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Abstract: Recently, the integration of optimal battery dispatch and demand response has received
much attention in improving DC microgrid operation under uncertainties in the grid-connect con-
dition and distributed generations. However, the majority of prior studies on demand response
considered the characteristics of global frequency variable instead of the local voltage for adjusting
loads, which has led to obstacles in operating DC microgrids in the context of increasingly rising
power electronic loads. Moreover, the consideration of voltage-dependent demand response and
optimal battery dispatch has posed challenges for the traditional planning methods, such as stochastic
programming, because of nonlinear constraints. Considering these facts, this paper proposes a model
predictive control-based integrated voltage-based demand response and batteries” optimal dispatch
operation for minimizing the entire DC microgrid’s operating cost. In the proposed model predictive
control approach, the binary decisions about voltage-dependent demand response and charging or
discharging status of storage batteries are determined using a deep-Q network-based reinforcement
learning method to handle uncertainties in various operating conditions (e.g., AC grid-connect faults
and DC sources variations). It also helps to improve the DC microgrid operation efficiency in the
two aspects: continuously avoiding load shedding or shifting and reducing the batteries’ charge and
discharge cycles to prolong their service life. Finally, the proposed method is validated by comparing
to the stochastic programming-based model predictive control method. Simulation results show that
the proposed method obtains convergence with approximately 41.95% smaller operating cost than
the stochastic optimization-based model predictive control method.

Keywords: DC microgrid; voltage-dependent demand response; dynamic voltage control; model
predictive control; economic dispatch; energy storage

1. Introduction

Recently, DC microgrids (DCMs) have gained considerable attention due to their
merits in promoting the development of distributed energy resources (DERs), for example,
renewable generation (RG) units and storage batteries (SBs), to obtain economic and
environmental effectiveness [1]. However, the increasing penetration of DERs has posed
challenges in ensuring DCMs’ steady and efficient operations due to the intermittent nature
of DERs [2]. Furthermore, the increasing intensity of extreme weather events, such as heat
waves and large storms, has led to uncertain grid-connect conditions and affected DCMs’
resilience during islanding periods [3,4]. For example, Texas, USA, faced a historic winter
storm in 2021, which made the power system impassable and left millions without access
to electricity from hours to days [5]. These facts have promoted the advanced control and
planning methods development in DCMs subject to uncertainties and disruptions.

DCM refers to power clusters in a distribution network that comprises DC loads,
RG units, and SBs, which can operate in either grid-connected or island mode upon loss
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of the normal AC supply [6]. With the significantly increasing demand of DC loads
(e.g., electric vehicles, computers, and lighting systems), DCM is preferred over AC mi-
crogrid (ACM) due to its benefits, for example, reducing conversion losses, since multiple
AC/DC converters are avoided [7], and increasing energy efficiency, as no reactive power
flow is used [8]. However, DCM also poses several challenges related to resilience and
reliability due to its dependence on RG units, while the AC grid-connect condition is
uncertain [9]. In such cases, SBs play a vital role in dealing with uncertainties caused by
RG units and in providing power to loads during the islanding period. However, the
continuous discharging and charging affect SBs’ efficiency and cycle life, reducing the
DCM’s performance in resilience decisions [10].

Demand response (DR) refers to incentive or price-based consumer’s load shedding
and shifting actions in adapting to changes in the grid’s operating conditions. The use of
DR as the driving force for load reduction enhances the grid’s resilience in emergencies and
prolongs the SB’s lifetime [11]. Refs. [12,13] applied DR as an effective method to reduce the
sizing of SBs in modern smart grids. Accordingly, DR has resulted in the utility increase for
consumers and the cost-based state-of-charge reduction of SBs for smart grids. However,
these studies did not consider the characteristics of grid topology, which may affect the
effectiveness of voltage-based DR, as shown in [14]. Therefore, there is a difference in
the DR programs design for ACMs and DCMs. Specifically, frequency-based DR is used
for ACM, while voltage is targeted for DR programs in DCM. This difference makes DR
in DCM easier to carry out than in ACM because information of the whole system is
not needed for implementing voltage-based DR in DCM. As primary works in this area,
Refs. [15,16] took a significant step forward in incorporating the concept of voltage-based
DR into the DCM operating optimization context.

Voltage-based DR could improve the resilience of DCM by reducing discharging and
charging of the SBs to compensate for voltage shortages caused by fluctuations in solar
panels [17]. In references [18,19], voltage-based DR was implemented by using power
electronic loads as variable resistors to adjust system demands for enhancing critical load
restoration after a crisis. In references [20,21], the integration of SBs and DR programs was
applied to maintain the stability of DCMs during the islanding periods. However, their
DR framework did not consider the supplied DC bus voltage for adjusting demand loads.
However, many loads must be reduced or shifted as the voltage fluctuates, affecting their
comfort levels. Voltage-based DR switches offloads only when the DC bus input voltage
drops below the load’s rated voltage reference, which avoids excessive load reduction that
affects comfort levels. Furthermore, it effectively overcomes a single point of failure from
the risk of information congestion in the power system because a DCM could perform
localized voltage-based DR.

