,2, . . . , wr,L} be the L discrete price rate levels.
• Let we = {we,1, we,2, . . . , we,K} be the K discrete charging rate levels.
• Then, the action space is :

At = we × wr = {(wr,1, we,1), . . . , (wr,L, we,1), (wr,1, we,2), . . . , (wr,L, we,K)}, (14)

i.e., the Cartesian product of the discrete level sets, with cardinality |At| = L · K
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Figure 3. DQN agent architecture.

A limitation of discretizing continuous action spaces is that the number of discrete
actions could potentially explode. Therefore, the exploration phase of the algorithm and
evaluating all individual actions become impractical [27]. Proper discrete levels should be
selected that reflect the solution boundaries for the selected datasets/parameters.

3.3. Training Approach

During training, the agent consists of two identical deep neural networks: a policy and
a target network, as explained in [28]. The target network copies the weights of the policy
network every few updates of the latter, lagging behind a few episodes, to improve stability.
The agent plays through episodes while storing experiences (observations, actions taken,
rewards gained, and new observations) in a replay buffer. This buffer is then sampled at
every step, and a batch is used for (continuously) training the networks.

A behavior policy is used to explore the environment while collecting data to prevent
the agent from adhering to a sub-optimal policy due to the local minima of the loss function.
The ε-greedy policy is commonly used to achieve such goals. According to the ε-greedy
policy, the agent selects the greedy action that maximizes reward with probability 1− ε
and a random action with probability ε. As training progresses, the probability ε decays to
ensure convergence.

As mentioned in Section 2.2, the charging rate et selected by the agent should be
above a lower bound in order to satisfy the problem formulation constraints. However,
the action space is discretized, as described in Section 3.2. Thus, if the constrained charging
rate e′t obtained by the constrained LLF algorithm is higher than the selected et, then the
agent is forced to select the discrete charging level we,i which is closest to e′t and satisfies
the inequality we,i ≥ e′t. On the other hand, the selected price rate rt does not have any
constraints, so it is left unchanged.
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Furthermore, it was experimentally found that gradually increasing the episode dura-
tion helps the agent grasp the EVs’ charging cycle. Specifically, the small initial episode
duration provides the agent with data of the environmental state when the station is not
yet busy. As the agent learns to charge a small number of EVs at the start of the episode,
the duration increases, allowing the agent to apply the knowledge gained to charge many
EVs and schedule charging concurrently.

The training approach is summarized in the Algorithm 2.

Algorithm 2 Constrained deep Q-learning.

Require: Episode length schema function, h
Require: Exploration rate schema, l

Initialize replay memory D to capacity N
Initialize action-value Q ≡ Q(s, a, ; θ) parametrized with random weights θ
Initialize target action-value Q̂ with weights θ−

for episode = 1, E do
Initialize state s1
Get current episode duration T = h(episode)
for t = 1, T do

Get exploration rate ε = l(episode, t)
With probability ε select a random action at, otherwise select at =

arg maxa Q(s, a ; θ)
Constrain at using the Constrained LLF algorithm
Execute at and observe reward Rt and next state st+1
Store transition (st, at, Rt, st+1)
Sample random minibatch of transitions

(
si, aj, Rj, sj+1

)
Set target

yj =

{
Rj, if sj+1 final state

Rj + γ maxa′ Q̂(sj+1, a′; θ−), otherwise

Perform a gradient descent step on
(
yj −Q(sj, aj; θ)

)2

Every C steps copy policy network weights to target network weights θ− = θ
end for

end for

4. Evaluation Methodology
4.1. Datasets

Two datasets were used to model the EV charging station environment: one for the EV
arrivals at the station and one for the hourly electricity price the station pays to the utility
company for the energy purchased during each hour.

The dataset for the EV arrivals was provided by [22], which is an open-source code
repository from the author of [22]. It contains vehicle arrivals per 30 s for Richards Ave
station near downtown Davis. The EVs are divided into three types, namely, (a) emergent,
(b) normal, and (c) residential. Each type has different demand preferences and available
parking time, which are described in Section 4.2. The following preprocessing steps were
performed on the data points to match these data to a realistic charging station scenario:

• They were upsampled to 60 min intervals.
• They were scaled by a factor of 1

100 and rounded to the closest integer.
• They were undersampled to 1 min intervals, by randomly distributing the 1 h samples

to intermediate minutes using a uniform distribution.

An overview of the average number of EV arrivals per hour of the day for the different
charging profiles can be observed in Figure 4. The averaging was performed for every hour
separately, for all the days that are included in the dataset.
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Figure 4. Average EV arrivals per hour of day per charging profile.

