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Abstract: For the benefit of knowing the method of insulator deicing using hot water, this paper
investigated the physical aspects of propagation and the spatial temperature distribution of a hot
water jet in the air. The numerical calculation model for the water jet flow field was established and
validated, and the temperature spatial variation rule and influencing factors of the water jet were
analyzed. The results indicate that the water column breaks as the distance increases. The numerical
calculation results and the experimental results of the water jet flow field were approximated. As the
distance increases, the mass entrainment rate of the water jet gradually increases, and the normalized
axis velocity decreases approximately linearly. The jet temperature rises with the rise in the initial
temperature of the hot water, and the rising rate decreases with the increase in distance. The
temperature of the water jet falls as the jet distance increases. With the rise in the outlet pressure, the
temperature of the water jet drops slightly. The influence of environmental wind speed on the water
jet temperature is more significant than ambient temperature—the water jet temperature increases
as the nozzle diameter increases. The thorough deicing efficiency is most outstanding when the hot
water output temperature is around 86 ◦C and the jet pressure is ~3.5 MPa.

Keywords: insulator; deicing; hot water jet; numerical calculation; temperature spatial distribution

1. Introduction

Since the 20th century, the icing problem has posed a danger to the security of trans-
mission line operations. Icing significantly downgrades transmission lines’ mechanical and
electrical performance, and threatens the power grid’s stable operation [1,2]. The icing of
wires and insulators has the most significant impact on the power grid. After the insulator
is coated with ice, its electrical performance declines sharply. Ice flashover may lead to
tripping in severe cases and interrupt the power supply [3–7].

At present, the deicing technology for transmission lines and equipment is mainly
aimed at wires and substation equipment. According to the working principle [8–10], the
deicing methods mainly include thermal deicing (relying on a deicing medium and ice layer
heat exchange) [11], mechanical deicing (relying on external mechanical force to destroy the
ice layers’ bonding state) [12], and natural passive deicing (depending on ice layer gravity
and other factors) [13]. Among them, the DC ice-melting technology [14] has the advantage
that the ice-melting line does not consume reactive power. Still, the cost of the ice-melting
device is high, the equipment utilization rate is low during the non-melting period, and
it does not apply to ice-covered insulators. Wei et al. [15] controlled a deicing robot to
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move on a steel tube simulating wire at a certain speed, and deicing was achieved through
the cutting of the deicing knife and vibration of the robot arm; however, this method is
inefficient, and cannot remove the icing from insulators.

To protect the insulator from ice flashover and tripping, manual deicing was used in
the past, with an excellent safety profile and low efficiency. At present, the existing deicing
methods for insulators include laser or infrared deicing, hot air deicing, etc. [16–20]. In [16],
Zhu used a CO2 laser with a power of 35 W, and put forward an experimental scheme of
deicing by combining laser thermal melting with ice gravity. The experiment indicated that
removing 1 kg of ice consumes 90 kJ of energy and takes 26 min. However, a high-power
laser and long-term irradiation may cause thermal damage and thermal stress damage
on the surface of the porcelain insulator, so the laser operation needs to be meticulous
and professional [17]. The authors of [18] carried out infrared deicing experiments; it was
found that under the experimental conditions (the temperature of the infrared emission
device and the ice distance) of 1073 K, 100 cm, and 2073 K, 40 cm, the melting of 6.5 kg
ice took 1746 s and 1002 s, respectively. The research results of [19,20] show that hot air’s
temperature and outlet velocity are key factors affecting the deicing efficiency; its deicing
efficiency is lower than that of infrared rays. Therefore, the critical power and irradiation
time to avoid insulator damage are difficult to control when laser deicing is used. In
comparison, the downside of infrared ray or hot air deicing is that the amount of deicing
per unit of time is negligible.

The deicing methods above essentially take advantage of heat conduction and convec-
tion to complete the heat transfer between the ice and the deicing medium. Water has a
larger specific heat capacity and thermal conductivity than air. The convective heat transfer
coefficient between the water jet and ice is more significant than between hot air and ice at
the same flow velocity [21]. Moreover, using a hot water jet can prevent insulator damage
more easily. Regarding water jet deicing, the relationship between deicing efficiency using
a water jet at room temperature and jet pressure and ice layer temperature was studied
preliminarily in [22,23], which revealed that increasing the ice layer temperature helps
deicing. At present, hot water deicing has been used in road deicing and other fields [24,25],
and related numerical simulation and laboratory research has been carried out on hot water
deicing for EMUs (electric multiple units) [26]. Therefore, a hot water jet can be used as a
deicing medium for the insulator to study its deicing efficiency and influencing factors.

This research focuses on the physical properties and temperature distribution of
hot water jet propagation in the air. Experiment and numerical calculations were used
to investigate the effects of the initial temperature of hot water, jet distance, and outlet
pressure on the spatial distribution of jet temperature. The numerical and experimental
results of the water jet flow field are similar. According to the research findings, the melting
process of the insulator surface under the action of hot water was also researched, as
well as the deicing efficiency and safety distance of hot water deicing technology. The
findings confirm theoretical study of hot water deicing, and indicate the mechanisms and
parameters influencing insulator deicing.