Considering voltage-based DR to enhance the resilience of DCMs is a nonlinear opti-
mization problem due to the presence of various uncertainties. Therefore, several approaches
were proposed in the literature to handle this issue (see Table 1). Compared to traditional
uncertain programming methods, such as stochastic model [22], optimization model [15,20],
simulation model [16,17,21], and branch and bound model [18,19], the model predictive
control (MPC) method shows outstanding performance for making a sequence decision with
high degrees of uncertainty [23]. Further, the MPC effectively reduces the predicted errors by
considering uncertainties in both the current and previous times [24]. Some recent research
works [25-28] formulated the DCM optimization problem subject to resilience constraints in
the MPC approach. Nevertheless, these models focused on optimizing the discharging and
charging of the SBs, while the voltage-based DR is not considered.
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Table 1. Review of some relevant studies about DC microgrid optimization problems.
. Voltage-Based Battery
Algorithm Type Model Type Ref. DR Dispatch
[15,18,19] v
Optimization [20] v
Model-based [22] v v
Simulation [16,17,21,28] v
MPC [25-27] v
Data-based MPC This study v v

Table 1 presents a summary of previously published papers on DCM-related studies.
Based on a thorough review of these studies, the following research gaps were identified:
(i) There are limited attempts to consider simultaneously the voltage-dependent DR and
the optimal dispatching of SBs in DCM optimization-related studies. This integration
is important to facilitate the widespread implementation of power electronic loads and
transform electronic devices in modern grids. (ii) The modeling of the DCM with SBs and
voltage-based DR may considerably increase the complexity of the optimization model
due to the presence of nonlinear functions. Therefore, novel approaches, such as an MPC
model and a deep learning solution, can be used to provide solutions more effectively and
tractably. However, Table 1 shows a scarcity of studies that apply the deep-learning-based
MPC approach in this field.

Considering these above facts, a deep-learning-based MPC strategy is developed
in this paper to enhance the resilience of DCMs subject to uncertainties in grid-connect
conditions and DERSs. First, voltage-based DR is conducted to switch off low-priority loads
based on the predicted input voltage results from the MPC model. After that, optimal
economic dispatching from SBs is injected into the DCM to regulate voltage. This study
distinguishes itself from previous studies in the following ways:

(i) This paper proposes an integrated scheduling framework of voltage-based DR and
SBs to enhance the DCM'’s resilience based on the MPC method. The proposed
framework considers voltage-based DR based on various operating conditions, such
as variations of DC supply sources and grid AC faults, to avoid switching loads on
and off continually to improve efficiency. Furthermore, it also reduces the charge and
discharge cycles of the SBs, prolonging their service life.

(ii) This paper applies the MPC approach to predict the input voltage of the DC bus based
on the output current from the AC grid and DC supply sources. To train the behavior
of the model in reacting to the DC bus voltage fluctuations under uncertain-ties in
DERs and AC grid, a deep-Q network (DQN)-based reinforcement learning (RL)
approach is proposed. The proposed algorithm is effective for making sequential
decisions, an ability which the classical-model-based approaches (e.g., stochastic
programing [26] and simulation approach [25,27]) do not possess.

The remainder of this paper is organized as follows. The problem definition and
proposed control strategy are presented in Section 2. The proposed DQN-based MPC
approach for the DCM scheduling is described in Section 3. Simulation results for a real
case study are presented in Section 4. A conclusion is drawn in Section 5.

2. System Modeling

The considered DCM is a basic structure, as shown in Figure 1. It consists of the AC
grid; the DC supply sources, including an SB system and DERs (solar panel and wind
turbine); and the AC and DC consumption loads. In addition, the transform devices, such
as converters and inverters, help to take the desired DC bus voltage levels from the AC/DC
supply sources.
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Figure 1. Typical structure of a DC microgrid.

From Figure 1, the DC input voltage may be affected by three main problems:
(1) intermittent power from DERs and SBs, (2) uncertainties in AC/DC loads, and
(3) power exchange fluctuations between the AC gird and the DCM. Considering these
uncertainties, the following sections present the optimization model integrating voltage-
based DR and SB’s scheduling to enhance the DCM resilience during the islanding periods
or periods of less generation supply.

2.1. Predicted Input Voltage of DC Bus

Equation (1) shows the DC bus voltage transient stage over time slot ¢; it depends
on the output current from the main grid I;(f), solar panel Is(t), and wind turbine Iy/(t);
discharging 4% (t) and charging I (t) of SBs; and the total required current to the loads
I (t), where By, is the DC bus capacitance [27,28]. It should be noted that the instantaneous
DC bus voltage can be calculated by taking the integral of Equation (1) with the step time
t of 15 min in this study. According to that, if the planning time is one day (24 h), ¢ will
obtain values from [0; 96], because there are 96 time slots f for one-day planning, with the
duration of 15 min. The model formulation for these above components is presented in the
following sections.

Io(t) + Is(t) + I (1) + (1) = 1) = (1)

d t) =
udC( ) Bdc

t 1)

2.1.1. Output Current from the Main Grid I(t)
The output current from the main grid has the relationship with the power provided

by the main grid by bus i at time ¢, as shown in Equation (2), in which P(?) is total power
provided by the main grid at time ¢, and V;(t) denotes the output voltage of the main grid.

Pg(t)
Ve (t)

Extreme weather events make the grid-connect conditions of the DC microgrid at bus i
uncertain. In addition, the main grid is an AC grid; thus, it connects with the DC microgrid

by applying a bidirectional converter, resulting in power losses. Considering these facts,
the value of P;(t) is uncertain following time f, which is formulated as

Pg(t) = PE™5¢(t)n"AC ®)

Ig(t) = ()

where P?** denotes the maximum power provided by the main grid; J¢(t) follows a
Gaussian distribution [29] to denote the uncertain grid-connect condition at time ¢. The
main grid can deliver maximum power at d;(t) = 1. Otherwise, the provided power from
the AC main grid equals zero in an extreme event at 6 (t) = 0. Finally, 7 denotes the
AC-DC converter efficiency.
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2.1.2. Output Current from the Photovoltaics Ip(t)

In Equation (4), the output current from the photovoltaics is a ratio between the power
generated by the solar panels by bus i at time f Ps(t). Vs(t) is the output voltage of the solar
panels system.