For the electricity price, a dataset from the Korean grid [29] was utilized, which is
publicly available. It contains hourly prices per kWh of energy purchased from the grid.
The dates of the observations range from 1 July 2021 to 31 July 2021, matching the month of
the dataset for the arrivals mentioned above. Initially, a currency conversion was realized,
and the price was scaled to achieve greater variance during a day and challenge the agent
to adapt to intraday fluctuations. The conversion function is f (x) = 0.00084x2

3 , where x is
price in Korean ₩ and f (x) is price in US $. An overview of the average electricity price
per hour of the day can be observed in Figure 5. The averaging was performed in a similar
manner as explained for the EV arrivals dataset.

Figure 5. Average electricity price per hour of day.

4.2. Experimental Setup

Before conducting the experiments, a set of hyperparameters were selected. These
include the following:

• Chargers of the station: N = 20.
• Maximum charging rate per charger: According to the U.S. Department of Energy (https:

//afdc.energy.gov/fuels/electricity_infrastructure.html, accessed on 15 February 2022),
most EVs on the road today are not capable of charging at rates higher than 50 kW.
Thus, a more conservative approach of 30 kW was selected. Note that 22 kW is the
closest standard charging rate (i.e., Level 2 EV charging), but the purpose of this work
is to present a more general approach.) xmax = 30 kW

• Maximum total charging rate: emax = N · xmax = 600 kW.
• Time slot length: tlen = 5 min.
• Episode duration: 1 day or 1440 min or 288 time slots.
• Discrete price rate levels: {1, 2, 3, 4, 5, 6}$.
• Discrete charging rate levels: {0, 60, 120, 180, 240, 300, 360, 420, 480, 540, 600} kW.
• Cardinality of action space: |At| = 66.

https://afdc.energy.gov/fuels/electricity_infrastructure.html
https://afdc.energy.gov/fuels/electricity_infrastructure.html
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Demand–Response Function

The demand–response function is modeled as a linear equation of the form:

Di(r) = β1r + β2 +N
(

0, σ2
)

(15)

where β1, β2, and σ are the parameters of each EV i; and N
(
0, σ2) is Gaussian noise with

mean µ = 0 and standard deviation σ. Following the type division of the EV arrivals
dataset, EVs are grouped into three different types, each with specific parameters, which
are presented in Table 1. These parameters were adopted from the related work in [22].
The respective plot of the demand–response functions is illustrated in Figure 6. As can
be seen in [30], the potential charging demands are in line with the battery capacities of
some of the latest EV models. The dotted lines show the Gaussian Noise’s variance by
adding one standard deviation σ to each demand–response function. These also provide
an approximate limit to the maximum price that the customers of each type are willing to
pay to the station.

Table 1. Demand–response function parameters and parking time for each EV type.

EV Type Standard Deviation σ β1 [kWh/$] β2 [kWh] Parking Time

Emergent 4.47 −1 6 30

Normal 3.96 −4 15 120

Residential 2.63 −25 100 720

Figure 6. Plot of demand–response function for each EV type.

ε-Greedy Policy

The decaying probability ε of the ε-greedy policy is calculated by the equation:

ε = εend + (εstart − εend) · exp
{
− x

εdecay

}
(16)

where x is the episode number; εstart = 0.9 and εend = 0.05 are the initial and final
probabilities of a random action (for x = 0 and x → ∞, respectively); and εdecay = 200 is
the rate of decay for ε. A plot of the above equation can be observed in Figure 7. Essentially,
the probability ε converges to its final value after 800 episodes.
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Figure 7. Plot of random probability for ε-greedy policy during training.

Episode Duration

The episode duration starts from 10 timeslots and increases by one timeslot every two
episodes, up to 288 timeslots (a complete day cycle). Figure 8 shows the plot of the episode
duration for each episode during training.

Figure 8. Plot of incremental episode duration during training.

5. Results
5.1. Training Results

Training is performed over 1200 episodes and is repeated five times to ensure consis-
tency. For each episode, a day is selected randomly from the EV arrivals and electricity
price datasets, which include 31 days in total. The training curves are presented in Figure 9,
where the accumulated reward and the invalid actions per episode are plotted. An invalid
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action refers to a selected charging rate et that was constrained to a higher charging level
due to insufficient charge. The best training run is highlighted, and in Figure 10, the results
from that run are averages over a moving window of 50 episodes.

Figure 9. Training curves of the proposed model, with the best of five runs being highlighted.

Figure 10. Training curves of the best run of the proposed model, averaged over a moving window
of 50 episodes.