2. Physical Process of Hot Water Deicing

The main principle of hot water deicing for the insulator is to transfer the heat and
energy of hot water to the ice using a water jet device with high pressure. The ice gradually
melts and falls off under hot water jet melting and impact force, as shown in Figure 1. The
hot water jet arrives from the left, and the ice falls to the right, as marked by the red circle
and lines. The physical process consists of two stages:
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Figure 1. Hot water deicing process of an LXY-120 glass insulator. (a) Process from 0 s to 120 s at 
30 s intervals; (b) Ice falling off. 

(1) High-speed hot water jets from the nozzle outlet to the ice layer (Figure 1a). The 
reference temperature, wind speed, nozzle diameter, ambient temperature, injection 
distance, and outlet pressure on the spatial distribution of water jet temperature 
will determine the technical parameters of the hot water deicing device. This paper 
will focus on this process; 

(2) The hot water causes the ice to melt and shed through convective heat transfer and 
impact force(Figure 1b). The insulation performance of the water jet needs to be 
considered in the actual deicing operation. It is necessary to investigate the influ-
ence of jet distance, water conductivity, and outlet pressure on the water jet’s leak-
age current in order to validate the shortest deicing length under various combina-
tions of water conductivity and outlet pressure. 

3. Numerical Model of Water Jet Flow Field 
The study of the temperature distribution of water jets in space was carried out via 

ANSYS FLUENT numerical calculation and the experimental verification of the Xuefeng 
Mountain Natural Icing Test Base of Chongqing University. 

3.1. The Physical Structure of the Nozzle 
According to the shape of the inner hole, the nozzles can be cylindrical, conical-

straight, streamlined, etc. The conical-straight nozzle is the most commonly used water 
jet nozzle due to its significant flow coefficient [27–29]. The conical-straight nozzle was 
taken as the prototype, and its physical model was simplified and obtained, as shown in 
Figure 2. The parameters of the nozzle structure is shown in Table 1. 
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Figure 2. Schematic diagram of the nozzle structure. 

Figure 1. Hot water deicing process of an LXY-120 glass insulator. (a) Process from 0 s to 120 s at 30 s
intervals; (b) Ice falling off.

(1) High-speed hot water jets from the nozzle outlet to the ice layer (Figure 1a). The
reference temperature, wind speed, nozzle diameter, ambient temperature, injection
distance, and outlet pressure on the spatial distribution of water jet temperature will
determine the technical parameters of the hot water deicing device. This paper will
focus on this process;

(2) The hot water causes the ice to melt and shed through convective heat transfer and
impact force (Figure 1b). The insulation performance of the water jet needs to be
considered in the actual deicing operation. It is necessary to investigate the influence
of jet distance, water conductivity, and outlet pressure on the water jet’s leakage
current in order to validate the shortest deicing length under various combinations of
water conductivity and outlet pressure.

3. Numerical Model of Water Jet Flow Field

The study of the temperature distribution of water jets in space was carried out via
ANSYS FLUENT numerical calculation and the experimental verification of the Xuefeng
Mountain Natural Icing Test Base of Chongqing University.

3.1. The Physical Structure of the Nozzle

According to the shape of the inner hole, the nozzles can be cylindrical, conical-straight,
streamlined, etc. The conical-straight nozzle is the most commonly used water jet nozzle
due to its significant flow coefficient [27–29]. The conical-straight nozzle was taken as the
prototype, and its physical model was simplified and obtained, as shown in Figure 2. The
parameters of the nozzle structure is shown in Table 1.
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Table 1. Parameters of the nozzle structure.

Parameters D (mm) l′ (mm) L (mm) α (◦) d (mm)

7 10 5 45 1–2

The nozzle structure parameters mainly include inlet diameter D, outlet diameter d,
contraction angle α, length of converging section L, the ratio of smoothing section length to
outlet diameter—that is, l/d—and access section length l′.

3.2. Geometric Model and Meshing of the Water Jet Flow Field

The size of the three-dimensional flow field was set to 5 m × 4 m × 4 m to investigate
the effects of side wind on the properties of the jet flow field. When meshing, the mixed grid
was applied in the computational domain (Figure 3), divided into two parts: the near-axis
area through which the water jet flows, and the far-axis area away from the water jet. The
scope of the paraxial area was 1 m. The above two areas had meshed independently. The
near-axis area was meshed using a hexahedral grid with better calculation performance.
The grid size increased gradually from the inside to the outside with a growth rate of 1.2,
and the initial minimum edge length was 0.1 mm. The far-axis area was meshed using a
tetrahedral–hexahedral mixed grid with a larger size, as shown in Figure 3.
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At least four different grid calculations must be performed in order to analyze the
grid convergence test, as show in Figure 3. As the mesh density increased, the velocity
distribution on the axial section at the nozzle exit remained the same, and there was no
significant difference. Furthermore, the change rate of the inlet and outlet pressure drop
between adjacent grids was less than 0.9%. Therefore, the physical model and discrete
format used in the calculation have spatial convergence and numerical stability, and the
selection of a coarser grid number is sufficient to meet the accuracy requirements of
the calculation.