Ps(t)
Is(t) =
st =y, (£)

The output of the photovoltaics is characterized by the intermittent nature due to its
dependence on the local weather conditions. Thus, Ps(t) is an uncertainty parameter, as

4)

Ps(t) = Pg"**0s(t) ©)

where P{** denotes the designed capacity of photovoltaics and dg(t) is a continuous random
variable in the range [0, 1] to denote the intermittent nature of the solar power at time ¢. Since
photovoltaics are DC supply sources, there are thus no power losses in the DC microgrid.

2.1.3. Output Current from the Wind Power Iyy(t)

In Equation (6), the output current from the wind turbines is a ratio between the power
generated by the wind turbines by bus i at time ¢ Py (f) and its output voltage Viy (¢).

Pw (t)
Iw(t) = —=% 6
The wind power depends on the local weather conditions. In addition, it connects with
the DC microgrid by using an AC-DC converter, leading to a transmission power loss as

Py (t) = Py ow (t)n¢ @)

where Pji™* denotes the designed capacity of wind turbines, and dyy(t) is a continuous
random variable in the range [0, 1] to denote the intermittent nature of the wind power at
time £. 7€ is the AC-DC converter efficiency.

2.1.4. Output and Input Current from the Battery 19 (¢) and I¢(t)

A storage battery is a load DC bus when it charges power; otherwise, it is considered a
supply DC bus. Thus, the discharging power is used to regulate the DC bus voltage, while
the charging power affects the predicted input voltage of the DC bus. At time ¢, a battery
charges power from supply sources, such as the main grid, photovoltaics, and wind power,
which affects the amount of power provided to the DC microgrid. Thus, the appropriate
discharging/charging scheduling of batteries contributes to the stability of DC bus voltage.
The following equations formulate the effects of the charging and discharging current of
the battery on the predicted input voltage of the DC bus.

) dis
tfe(o) = ®)
ch
Ilcih(t) = Zz/EE((tt)) )

Equations (8) and (9) show the discharging and charging current of the battery, where

P25 (t) and P (t) denote the amount of discharging and charging power at time , and Vg (t)

presents the output voltage of the battery. The following equations show the formulation
of P4is(t) and P& (t). 4 ‘ 4

PER(t) = Pyt (1) < PR (Dx{™ (1) (10)

Pt (t) = PE"(t — 1)y — " PES (¢ - 1) (11)
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As shown in Equation (10), the discharging power depends on the amount of required
power to regulate the DC bus voltage sags at time ¢ (P;ig ) and does not exceed the amount
of charging power at time t (P€"(t)). x¥*(t) is a binary decision variable to denote the
discharging status of the battery. From Equation (11), the charging power of the battery
depends on the amount of charging and discharging power at previous time t — 1. 74 and
" are the charging and discharging efficiencies of the battery.

The state of charge (SOC) of the battery is determined in Equation (12). It depends on
the SOC of the battery at the previous time and the capacity of the battery P/'**.

SOC(t) = S0Cs (t—1) + )

Pmax

(12)

To ensure the lifetime of each battery, the following operating conditions constraints
are considered:
Pch(t) < Pmax ch(t) (13)

xS ) 4+ 285 (1) <1 (14)

2.1.5. Total Current of the Loads I (¢)

A DC microgrid can accommodate both AC and DC loads. The sum of the supplied
current from the DC bus to the AC and DC loads is expressed in Equation (15).

Pr(t)
ViL(t)

where Pp(t) and Vi (t) are total power supplied and the required voltage for all loads in
the DC bus.

In practice, loads are classified into critical loads and controllable loads. Critical loads
are of high priority, must always be guaranteed to operate, and have no demand response
applied to them, while controllable loads are of low priority and demand response is
applied for resilience scheduling in an emergency. Thus, the value of Py (t) is calculated as

IL(t) =

(15)

by~ DO+ LSl »

where D¢ (t) and D" () are total critical and controllable load magnitude, respectively. P¢
is the DC-DC/AC inverter efficiency. 61 (t) € [0, 1] is a continuous random variable as
in [24] to denote the percentage of controllable load reduction. At a certain time, f = k; if no
demand response is used, d1. (k) = 0. In addition, the controllable load reduction quantity
does not exceed a certain limitation affecting the comfort levels of loads. This constraint
can be expressed as

D" (£) < 6, (H)DE"(£) < D™ (1) a7

where D" (t) and D" (t) are the minimum and maximum controllable load reduction
quantity at time ¢, respectively.