It can be observed that the model gradually achieves better total reward per episode,
but it also increases invalid actions taken up to a certain point. During the algorithm’s
exploration phase, the agent is mostly choosing random actions and observes the rewards
accumulated. Then, during the exploitation phase, it minimizes invalid actions and further
increases reward. At that point, the agent mostly takes deterministic actions based on the
values calculated for each observation–action pair and tries to find the sequence of actions
that yields the best reward.
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The maximum reward achieved over the five training runs was 5403 $. The mean
value of the maximum reward per run was 4692 $, which indicates that training reaches a
high accumulated reward consistently.

5.2. Policy Analysis

In this subsection, a trained model is examined for its policy during the day. The agent’s
actions are monitored in response to electricity price and residual demand. From Figure 11,
it can be concluded that the optimal policy that the agent follows dictates keeping prices
provided to customers at a constant level for most of the time slots. Furthermore, Figure 12
indicates that the EVs are charged at maximum charging rates most of the time, since an
increasing total residual demand increases the charging rate. Hence, the optimal policy
could be summarized as, “Keep the price stable at 3 $ and charge as much as possible”.

Figure 11. Price announced to customers vs. electricity price paid to the utility company.

Figure 12. Total residual demand vs. total charging rate.
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Figures 13 and 14 present an overview of the residual demand per charger. The agent
keeps demands under a threshold and satisfies them as soon as possible. The very few flat
lines show this, implying that an EV is not being charged for some time slots.

Figure 13. Residual demand per charger (20 in total).

Figure 14. Residual demand for a single charger.

5.3. Case Study: Increasing Episode Time Horizon

It could be argued that, due to the smaller number of arrivals and lower electricity
prices during night h, the agent should take actions that charge more conservatively during
the end of the day to maximize profit. A three-day episode of training and testing was
conducted with that in mind. The episode duration was incremented in the same manner as
in the one-day maximum duration and is illustrated in Figure 15. Due to the higher number
of episodes needed to reach maximum episode duration (i.e., 864 timeslots), the εdecay from
the ε-greedy policy was adjusted to 600 to compensate for the more extensive exploration
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phase and enable the agent to choose actions while episode duration still increases randomly.
The plot of the adjusted probability of random action can be observed in Figure 16.

Figure 15. Plot of incremental episode duration during training (three-day episode duration).

Figure 16. Plot of random probability for ε-greedy policy during training (three-day episode duration).

Figures 17–22 show the results in a similar manner as in the one-day experiment.
Regarding the price, the agent seems to have a similar optimal policy, which is to keep it
constant at $3, according to Figure 19. There are also some $2 actions when the price is
dropping, suggesting that the agent attempts to receive extra energy demands to fulfill
during low price time slots. On the other hand, the charging rates do not exceed 240 kW
during peak demand times, as seen in Figure 20, contrary to the 540 kW maximum charging
rate for one-day episode duration, as illustrated in Figure 12. This means that the agent
adapts to the expanded episode duration and attempts to stall charging EVs when close to
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a spike in electricity price. Another indication of that is evident in Figures 21 and 22, since
flat lines can be observed for EVs with high demands during time slots 100 to 300.

Figure 17. Training curves of the proposed model (three-day episode duration).

Figure 18. Training curves of the proposed model, averaged over a moving window of 50 episodes
(three-day episode duration).

The behavior mentioned above negatively impacts the actual reward for the selected
price parameters. The accumulated reward for three-day episodes is a little over double the
accumulated reward for one-day ones, which can be deduced from observing Figure 17 in
comparison to Figure 9 for the final episodes of training. However, it should be noted that
one-day episodes may avoid charging costs at the end of each day, since not all EVs are
charged when an episode ends. Three-day episodes include those costs to the accumulated
reward for the two nights between the three days.
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Figure 19. Price announced to customers vs. electricity price paid to utility company (three-day
episode duration).

Figure 20. Total residual demand vs. total charging rate (three-day episode duration).

Figure 21. Residual demand per charger for the first 350 time slots (three-day episode duration).
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Figure 22. Residual demand for a single charger for the first 350 time slots (three-day
episode duration).

5.4. Case Study: Removing Constraints

An experiment with no constraints was conducted to test the efficiency of the con-
straining mechanism and provide a way of comparing the proposed method with models
of the respective literature, such as [22]. The method used for the experiment is similar to
the proposed one, with the following key difference:

The LLF algorithm was used with no constraints. Specifically, EVs with the least laxity
were charged with the maximum individual charging rate xmax until the total charging rate
et selected by the agent was distributed. No further checks concerning negative laxities
were performed, introducing the possibility of an EV reaching its departure time with
unfulfilled demand. Whenever this occurred during an episode, the unfulfilled demand
amount (kWh) was monitored, and the accumulated unfulfilled demand is presented at
the end.