3.3. Calculation Model and Governing Equation

After flowing through the contraction section of the nozzle, the high-speed water
is turbulent, and turbulent diffusion and momentum exchange with the ambient air oc-
curs violently [30]. Therefore, the nozzle jet belongs to the gas–liquid two-phase flow
problem, and in the calculation of the jet flow field of the nozzle, the high-pressure wa-
ter jet belongs to the state of high turbulence. Therefore, selecting a suitable turbulence
model and multiphase flow model is necessary. The turbulence model selects standard k–ε
governing equations.

The standard k–ε model is suitable for a flow field with low swirl intensity and regular
wall shape, and it is a semi-empirical model based on model transport equations for the
turbulent viscosity (µt), turbulent kinetic energy (κ), and its dissipation rate (ε), which are
given by:

µt = ρCµ
k2

ε
(1)
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∂(ρκ)

∂t
+

∂(ρκui)

∂xi
=

∂

∂xj

[(
µ +

µt

σκ

)
∂κ

∂xj

]
+ Gκ + Gb − ρε−YM + Sκ (2)

∂(ρε)

∂t
+

∂(ρκui)

∂xi
=

∂

∂xj

[(
µ +

µt

σε

)
∂ε

∂xj

]
+ G1ε

ε

κ
(Gκ + G3εGb) + G2ερ

ε2

κ
+ Sε (3)

where Gk represents the generation of turbulent kinetic energy due to the mean velocity
gradients in these equations, Gb is the turbulent kinetic energy produced by buoyancy, and
YM fluctuates due to excessive diffusion of incompressible turbulence. C1ε, C2ε, C3ε, and Cµ

are constants, σk and σε are the turbulence Prandtl numbers for k and ε, respectively, and
Sk and Sε are user-defined. The model constants C1ε, C2ε, C3ε, σk, and σε were assumed to
have the following values: C1ε = 1.44, C2ε = 1.92, Cµ = 0.09, σk = 1.0, and σε = 1.3.

Since the VOF (volume of fluid) model is applicable to solve the spatiotemporal
distribution of gas–liquid interface in stratified flow, sloshing, dam breaking, jet attenuation,
etc. [31], the VOF model was selected for the multiphase flow model.

In the VOF model, the content of each phase fluid in each calculation unit is characterized
by the volume fraction α. For example, in the case of q kinds of fluids, the volume fraction of each
phase is α1, α2, . . . , αq, and each volume fraction satisfies α1 + α2 + . . . + αq = 1. The governing
equations of the VOF model mainly include the volume fraction equation, momentum
equation, and energy equation (Appendix A).

Assuming that the density changes of water and air can be ignored, the viscous flow in
the computational domain is incompressible. The solver adopts the transient and pressure-
based implicit solution, and the energy equation is opened to solve the jet temperature
field simultaneously. The wall function in the standard k–ε turbulence model is set as the
standard near-wall function. In the VOF two-phase model, the primary phase is air, and
the secondary phase is water. The relationship between the physical parameters—such as
thermal conductivity, viscosity, and specific heat capacity—and air and water temperatures
is input into the material property column.

3.4. Boundary Conditions

The setting of boundary conditions of the computational domain is shown in Figure 3.
The pressure reflects the nozzle outlet speed, and the relationship between them can be
obtained from the literature [32]. Therefore, the nozzle inlet was set as the pressure inlet,
and the pressure direction was perpendicular to the nozzle inlet surface. The turbulence
intensity I and hydraulic diameter DH of the inlet can be calculated by Equation (4):{

I = 0.16× (ReD)
−1/8

DH = D
(4)

where ReD is the Reynolds number of the flow in the nozzle, and DH is equal to the ratio of
four times the flow area to the wetting circumference. DH is the nozzle inlet diameter D for
flows in a circular tube.

The volume fraction of water at the nozzle inlet was kept at 1, and the inlet temperature
was set as the initial temperature of the hot water. The inner wall of the nozzle was set to
have no sliding wall surface, and the wall material was set as steel. The nozzle outlet–air
interface was set as the internal boundary. The front and back boundaries were selected as
the velocity inlet in the external flow field area, used to simulate the transverse wind speed.
The velocity direction was perpendicular to the jet axis. The upper and lower boundaries
and the left and right boundaries were the pressure outlets. A pressure value was 0.1 MPa,
one barometric pressure, and the temperature value was the ambient temperature. Before
starting the calculation, the computational domain was initialized by filling the domain
with air and setting the initial temperature as the ambient temperature.
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For non-steady-state numerical simulation, it is necessary to determine the number of
grids used, the time-step size, and the non-correlation with the calculation results—that
is, the grids should be verified for non-correlation and time-independence. The four grid
numbers were tested for independence according to the time step of 0.001 s.