2.2. Objective Function

The objective function minimizes the total DC microgrid operating cost. It consists
of the cost of each component in the DCM and the penalty cost for the controllable load
reduction in demand response and the deviations of the DC bus voltage, which can be
expressed as

+T
Crotal (t Z Co(t) +Cs(t) + Cy(t) + Ce(t) + CL(t) + Cae(t) (18)
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where C(t) denotes the costs related to exchange power of the DC microgrid with the main
grid. It is a positive value when the DC microgrid purchases power from the main grid;
otherwise, it will obtain a negative value. Cs(t), Cy (t), and Cg(t) are the costs regarding
solar, wind, and battery power, respectively. Finally, C;(¢) and C;.(t) are the penalty costs
caused by load shedding and voltage deviations. Those cost components in Equation (19)
are expressed in the following equations:

Ca(t) = P(t)o(t)xg(t) (19)
Cs(t) = NsPs(t)os (20)
Cy(t) = NyPy(t ) 1)

)= (P& () + PE(1) ) o (22)

CL(t) = 8L(H) D" (t)or (23)
Caelt) = 0ge (Uge(t) — ULE () (4)

In Equation (19), o(t) denotes time-of-use electricity price from the AC main grid, and
x¢(t) is a binary variable to denote DC microgrid status. The DC microgrid connects with
the AC main grid when x¢ () = 1; otherwise x(t) = 0. Equations (20) and (21) show the
operating and maintenance cost of the solar system and wind turbine, respectively. They
are in direct proportion to their generated power during period ¢, calculated according
to the designed capacity and the intermittent nature of renewable energy sources, as
shown in Equations (5) and (7). N5 and Ny denote the sizing of solar arrays and wind
turbines; og and oy are the operating and maintenance coefficients of solar arrays and wind
turbines. Equation (22) calculates the degradation cost of the SB system, which depends
on the charging and discharging power quantity in each time slot t [30], in which of is
the degradation cost coefficient. The penalty cost related to the load-shedding quantity
in a voltage-based DR program is shown in Equation (23), in which oy, is the penalty
factor. Finally, Equation (24) shows the penalty cost by realizing the difference between
the predicted DC bus voltage Uy (¢) and the desired voltage Ug(‘f(t), in which oy is penalty
factor regarding the DC bus voltage deviations. This term is applied to find the optimal
control action that drives the predicted voltage as close to the desired value as possible.

2.3. Control Constraints
2.3.1. Power Balance Constraint

At any time of DC microgrid operation, the overall power flow must satisfy the
principle of power conservation, as follows:

PG (t) + Ps(t) + Pw(t) + PE=(t) = P (t) + PE(t) (25)

where P (t) is the power purchased from the AC main grid; Ps(t) and Py (t) are the output
power of the photovoltaics and wind turbine, respectively; Pgis (t) is the discharging power
of the storage battery; Py (t) is the load power demand at time t; and P¢(t) is the charging
power of the storage battery.

2.3.2. Power Flow in DC Microgrid

For the DC buses, the concept of droop control in converters can be used to regulate
the voltage deviations [31,32]:

Uge(t) = UL (£) — Raelac (1) (26)

where Uy (#) is the input voltage of the DC bus at time #, which depends on the nominal voltage
Ué’c’” (t), the virtual resistance R, and the output current of the DC bus at time # I ().
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According to Kirchhoff’s current law, the output current of a DC bus can be written
generally as

n
Lic(i) = 3, Yac(if) (Vac(i) — Vie(f)) (27)
j=1
j#i
where ;. (i) is the output current in the DC bus i, Yy (if) is the admittance between bus i
and bus j, and V(i) and V. (j) are the voltage magnitude in bus i and j, respectively.

2.3.3. Voltage-Based Demand Response

In the proposed control strategy, the voltage-based DR and discharging power from
storage batteries are applied for enhancing the DC microgrid resiliency by load shedding
and power injecting. At time ¢, the predicted voltage of a DC bus Uy, (t) is smaller than its
nominal voltage U‘liicm (), and voltage-based DR is triggered by a binary control variable
x1(t) = 1; otherwise x; (t) = 0. After that, the desired voltage of a DC bus at time t U4 (¢) is
calculated based on the amount of voltage reduction caused by load shedding from the
voltage-based DR. Based on the desired voltage at time t after load shedding, the required
discharging power from storage batteries to regulate the DC bus voltage is defined. The
above control strategy is expressed in the following equations:

P (£) = Ugé () Lac (1) (28)
ufe() = U - et ) )

_ [T Uat) <upr()
=4 G o S s 0

Equation (28) shows the required discharging power from storage batteries P;ig (1)
to regulate the DC bus voltage based on the desired voltage Ugg (t) and the current I;.(f).
Ugg(t) is shown in Equation (29), which is defined by realizing the difference between
the nominal voltage U"" (t) and the reduced voltage after load shedding, where D" (¢)
is total controllable load magnitude, ¢ is the DC-DC/AC inverter efficiency, J () is a
continuous random variable in range [0; 1] to denote the percentage of load reduction, and
xr(t) is a binary control variable for the voltage-based DR. The trigger condition for xp ()
is shown in Equation (30).

3. System Methodology

In this section, first, the DC bus voltage control framework is proposed, integrating
voltage-based DR and optimal SBs dispatching. An RL-based MPC approach is then
introduced to solve the proposed mathematical model and control framework.

3.1. Proposed Control Strategy

Since the power generation from DERs follows different changing weather conditions,
the stored energy in the batteries will fluctuate over time. Thus, the DR implementation
based on the SOC of SBs, as shown in [20,21], not only affects the SBs efficiency because of
increasing charging/discharging cycles but also decreases the DCM performance. Figure 2
shows a two-level coordination control strategy based on voltage-based DR and optimal
dispatching of SB to overcome this issue.
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Figure 2. Proposed control strategy based on voltage-based DR and SBs.