The training curves of the unconstrained model are presented in Figures 23 and 24.
The unconstrained model achieved a maximum reward of 4044 $; however, this reward
was achieved with most EVs leaving the station with unfulfilled energy demands (a total of
1177 kWh). Furthermore, as the accumulated reward increased, the accumulated unfulfilled
demand increased proportionately. This observation stems from the fact that the agent
was unconstrained and had no measure of customer dissatisfaction included in its reward,
leaving the single optimization objective of maximizing charging station profit. Thus,
the agent learned to charge customers money for electricity that it never provided, as the
total charging rate et that it selected for each time slot t was almost always zero. In contrast,
the electricity price rt was non-zero.

In [22], a constraining method is proposed and mathematically proven to provide a
feasible solution that satisfies all demands. This method is non-trivial and to be imple-
mented with an online agent. It requires future information about the EV arrivals at the
station, which is not available. In the present context, the constraining mechanism ensures
customer satisfaction while optimizing the charging station profit.
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Figure 23. Training curves of the unconstrained model.

Figure 24. Training curves of the unconstrained model, averaged over a moving window of
50 episodes.

6. Conclusions

In this paper, a DRL-based approach was developed to solve optimal pricing and
scheduling in an EV charging station under a dynamic, varying electricity price scheme.
The proposed approach is model-free, which means that the DRL agent can operate under
uncertainties, such as EV arrivals and their charging demands, and stated parking times,
without explicit knowledge about the randomness. Instead, it can learn directly from un-
derlying patterns present in real-world data. In addition, a charging scheduling algorithm
was proposed, and the standard deep Q-learning algorithm was modified that ensures
that EVs are adequately charged. Experimental results validated the effectiveness of the
proposed solution in two ways: on the one hand, the trained agent managed to follow
a policy that maximizes the profit of the charging station; at the same time, EV owners’
charging demands were successfully fulfilled. Finally, it directly follows from the above
analysis that the proposed system can make online decisions in real-time or near real-time
by setting appropriate values for the duration of each slot.

The work presented in this study can be extended in many different directions. Some
of them are listed below:



Energies 2022, 15, 2323 22 of 24

• As a first step, the technique of constraining the estimated charging rate could be
incorporated into different DRL training algorithms that would operate on continuous
action spaces, thereby lifting the need for discretizing scheduling and pricing actions.

• This work could serve as the basis for different formulations that consider more
stakeholders, e.g., the grid operators and the corresponding constraints.

• Furthermore, the assumption was made that the total charging rate requested by
the charging station is constrained only by the number of individual chargers. Con-
sequently, potentially all parked EVs can be scheduled to charge during each slot;
respecting additional constraints placed by the grid operator is an aspect that naturally
arises as a potential future extension.

• In addition, more financial tools can be considered in modeling the relationship
between different stakeholders.

• Finally, a more automated version of such a system can also be tailor-made for real-
time EV detection, on a non-intrusive load monitoring (NILM) basis [31].
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Nomenclature

t The time slot index
tlen The length (duration) of each time slot
It The set of EVs that have arrived at the station at the beginning of time slot t
Jt The set of EVs that are already parked in the station before time slot t
Kt The set of EVs that require charging at time slot t
rt The price rate announced to the customers at time slot t
ta
i The arrival time of EV i

di The charging demand of EV i
pi The maximum desired parking time of EV i
Di(·) The demand–response function of EV i
β1, β2, σ The parameters of the demand–response function
N The total number of chargers in the station
xi,t The charging rate at which EV i will be charged during time slot t
xmax The maximum individual charging rate for every charger
et The total charging rate at time slot t
e′t The constrained total charging rate at time slot t
emax The maximum total charging rate for the charging station
α The charging rate to energy conversion coefficient
ct The electricity price that the charging station pays to the utility company
(St, At, Rt+1, St+1) The 4-tuple of elements of the Markov decision process
γ The discount rate
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d̃t
i The residual charging demand for EV i at time slot t

p̃t
i The residual parking time for EV i at time slot t

li,t The laxity of EV i at time slot t
ξ The relaxation coefficient
At The set of all available actions
wr The set of discrete price rate levels
L The number of discrete price rate levels
we The set of discrete charging rate levels
K The number of discrete charging rate levels
ε The probability of a random action of the ε-greedy policy
εstart, εend, εdecay The parameters of the ε-greedy policy
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