After selecting the fixed number of grids, we set the Courant number to four levels
from small, and chose the time step according to the convergence and error of the iterative
residuals. In general, the Courant number is essential in explicit differential method
schemes, and it should be small in order to ensure stability. The maximum control residual
is 0.0001 in the iterative calculation. The numerical values used for the thermal parameters
of water and air are shown in Table 2.

Table 2. The numerical values used for the thermal parameters.

Properties Density
(kg/m3)

Cp
(J/(kg K))

Thermal Conductivity
(W/(m K))

Viscosity
(kg/(m s))

Reference Temperature
(◦C)

Air 1.225 1006.43 0.0242 1.7894e-05 25
Water 998.2 4182 0.65 0.001003 24.85

4. Numerical Calculation Results and Validation of the Water Jet Flow Field
4.1. Numerical Calculation Results of Water Jet Flow Field

Taking the outlet pressure of 3 MPa as an example, when the wind speeds are 0 m/s
and 3 m/s, the temperature and velocity contours of the water jet cross-section are shown
in Figures 4 and 5, respectively.
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(a) The temperature contour of the water jet. (b) The velocity contour of the water jet.

It can be seen from Figures 4 and 5 that regardless of the presence of ambient wind,
after the water jet sprays from the nozzle, the jet temperature and velocity gradually
decrease along the axial direction, and the radial diffusion width gradually increases.
Compared with 0 m/s, the core part of the temperature and velocity of the water jet is
shifted along the direction of the wind speed due to the transverse wind blowing.

The temperature and velocity attenuation of the water jet are negatively correlated
with the air entrainment along the way or the jet distance [33]. Figure 6 shows the velocity
vector diagram at the nozzle outlet; the color difference represents the difference in speed.
It can be seen from the figure that the high-speed water jet and the ambient air converge at
the nozzle outlet, and the velocity value and direction of the two fluids are different. Under
the entrainment of the longitudinal vortex [33], air approaches the main body of the water
jet and turbulently moves forward with it, forming a gas–liquid two-phase mixed layer
at the jet boundary. The violent momentum exchange and heat transfer occur between
the entrained air and the water column, so the entrainment degree of the water jet is an
essential factor affecting the jet’s temperature and velocity.
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Figure 6. Enlarged view of the velocity vector at the nozzle outlet.

The velocity of the jet along the axis decays, and most of the energy is transferred to the
surrounding fluid. The velocity of the jet body decreases, but more and more surrounding
fluid moves forward together with the jet body under the entrainment of the longitudinal
vortex, so that the flow rate of the jet fluid increases gradually along the path.

The mass entrainment rate J is defined to represent the entrainment degree of the jet
to the air [34,35]; that is:

J =
Qx −Q0

Q0
(5)

where Qx is the mass flow rate (kg/s) in the range where the minimal axial jet velocity is
0.5Um on the radial cross-section at the distance of x away from the nozzle outlet, Um is the
maximum axial velocity on the radial cross-section (m/s), and Q0 is the mass flow rate at
the nozzle outlet (kg/s).

Figure 7 shows the mass entrainment rate and the axial distance when the outlet
pressures are 4, 3, and 2 MPa. It can be seen from the figure that the mass entrainment rates
under the three pressures increase with the increase in the axial distance and, especially
when the distance x > 2.5 m, the mass entrainment rates increase rapidly. The above
phenomenon indicates that, as the distance increases, more and more air is gradually
entrained at the jet edge and approaches the center of the water jet. The edge of the water
jet is “torn” by the air and gradually separates from the main body of the water column,
forming a boundary layer with a lower velocity. Therefore, the jet’s temperature and
velocity decrease progressively along the axis, and its diffusion width gradually increases.
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4.2. Experimental Validation

The diffusion state of the water jet in the experiment is shown in Figure 8. The water
column was photographed in sections with a high-speed camera to observe the internal
flow of the water jet. The photographed results are shown in Figure 9 (test condition:
the frame rate of the high-speed camera is 100 frames/second; in Figure 9a–c the nozzle
diameter is 1.2 mm, and the outlet pressure is 1.5 MPa; Figure 9d shows the comparison of
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experimental results under different distance away from the nozzle, outlet pressures and
nozzle diameters).
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parison of experimental results under different distance away from the nozzle, outlet pressures and
nozzle diameters.