From Figure 2, the proposed control strategy is carried out in the following steps:

Step 1: Based on the output current from the AC grid and DC supply sources
(e.g., photovoltaic arrays, wind generations, and SBs), the DC bus input voltage U, (¢)
is estimated based on Equation (1). Equations (2)—(17) are used in this step to take into
account the relevant uncertainties.

Step 2: At time slot ¢, the DC bus input voltage U, (¢) is checked against its nom-
inal voltage reference Uffcm (t) to consider for carrying out a voltage-based DR program.
Equation (30) is applied in this step to make a control action related to voltage-based DR.

Step 3: When Uy (t) < U(ljcm (t), the voltage-based DR is triggered. The DC bus desired
voltage at time ¢ Ugf (t) is then calculated according to Equation (29) based on the amount of
voltage reduction caused by load shedding. Otherwise, when Uy (f) > U™ (t), no action
is performed, and the SB will operate in idle mode. The process returns to step 1 for the
next time interval t + 1.

Step 4: In the case in which voltage-based DR is performed, the second control level
is applied to recheck the DC bus input voltage Uy, (t) with its desired voltage Ugce (t) after
performing load shedding.

Step 5: When Uy, (t) < U%(t), the SB will discharge the reserve power to regulate
the DC bus voltage with the state-of-charge condition SOCg (t) at time ¢ greater than the
minimum state-of-charge level SOC,,;,. In that case, the optimal battery dispatching is
determined according to Equation (28). Otherwise, the SB will move to the charge status.
In case of Uy (t) > U%(t), the SB will operate in idle mode.

The next section introduces a DQN-based MPC approach, considering all relevant
uncertainties in the output current from the AC grid and the DC supply sources.

3.2. Reinforcement Learning-Based Model Predictive Control

Since the integrated voltage-based DR and optimal dispatching of SB planning problem
(Equations (18)—(30)) is a non-convex and nonlinear problem, a DQN-based MPC model
is proposed to solve it efficiently. The proposed approach takes advantage of the optimal
control process based on receding finite horizon prediction of the MPC method [33] and
the sequence decision-making process of the RL algorithm [34].

In the energy sector, the combination of the MPC and DQN methods has been applied
to respond effectively to disturbances in power generation of DERs [35-37] and uncertain
behavior in DR programs [38,39]. Nevertheless, there is a scarcity of studies applying
the DQN-based MPC approach to DCMs with integrated voltage-based DR and optimal
dispatching of SB for enhancing resilience. In this study, the MPC is used as a reward
estimator, while the RL effectively adjusts uncertain parameters in the MPC optimization
problem. Thus, the proposed approach has advantages in two aspects:



Energies 2022, 15, 2140

10 of 19

(i) It can accommodate forecasting errors by considering the uncertainties based on both
real-time observation and short-term prediction. Further, the relationship between
the predicted result in the previous period and the uncertainty of the current period is
also considered, optimizing forecasting errors.

(if) It can achieve better control effectiveness even on a nonlinear system with a large
number of uncertainties. The input-output linearization procedure with a DQN is
suitable for some practical problems since it does not require the exact knowledge
and information of the nonlinear process.

The proposed MPC model in this paper can be solved as a Markov decision-making
process, where the DCM operator is defined as an agent to execute the optimal control
actions in the uncertain environment of DC supply sources and load profiles. A reward
is achieved when the agent performs an optimal action to change the environment state.
The interaction between agent, the environment, and reward is described as follows: Let

st €S(t) = {IG(t), Is(t), Iw(t), Ir(t), SoCg(t), Ugg(t)} be a set of states in the uncertain

environment of DC supply sources and AC/DC loads, including the output current from
the main grid, solar panel, wind turbine, the state of charge of battery, the required current
of load, and the DC bus desired voltage; and a; € A(t) = { x§(8); x4 (); 26 (t); xL(t)} be
a set of binary actions. All states s; € S(t) are uncertain and are predicted based on a set
of historical data through the training and testing process with DQN. At time slot ¢, the
DCM operator executes an optimal control action a; to change the system state from s; to
s¢', and areward r; € Ry = {Equation (18)} is obtained immediately. Since the optimal
control action a; involves uncertainties in the prediction functions (Equations (1)—(17)), the
obtained value of r; at each time slot ¢ is random. The DQN method can be applied to
adjust uncertain parameters by accommodating the forecasting errors in the MPC model.
An optimal action 4; is selected based on the trade-off between the reward of the current
time r; and the incremental value Q(s;, a¢) of the Q-value function. The update rule of the
Q-value function is shown in Equation (31):

e+ omaxQ(se1,ar11)—

Q(st,ar) < Q(st,ar) + ¢ Q(st,at)

(1)

in which ¢ and ¢ € [0, 1] denote the learning rate and discount factor, respectively. The
discount factor coefficient indicates the importance of the current reward and the future
reward. The integration of the DON into the MPC optimization problem is summarized in
Algorithm 1.

Algorithm 1: DQN-based MPC approach

1: Require:
Set of states:

st € S(t) = {16 (0): I5(1); I (£); SoCe (1); . (1), U (1)}
2:  Set of actions:

as € A(t) = {6 (6285 (0 xG (1) x0 (1)}
Reward function r (s¢, a;) in Equation (19)
Initialize Q, (s, a) for all s, a
Repeat for each episode (i.e., day) e to E do

Initialize the state s;

Initialize discount factor ¢ and learning rate ¢
For time slot (i.e., 15min) t=7to T + T do
Select the action 4; for the current state s; by using e-greedy policy
Received reward r; (s, a;) as Equation (19)
Observe the next state s¢41
Update the Q-value Q (s¢, a¢) as Equation (31)

13: End for, when s, is terminal
14: Until |Q°T — Q°] < w is satisfied

— =
_= O

—
N
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4. Simulation Results
4.1. Simulation Setting

The simulated DCM diagram structure is shown in Figure 3. As seen, it consists of four
photovoltaic systems at buses 1, 13, 16, and 19, two wind turbine systems at buses 5 and 28,
and two SB systems installed at buses 8 and 25. The intermittent nature of wind dyy (f) and
solar power J5(t) are estimated based on the historical data about wind speed in [32] and
solar irradiance in [29], respectively, whereas the uncertain AC grid-connected condition
O (t) follows a Gaussian distribution based on [40]. The maximum charging (discharging)
energy should be over 90% (should not be below 10%) of the nominal capacity to prolong
the SB'’s lifetime. The discharging and charging efficiencies are 0.98, and the initial SOC of
the SB is set to be 50%.

B15 B17

AC source Bo1

B09 B11 B13
B14

B30

B23 B25 B27 B29

Figure 3. Diagram of an example 30-bus DC microgrid (Bxx denotes for the order of bus in the
considered DC microgrid).

All loads are classified into two types: (1) linear loads with constant resistance at buses
2,3,4,6,7,11,12,15,18, 20, 21, 23, 27, 29, and 30; (2) nonlinear loads at buses 9, 10, 14,
15,17, 22, 24, and 26. They are connected to the common DC bus by converters for DC
loads (e.g., buses 2, 6, 7,9, 11, 13, 14, 15, 17, 20, 21, 22, 24, 26, and 29) and inverters for AC
ones (e.g., buses 3, 4, 10, 18, 23, 27, and 30), and their voltage variation is assumed to have
little impact on the loads” power consumption. The converter and inverter efficiencies are
0.95. Regarding DR, the load shedding data in [36] are used to estimate the permitted load
reduction quantity at each time ¢. The penalty cost for the voltage-based DR violations oy, is
0.0045 USD/p.u and the penalty cost for the voltage deviations 0, is 0.046 USD/p.u. The
time-of-use price from the AC grid o(t) is obtained in [40]. The other system parameters
are shown in Table 2, according to [32].

Table 2. 30-bus DCM-related parameters.

Parameter Unit Value Parameter Unit Value
ppax MW 2.0 D" (t) MW ~ U(25, 5.0)
pgix MW 4.0 D{"(t) MW ~ U(15,3.0)
piax MW 10.0 uym (t) \ 110
pgax MW 0.5 Ly (1) A 10

Bdc mF 50 DTm(t) % 2.0
Rye Q 0.5 D" (t) Y% 5.0

All remaining parameters of the algorithm, including the e-greed, learning rate, and
discount factor, are set to be 0.95, 0.05, and 0.95, respectively, according to [30]. The simula-
tion tests are run by the Gurobi 9.1.2 optimization solver in the Python 3.8.8 environment
on a dual-core 3.0 GHz computer with 8.0 GB of RAM. The following sections illustrate the
simulation results to validate the proposed model’s performance.
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Figures 4 and 5 illustrate the total DCM’s operating cost and the total voltage deviation
of all load buses under the proposed DQN-based MPC approach. The MPC model is
trained by 1000 random scenarios involving solar power, wind power, and AC grid-connect
condition uncertainties. In Figure 4, a convergence in the total DCM operating cost can be
found after nearly 9.5 h of running the training process. The smoothed DCM operating cost
decreases as the simulation scenario and time increase.

-== Average operating cost

9000 -

8000 1

7000

6000 -

Total operating cost [$]

5000 1

4000 1

0 200 400 600 800 1000
Uncertain scenarios

Figure 4. DCM’s operating cost under the DQN-based MPC approach.
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Figure 5. Voltage deviations with DQN-based MPC approach.

For enhancing MCG resilience, the total voltage deviation for all load buses in un-
certain scenarios is a performance index to evaluate the resilience effectiveness of the
proposed model [3]. Figure 5 illustrates the total voltage deviation for all load buses in
24 h planning with 96 time slots in which each time step is 15 min. In Figure 5, the voltage
deviations are effectively optimized by the proposed approach. Specifically, the desired DC
bus voltage Ugg(t) drops to 0.98 p.u from 4th time slot to 7th, 0.96 p.u from 28th time slot
to 33rd, 0.95 p.u from 58th time slot to 63rd, and 0.97 p.u from 81st time slot to 86th by load
shedding caused by the voltage-based DR’s response to the changes in the DC input voltage
caused by the fluctuations in the output current of DC supply sources and the uncertain
AC grid-connect condition. Then, the optimal SB dispatch is accurately allocated with
the amount of dropped voltage to recover the resilience of DCM during the interruption
periods. However, a very small voltage deviation still exists in the second period of the
voltage-based DR process because of the shortage of discharging power from the SB when
it directly changes to the idle state to discharge state for voltage compensation.

4.2. Benchmark with Stochastic Model-Based MPC

This section verifies the proposed model performance by benchmarking with the stochas-
tic programing (SP)-based MPC approach in [26]. In the benchmarked approach, 1000 random
scenarios are generated by combining the three uncertainties: intermittent nature of wind
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and solar power and the uncertain AC grid-connect condition with the probability of each
scenario assumed to be 1/1000. Figures 6 and 7 show the total DCM operating cost and the
total voltage deviation of all load buses with the SB-based MPC approach.