Time represents the acquisition time of a high-speed camera, which is in a steady state.
Steady state refers to the obvious law of the water jet at this distance under the condition of
a specific nozzle outlet, as can be obtained from the following results:

(1) The distance affects the shape of the water jet. The water jet within 1 m is compact
in Figure 9a, and the water column is straight, transparent, and dense. The cross-
section width of the water column is clear, and the air is less mixed. According to
the experiment results in Figure 9d, the compact segment’s length is related to the
nozzle diameter and outlet pressure. To be specific, by comparing the water column
states in the first two pictures, we can see that the compactness of the water column
of 1.5 MPa is better, and the cross-section width of the water column is clearer than
that at 0.5 MPa. Therefore, the length of the compact segment grows larger when the
outlet pressure rises. Similarly, by comparing the water column states in the last two
pictures, it can be seen that the water column of 2 mm nozzle diameter at 2 m is more
compact than that of 1.2 mm nozzle diameter—that is, the compact segment extends
as the nozzle diameter increases;

(2) After the dense water column enters the air, it has strong friction with the air, the
section widens, and the speed slows down. The water column is gradually doped
with air, and the jet edge begins to diverge into water mist. The boundary layer of the
water column gradually blurs, as shown in Figure 9b;
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(3) With the increase in distance, the jet entrains more air, causing the randomness
of movement to become greater, and the water column diverges accordingly. For
example, “break” occurs after the jet distance reaches 3 m in the condition of 1.2 mm
nozzle diameter and 1.5 MPa outlet pressure, as shown in Figure 9c. With the increase
in water jet injection distance, air entrainment intensifies, and the water column
gradually absorbs air. Due to the doping of air, the motion of the water jet is slow and
random, and the velocity is reduced to a slower speed. With the increase in jet length,
the jet absorbs more and more air and is isolated into multiple water blocks by the air,
resulting in a “break”;

(4) Figure 9d shows that we have carried out experiments under different nozzle outlet
conditions, and the test results show that the length of the water jet compact section
is related to the nozzle diameter and the outlet pressure. Because the jet direction is
from the right side to the left side of the picture, the water jet’s gravity effect is more
obvious after the speed is reduced, resulting in the water jet state showing a low left
and high right state.

The jet temperature was measured at different distances. Table 3 shows the experimen-
tal conditions of each group. Each group was measured three times, and the average value
was taken. The inlet and boundary conditions of the simulation model were set according
to the experimental conditions, and the corresponding numerical calculation results were
obtained. Since the temperature measured in the test was the average temperature of the
water jet, it was necessary to integrate the radial temperature of the numerical results in
order to obtain the average numerical calculation temperature Tave.

Tave =

n
∑
1

Ti · ∆h

H
(6)

where Ti is the temperature of the grid nodes, n is the number of grid nodes, ∆h is the grid
height, and H is the diffusion width of the water jet.

Table 3. The validation experiment parameters of water jet temperature.

Test Serial Number Ambient
Temperature (◦C)

Average Wind Speed
(m/s)

The Initial Temperature of
Hot Water (◦C)

Outlet Pressure
(MPa)

1 2 3.4 80 2.2
2 0.2 3.9 65 3.0
3 1.5 4.7 55 4.0

Figure 10 depicts a comparison between numerical results with experimental water
jet temperature readings. It can be seen that the two are in excellent accordance, showing
that the numerical water jet calculation model is reasonable and that the attenuation law
of the water jet temperature may be derived from it. The difference is concentrated in
0–2 m and 4–5 m, because the entrainment rate of the jet increases with the increase in the
axial distance—especially when the distance x > 2.5 m—and the mass entrainment rate
increases rapidly.
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Figure 10. Comparison between experimental and simulation values of water jet temperature.

At the same time, in order to verify the rationality of the numerical calculation of water
jet velocity, the simulation calculation of the axial velocity of a 1.5 mm nozzle at outlet
pressures of 4, 3, and 2 MPa was carried out. The comparison between the calculated value
of the normalized axial velocity Um/U0 at different distances and the experimental value
is shown in Figure 11, where Um is the maximum axial velocity on the radial cross-section
(m/s), and U0 is the velocity at the nozzle outlet (m/s).
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Figure 11. Comparison between numerical calculation results and experimental value (References [36,37])
of axis velocity.

The following can be seen from Figure 11:

(1) Under the three outlet pressures, although the velocity at the nozzle outlet is differ-
ent, the attenuation law of the normalized axial velocity along the axial direction is
virtually the same;

(2) The fluid velocity at the nozzle inlet is low. The velocity increases sharply after the
conical contraction section, and reaches its maximum at the nozzle outlet. The jet velocity
gradually decreases after leaving the nozzle, and the velocity decays rapidly within a
short distance from the nozzle outlet, and then approximately declines linearly;

(3) Taking the numerical result of 4 MPa as an example, when x = 1000d—that is, 1.5 m
away from the nozzle outlet—the axial velocity Um = 57.11 m/s, which decreases
to 64.73% of the outlet velocity (U0 = 88.23 m/s). When x = 2500d—that is, 3.75 m
away from the nozzle outlet—the axial velocity Um = 22.25 m/s, which decreases to
25.22% of the outlet velocity U0. The numerical simulation results agree well with
the experimental results in the literature [36,37]; that is, the axial velocity of the water
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jet shows linear attenuation, and the axial velocity is ~0.7U0 at 1000d and ~0.25U0
at 2500d.