10000
9000
80009 =~ - - I - —— e

7000 1

Total operating cost [$]

6000 1

5000 1 ~~~ Average operating cost

0 200 400 600 800 1000
Uncertain scenarios

Figure 6. DCM’s operating cost with SP-based MPC approach.

—— Supplied voltage Desired voltage

w U V] U

~ l

0.96 1 = U

0 4 8121620242832 3540 4448 5256 60 64 68 72 7680 84 839296
Time slots

Voltage [p.u]

Figure 7. Voltage deviations with stochastic-based MPC approach.

Compared to the results in Figure 4, the DCM operating cost with the SB-based MPC
approach does not converge with more than 24 h of running the model, and the average
operating cost is 41.95% higher. Thus, as can be observed from Figures 4 and 6, the proposed
DQN-based MPC outperforms SP-based MPC approach in the following aspects: (i) the
proposed DQN-based MPC is capable of learning the optimal action in the previously
trained episodes in response to uncertain conditions, a capability that the SP-based MPC
does not possess; (ii) with the same uncertain environment and cost function; the DQN-
based MPC results in smaller and smoother cost values than those of the SP-based MPC;
(iii) the average operating cost converges to a stable value around USD 4644.31 (red line in
Figure 4) for the DQN-based MPC method, whereas the SP-based MPC does not achieve
convergence, with an higher average operating cost of approximately USD 7949.22 (red
line in Figure 6), which shows the effectiveness of the DQN-based MPC in improving the
total DCM operating cost around 41.95% under a highly uncertain environment.

As one of the causes of instability in the DCM operation, the SP-based MPC approach
has resulted in large deviations in the DC bus voltage, as shown in Figure 7. From Figure 7,
the voltage-based DR is carried out at many different periods during 24 h planning, which
increases the penalty cost involving load shedding. Further, the optimal SB dispatch from
the SP-based MPC method is insufficient to recover the DC bus voltage deviations, which
is explained by the poor ability to capture the uncertainties in the AC/DC supply sources
that affect the charging and discharging efficiency of the SB system. In other words, the
SP-based MPC is not effective for catching uncertainties involving the DC bus input voltage
prediction. Therefore, the action of restoring the voltage (injecting an optimal SB dispatch)
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is typically delayed from 10 to 15 min compared with the optimal actions in Figure 5.
Finally, to evaluate the resilience effectiveness in both approaches, this paper assumes that
an extreme event, such as a hurricane, occurs at the 58th time slot, and it makes the DCM
operate in the island model for one hour and fifteen mins (from 58th time slot to 63rd).
As can be seen from Figures 5 and 7, the desired DC bus voltage ngg (t) drops to 0.95 p.u
during that period in both approaches. However, the DQN-based MPC (Figure 5) depicts
an outstanding performance in improving the MPC resilience by restoring the voltage
deviations caused by the uncertain AC grid-connect condition than the SP-based MPC
approach (Figure 7).

4.3. Effects of Voltage-Based DR

This section investigates the effect of voltage-based DR on the total DCM operating cost
and the SB charging/discharging effectiveness. The simulation results with and without
voltage-based DR are illustrated in Figures 8 and 9 for comparison.

3420 1
3418 1
3416 1

3414 -

4128 A
4126

4124

4122 A

Total operating cost [$] Ttal operating cost [$)

Uncertain scenarios

Figure 8. Effect of voltage-based DR on DCM'’s operating cost: (a) with voltage-based DB; (b) without
voltage-based DR.
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Figure 9. Effect of voltage-based DR on SB’s charge/discharge power: (a) with voltage-based DB;
(b) without voltage-based DR.

Figure 8a shows the DCM operating cost with voltage-based DR, while the one
without voltage-based DR is shown in Figure 8b. From Figure 9, the voltage-based DR
significantly helps improve the DCM total operating cost because of decreasing costs
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regarding the degradation of the SB system and the penalty of DC bus voltage viola-
tions. Although there is a slight increase in the penalty cost caused by load shedding in
the voltage-based DR program, the DCM average operating cost with voltage-based DR
(USD 3417.25 in the red line in Figure 8a) is still 17.14% smaller than that without voltage-
based DR (USD 4124.36 with the red line in Figure 8b). Regarding prolonging the SB
effectiveness, Figure 9 illustrates the frequency of SB charging and discharging in both
cases below.

From Figure 9, the SB’s optimal dispatch and discharging frequency with voltage-
based DR are significantly improved compared to those without voltage-based DR. Com-
pared to Figure 9a, the SB discharges maximum capacity to compensate the voltage fluctu-
ations at every single time discharging in Figure 9b, which affects the SB’s effectiveness
and lifetime. Further, the charging and discharging diagram in Figure 9 accurately reflects
the proposed voltage control framework. This means that the SB discharges reserve power
only to compensate the voltage when the DC bus input voltage does not still satisfy the
desired voltage after performing voltage-based DR, which improves the SB’s effectiveness.

Clearly, from Figures 8 and 9, the proposed voltage control framework based on the
integration of voltage-based DR and optimal SB dispatch is verified by improving the total
operating cost and the SB’s effectiveness simultaneously.