In summary, the relative error between the numerically calculated results of water
jet temperature and axial velocity and the experimental result is small. Therefore, the
simulation calculation of the water jet in this paper can reflect the characteristics of the
water jet flow field well, and the reliability of the numerical calculation model is validated.

According to the optimization method given in the literature [27], the optimal deicing
effect parameters in a specific environment can be obtained. For the 1.2 mm diameter
nozzle, the ambient temperature is −3 ◦C, the wind speed is 3 m/s, the icing weight is
2 kg/piece, and the distance is 2 m. The optimal initial hot water temperature and jet outlet
pressure values are 86.07 ◦C (35–100 ◦C) and 3.49 MPa (1–7 MPa), respectively. The total
deicing efficiency is optimal when the hot water outlet temperature is around 86 ◦C and
the jet pressure is around 3.5 MPa.

5. Analysis of Factors Affecting the Spatial Distribution of Water Jet Temperature
5.1. The Effect of the Initial Temperature of the Hot Water

In order to ascertain the relationship between the water jet temperature at different
distances and the initial temperature, the test conditions were set as 1.2 mm, −1 ◦C, 3 m/s,
and 3 MPa (from left to right are the nozzle diameter, ambient temperature, wind speed,
outlet pressure, and the same below), and the results are shown in Figure 12.
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The following can be concluded from the above Figure:

(1) The temperature of the water jet is positively correlated with the hot water’s initial
temperature. Compared with 35 ◦C, the water temperatures of 50–95 ◦C increased the
jet temperature by 33.67%, 86.73%, 119.48%, and 172.82%, showing an approximately
linear increase;

(2) The rate of water jet temperature increase with the initial temperature of the hot water
is negatively correlated with distance—that is, the longer the distance, the lower the
growth rate. As shown in Figure 12, when the distance increases from 1 m to 5 m, the
increase rate of the jet temperature decreases from 0.72 to 0.06. With the increase in
the jet distance, the difference between the initial temperature of the hot water and
the temperature when it reaches the ice layer becomes larger—that is, the effect of the
former weakens.

5.2. The Effect of Jet Distance

In order to study the change rule of water jet temperature in the axial direction, the
test conditions were set as 1.2 mm, −1 ◦C, 3 m/s, and 4 MPa in order to ascertain the
temperature of the water jet at different distances.
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As shown in Figure 13, the temperature of the water jet is negatively correlated with
the distance when the environmental parameters remain constant.
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As can be seen from Figure 14, the water jet temperature decreases slightly with 
outlet pressure. Compared with 2 MPa, the temperatures at 3 MPa and 4 MPa were re-
duced by 3.66% and 7.49%, respectively. 

The temperature change of the water jet in the air is a convective heat transfer prob-
lem. According to the literature [21,38], this kind of problem can be qualitatively ana-
lyzed based on the following equations: 
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Figure 13. Relationship between water jet temperature and distance.

5.3. The Effect of Outlet Pressure

The outlet pressure was set as 2 MPa, 3 MPa, and 4 MPa, the ambient temperature
was –1 ◦C, and the wind speed was 3 m/s. The relationship between the temperature at
2 m and the outlet pressure at different initial temperatures of hot water was determined,
as shown in Figure 14.
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As can be seen from Figure 14, the water jet temperature decreases slightly with outlet
pressure. Compared with 2 MPa, the temperatures at 3 MPa and 4 MPa were reduced by
3.66% and 7.49%, respectively.

The temperature change of the water jet in the air is a convective heat transfer problem.
According to the literature [21,38], this kind of problem can be qualitatively analyzed based
on the following equations:

q′′ = h(Ts − T∞) h = kNu/L Re =
Lu∞

ν
(7)

where q” is the convective heat flux, representing the convective heat transfer in units of
time; h is the convective heat transfer coefficient; Ts is the water jet temperature; T∞ is the
air temperature; k is the thermal conductivity of air; L is the heat transfer characteristic
length, here referring to jet distance; the Nusselt number Nu is positively correlated with
the Reynolds number Re; u∞ is the relative velocity between the water jet and the air, which
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is mainly determined by outlet pressure and wind speed; and v is the kinematic viscosity
of air.

When other factors such as ambient temperature and wind speed remain constant,
u∞ increases as the outlet pressure increases. This causes the Reynolds number Re, the
convective heat transfer coefficient h, and convective heat flux q” to increase accordingly at
the same distance from the nozzle outlet. The increase in q” means more heat is transferred
from the water jet to the ambient air within the same time. Therefore, the water jet
temperature decreases with the rise in the outlet pressure.

5.4. The Effect of Ambient Temperature

Taking the conditions of −1 ◦C, 0 m/s, and 3 MPa as the control group, the simulation
conditions of the other four groups were −7, −6, −4, and −2 ◦C, respectively. The water
jet temperature at different ambient temperatures is shown in Figure 15.
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When the initial temperature of hot water and the ambient wind speed are constant,
the temperature of the water jet decreases with the decrease in the ambient temperature,
which is generally linear. Each time the ambient temperature decreases by 1 ◦C under this
condition, the water temperature decreases by approximately 0.375 ◦C.