4.4. Load Interruption Analysis

Finally, the proposed DQN-based MPC performance is also investigated with different
connect-load conditions. Assuming that load at buses 2, 9, 17, and 27 disconnects from the
DC bus during 8 a.m.-10 a.m., Figure 10 shows the voltage regulation result proposed in
two cases: (a) all loads connect with the DC bus and (b) some loads disconnect from the
DC bus.

- Supplied voltage Desired voltage
e I : : . {
5 || | | NN !
Soe] Y | | l . '-
v
§ 0.96 J l |

rrrrrrrrrrrrrrrrrrrrrrrrr
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0975{ | | | [ U
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K
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K
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0 4 8121620242832364044 4852566064 68 72 76 8084 88 92 96
Time slots

Figure 10. Voltage regulation with different load conditions: (a) normal condition; (b) uncertain

condition.

Figure 10a shows a very small voltage violation in the DC bus because of the shortage
of reserve power from the SB to satisfy all loads at the same time. However, Figure 10b
presents a better voltage regulation performance with the presence of uncertain connect-
load conditions. From Figure 10b, the DC bus voltage rises to 1.05 p.u before attaining
steady voltage during the load step change when load switches out from 32nd time slot to
42nd). This is because there is a consumption surplus to inject into the SB. In this way, the
voltage-based DR and the SB operate to compensate for the power deficiency during the
rest of the periods. As a result, when load at buses 2, 9, 17, and 27 connects again to the DC
bus at the 43rd time slot, no voltage variation appears.
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5. Conclusions

This paper proposes an MPC-based voltage control strategy for minimizing the total
DCM operating cost while enhancing the resilience when subject to uncertain operating
conditions. It also develops a two-level coordination control framework by optimally
integrating voltage-based DR and SB dispatch to achieve the above goals. Finally, the
proposed model is solved using a DON-based RL approach to handle uncertainties in the
AC/DC supply sources, which strongly affect the predicted input voltage of the DC bus.

The proposed model and algorithm are simulated through a typical DCM structure
in commercial buildings, where there is a significant increase in DC loads. By comparing
simulation results to the SB-based MPC method, the performance of the proposed DQN-
based MPC method is validated by achieving smaller and smoother converging operating
costs. In addition, the voltage-based DR is capable of improving the operating cost by
around 41.95% while enhancing the resilience with the least voltage deviation.

The proposed mathematical model ignores the effects of control parameters in power-
electronic devices (e.g., droop resistance and rated voltage of converters and inverters) on
the loads” power consumption. Thus, to increase the practicality of the proposed model, it
can be reinforced by considering the more detailed effects of power-electronic devices on
the regulation of the DC bus input voltage. Further, the RL-based approach is effective for
making sequential decisions but is also suffering from computation cost. Thus, it is important
to improve the proposed approach for the real-time problems with economical solutions.
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Nomenclature

A. Indices and Sets

G index of main grid

S index of solar panel

W index of wind turbine
E index of battery storage
L index of load

dc index of DC bus

t index of time

B. Parameters

Bj. capacitance of DC bus [F]

Cg(t) power purchase cost from main grid [$]
Cs(t) maintenance cost of solar panel [$]
Cy(t) maintenance cost of wind turbine [$]
Ce(t degradation cost of storage battery [$]

)
Cr(t) penalty cost of load shedding [$]

) penalty cost of voltage deviation [$]
t)  critical load magnitude [kW]
D{"(t)  controllable load magnitude [kW]
Ng sizing of solar panel [m?]
Ny sizing of wind turbine [m?]
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P&nax
P;Hﬂx
P‘r/n\]ax
Pgmx

maximum power of main grid [kW]
maximum capacity of solar panel [kW/ m?]
maximum capacity of wind turbine [kW/ m?]
maximum capacity of storage battery [kW]
cost coefficient of solar panel [$]

cost coefficient of wind turbine [$]

cost coefficient of storage battery [$]
penalty factor for voltage demand response [$]
penalty factor for voltage deviation [$]
time-of-use price from main grid [$]

output current of DC bus at time t [A]
nominal voltage of DC bus at time t [V]
virtual resistance of DC bus [()]

admittance between bus i and j [number]
output voltage of main grid [V]

output voltage of solar panel [V]

output voltage of wind turbine [V]

input voltage for load [V]

output voltage of storage battery [V]
voltage magnitude in bus i [V]

voltage magnitude in bus j [V]

uncertain grid-connect condition [%]
uncertainty in solar panel at time t [%]
uncertainty in wind turbine at time t [%]
percentage of controllable load reduction [%]
maximum of load reduction at time t [%]
minimum of load reduction at time t [%]
AC-DC converter efficiency [%]
DC-DC/AC inverter efficiency [%]
discharging efficiency of storage battery [%]
charging efficiency of storage battery [%]

C. State variables

Pg(t)
Ps(t)
Py (t)

t

power provided by main grid at time t [kW]
power generated by solar panel at time t [kW]
power generated by wind turbine at time t [kW]
discharging power quantity at time t [kW]
charging power quantity at time t [kW]

total power supplied for load at time t [kW]
required power to regulate DC voltage [kW]
input voltage of a DC bus [V]

desired voltage of a DC bus at time t [V]
output current from main grid [A]

output current from solar panel [A]

output current from wind turbine [A]

input current of load [A]

discharging current of storage battery [A]
charging current of storage battery [A]

output current in a DC bus i [A]

state of charge (SOC) of storage battery [%]

D. Action variables

binary discharging decision of battery at time t
binary charging decision of battery at time t
binary on/off decision voltage demand response
binary on/off decision with main grid
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