It can be speculated from Equation (4) that as the ambient temperature T∞ drops, the
temperature difference Ts–T∞ between the water jet and the air increases. At the same time,
the effect of the ambient temperature change (from −7 ◦C to −1 ◦C) on the convective heat
transfer coefficient h can be ignored. Therefore, the convective heat flux q” increases and,
thus, the water jet temperature decreases with the decrease in the ambient temperature.

At the same time, by comparing the slopes of the curves at different distances, it
can be seen that the further the distance, the faster the water temperature will rise with
the increase in ambient temperature. The ambient temperature change at close range has
almost no effect on the water jet temperature. The air content in water jets may cause this
variation trend to rise with the increasing distance.

5.5. The Effect of Environmental Wind Speed

To study the degree of influence of wind speed on the attenuation of the water jet
temperature, the conditions of −1 ◦C, 0 m/s, and 3 MPa were taken as the control group,
and the other two groups were −1 ◦C, 1.5 m/s, 3 MPa and −1 ◦C, 3 m/s, 3 MPa. The
relationship between water jet temperature and wind speed was calculated, as shown in
Figure 16.
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As shown in Figure 16, when the initial temperature of the hot water and the ambient
temperature are constant, the temperature of the water jet decreases as the wind speed
increases. Compared with the windless condition, the water jet temperatures of 1.5 m/s
and 3 m/s reduced by 7.59% and 13.46%, respectively.

The effect of wind speed on the water jet temperature is greater than that of the
ambient temperature. For example, when the initial temperature of the hot water is 95 ◦C,
compared with the calculated result of the control group (−1 ◦C, 0 m/s), as the ambient
temperature decreases by 3 ◦C, the temperature of water jet at 3 m drops from 49.15 ◦C to
47.9 ◦C, which is a decrease of 1.25 ◦C. However, when the ambient wind speed increases
by 3 m/s, the temperature of the water jet at 3 m decreases by 16.23 ◦C.

When the wind speed increases, the relative velocity u∞ between the water jet and
the air increases, which eventually causes the heat loss of the water jet to increase within
the same time. Moreover, according to our field tests on water jets in windy conditions, it
appears that the compactness of the water column becomes worse with increasing wind
speed. The mixing of air into a water jet would enhance the convective heat transfer
and, thus, accelerate the attenuation of the water jet temperature. Therefore, the temper-
ature of the water jet decreases as the wind speed increases, and the increase in wind
speed has a more significant impact on the water jet temperature than the decrease in
ambient temperature.

5.6. The Effect of Nozzle Diameter

Taking three nozzle diameters of 1.2 mm, 1.5 mm, and 2 mm as examples, the relation-
ship between water jet temperature and nozzle diameter at 2 m was calculated under the
boundary conditions of 1.5 MPa outlet pressure, with environmental parameters of −1 ◦C
and 0 m/s, as shown in Figure 17.
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Increasing nozzle diameter can improve water jet temperature when the other param-
eters are the same. Since air damages the water column structure from the outer layer to
the inner core, the thicker water column has a greater ability to withstand damage to its
core, and a better ability to retain heat. Therefore, when the initial temperature of the hot
water is constant, the larger the nozzle diameter, the smaller the temperature drop would
be at the same distance.

For example, when the nozzle diameter increases from 1.2 mm to 2 mm, the water
jet temperatures at 2 m distance of 80 ◦C, 65 ◦C, and 45 ◦C initial temperature increase
from 54.32 ◦C, 46.41 ◦C, and 30.87 ◦C to 63.15 ◦C, 54.02 ◦C, and 40.58 ◦C respectively, with
increases of 16.27%, 16.40%, and 31.45%. The lower the initial temperature of the hot water,
the more the nozzle diameter will increase the temperature of the water jet.

6. Conclusions

This paper studied the characteristics of a hot water jet in the air. The numerical
calculation model of the water jet flow field was established and verified. The effects of the
initial temperature of the hot water, jet distance, outlet pressure, nozzle diameter, ambient
temperature, and wind speed on water jet temperature were studied. The main conclusions
are as follows:

(1) The water column in the initial segment of the water jet is compact. The increase in
distance will cause the water jet to diverge gradually, and the boundary layer will
become blurred. After reaching a certain distance, the water jet “breaks”;

(2) The numerical results of the hot water jet calculations are consistent with the results of
the field studies. The mass entrainment of the water jet increases with the increasing
distance. Under the three outlet pressures, the attenuation law of normalized axial
velocity of the water jet along the axial direction is the same, and decreases approxi-
mately linearly. When the distance x = 1000d, Um = 0.63U0, and when the distance
x = 2500d, Um = 0.25U0;

(3) The water jet temperature is negatively correlated with distance and outlet pressure,
and the distance has a greater impact. The water jet temperature is positively corre-
lated with the initial temperature of the hot water, and the increase in distance will
weaken the influence of the initial temperature of the hot water. When the ambient
temperature and wind speed change the same value, the wind speed is greater than
the ambient temperature. Increasing the nozzle diameter can increase the flow rate,
effectively increasing the water jet temperature. According to the effective laws of
the above factors on the spatial distribution of water jet temperature, the optimal
parameter for ice melting can be obtained theoretically, which will be discussed in
future work.

The convective heat transfer coefficient between the water jet and ice is more signifi-
cant than that between hot air and ice at the same flow velocity; therefore, hot water deicing
has great advantages over laser deicing. In addition, based on the results of the water jet
research in this paper, the efficiency of hot water deicing can be further optimized. Further-
more, the water jet properties may also have other applications, such as the generation of a
photoacoustic effect [39–41], water jet cutting [42], trenching the seafloor using specifically
designed water jetting tools [43], deburring technology, or cavitation [44,45].
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Abbreviations

EMUs Electric multiple units
VOF Volume of fluid

Appendix A

(1) The governing equations of the VOF model

The governing equations of the VOF model mainly include the volume fraction
equation, momentum equation, and energy equation.

(a) Volume fraction equation

For the q-phase fluid, the continuity equation containing its volume fraction is as follows:

1
ρq

[
∂

∂t
(
αqρq

)
+∇ ·

(
αqρq

→
vq

)
= Sαq +

n

∑
p=1

( •
mpq −

•
mqp

)]
(A1)

where αq is the volume fraction of the q-phase fluid,
→
v q is the fluid velocity (m/s),

.
mqp

represents the mass transfer from the p-phase fluid to q-phase fluid,
.

mqp is the mass transfer
from the q-phase fluid to p-phase fluid, and the default source term Sαq is zero. The volume
fraction of each phase can be calculated from the following formula:

n

∑
q=1

αq = 1 (A2)

The fluid properties in each unit (such as density, viscosity, and other parameters)
are jointly determined by each phase fluid, and the weight is the volume fraction of each
phase. For example, for systems containing p and q two-phase fluids, the density of each
calculation unit is calculated as follows:

ρ = αpρp +
(
1− αp

)
ρq (A3)

(b) Momentum equation

Since the fluid properties of each computational unit take the weighted average of
each phase, the momentum equation in the computational domain applies to each phase.
The velocity field shared by all phases is obtained by solving the same momentum equation,
as shown in Equation (6). The volume fraction of each phase jointly determines the density
and viscosity in the momentum equation.

∂

∂t

(
ρ
→
v
)
+∇ ·

(
ρ
→
v
→
v
)
= −∇p +∇ ·

[
µ

(
∇→v +∇→v

T
)]

+ ρ
→
g +

→
F (A4)

where µ is the viscosity (kg/m·s),
→
v is the fluid velocity (m/s), and

→
F is the force (N).

(c) Energy equation

The energy equation between each phase is as follows:

∂

∂t
(ρE) +∇ ·

(→
v (ρE + p)

)
= ∇ ·

(
ke f f∇T

)
+ Sh (A5)
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The VOF model takes energy (E) and temperature (T) as the mass average:

E =
∑n

q=1 αqρqEq

∑n
q=1 αqρq

(A6)

where E is energy (J/kg), kcff is the effective thermal conductivity (W/m·K), and Sh is the
source term, including the volume heat source from radiation;

(2) Experimental equipment

In this test, the rated power of the high-pressure source is 2.2 kW, the working pressure
of the pump head is adjustable, and the maximum flow rate is 14 L/min. The main working
element of the high-pressure source is a high-pressure plunger pump. The plunger’s
external pulling and internal pushing make the pump pressure different from the inlet and
outlet pressure, thereby sucking or discharging liquid.

The high-pressure water pipe has a rated pressure of 28 MPa. To prevent excessive
heat loss when hot water circulates within it, the high-pressure water pipe is wrapped with
an NBR (nitrile rubber) pipe with an inner diameter of 16 mm and a thickness of 5 mm.
After measurement, the temperature difference between the inlet and outlet of the hot
water after the rubber tube is within 5 ◦C, and the heat preservation effect is good.

The nozzle is a key element that converts the pressure energy of the water flow in
the high-pressure water pipe into kinetic energy. In the experiment, two stainless steel
cone-shaped nozzles of 1.2 mm and 2 mm in diameter are used, as shown in Figure 1. There
is pressure loss during the transmission of water flow in the pipeline system, so the outlet
pressure of the nozzle affects the spray state and spatial temperature distribution of the
water jet; thus, a stainless steel pressure gauge is installed between the end of the nozzle
and the high-pressure water pipe in order to measure the outlet pressure; its measurement
range is 0–10 MPa, and its resistant medium temperature is −40 ◦C~260 ◦C.
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