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Abstract: Phasor measurement unit (PMU) technology is a need of the power system due to its better
resolution than conventional estimation devices used for wide-area monitoring. PMUs can provide
synchronized phasor and magnitude of voltage and current measurements for state estimation of
the power system to prevent blackouts. The drawbacks of a PMU are the high cost of the device
and its installation. The main aspect of using PMUs in electrical networks is the property to observe
the adjacent buses, thereby making it possible to observe the system with fewer PMUs than the
number of buses through their optimal placement. In the last two decades, exhaustive research has
been done on this issue. Considering the importance of this field, a comprehensive review of the
progress achieved until now is carried out and the limitations of existing reviews in the literature
are highlighted. This paper can be seen as a major attempt to provide an up-to-date review of the
research work carried out in this all-important field of PMU placement and indicates that some
perspectives of optimal PMU placement still need attention. Eventually, the work will open a new
standpoint for the research community to fill the research gap.

Keywords: phasor measurement unit (PMU); synchrophasors; optimization; optimal PMU placement
(OPP); complete network observability (CNO); incomplete network observability (INO); single PMU
or line outage (N − 1 contingency)

1. Introduction

The power system is structured using electrical components that are responsible for
the conversion of different forms of energy into electrical energy along with its transmis-
sion, distribution, and utilization. Voltage, current, phasors, and frequency are important
electrical quantities of a power system. Except for frequency, all three electrical quantities
are distinct in different parts of a power system. Proper working of all the parts in the
power system is indispensable. For proper working of a power system, monitoring these
electrical quantities is crucial [1] for optimal operation, reliability, security, contingency
analysis, and restoration of a power system. A monitoring system performs three basic
activities, which include determining the network topology, observability, and state estima-
tion of a power system. Conventionally, power system quantities like voltage and current
are monitored through supervisory control and data acquisition (SCADA) systems. The
SCADA system is not sufficient for monitoring the modern power system [2–4] because
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of its low resolution, and it is not capable of giving phasor, frequency, and rate of change
of frequency information. A report concerning the 14 August 2003 cascading blackout
incident in the northeastern United States, published by the North American Electric Reli-
ability Corporation (NERC), showcased that the phase angle between western Michigan
and Cleveland did increase steadily for an hour, as shown in Figure 1. If the information
regarding phase angle had been available at the proper time, the operators could have
taken appropriate actions to prevent the cascading blackout [5,6].

Figure 1. Phase angle divergence between Cleveland and Michigan.

Modern power systems consist of renewable energy sources, intelligent electronic
devices, advanced protection, and control devices; therefore, fast and robust monitoring
systems should be installed for the operation and safe control of the power system. Monitor-
ing phasor information is also critical along with the magnitudes of voltage and current. In
1980, the concept of phasor monitoring in a power system was introduced by Prof. Phadke
at Virginia Tech, USA. For the first time, the concept of the phasor measurement unit (PMU)
was established in 1988 and its application was introduced by Macrodyne corporation [7].
Commercial production of PMUs started in 1991 by Macrodyne in collaboration with
Virginia Tech [8].

The applications of the PMU in a power system are implementation of smart grid,
integration of renewable sources, static to dynamic control, real-time control, frequency
control, state estimation, adaptive protection, automated energy management system
(EMS), thermal overload monitoring, stability monitoring, system restoration, and post-
disturbance analysis [9–12] in a power system. Wide range monitoring of power systems for
reliable operation and control is called wide-area measurement system (WAMS), which is
not possible without PMU integration. A brief comparison of SCADA and PMU technology
in WAMS is given in the section below.

1.1. SCADA versus PMU

The drawbacks of the SCADA system for modern power systems are slow sampling
rate, no time synchronization, and no phase angle information. PMUs are the backbone of
WAMS, as they are faster [13] and give phasor information. The communication protocol
used for the SCADA system is International Electro-technical Commission (IEC) 60870-
5 series, and the protocol used for PMU is National Standard of the People’s Republic
of China/Recommended (GB/T) 26865.2-2011 [14]. Table 1 summarizes the difference
between SCADA and PMU technology used in WAMS [15,16].
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Table 1. Different attributes of SCADA and PMU in WAMS.

Attribute SCADA PMU

Universal time synchronization 7 3

Local estimation of phase angles 7 3

Reporting rate Once in (4 to 6) s (10/12/15/20/30/60 frames)/s
Data flow latency High Negligible
State view of power system Steady Dynamic
Total input/output channels 100+ Analog and digital 10 Phasors, 32+ analog and digital
Communication method Serial communication Network communication

1.2. Existing Surveys in OPP

During the last two decades, the work done in optimal PMU placement (OPP) that is
presented in different review articles in different ways is remarkable. In literature, one of
the earliest reviews by Yuill et al. in 2011 [17] reviewed meta-heuristic and deterministic
techniques only in OPP. Based on literature published through 2011, the integer linear
programming technique was claimed to be the most adaptable technique in OPP in all sce-
narios. Manousakis et al. [18] reviewed different formulations and summarized published
work in OPP along with future trends. In 2014, Aminifar et al. [19] provided a systematic
review on the structural design of PMUs, placement of PMUs, application of PMUs, and
function of WAMS.

In 2016, Negash et al. [20] claimed to review mathematical and artificial intelligence
techniques for OPP. The claim is false, and correct classification is present in our paper.
Mohanta et al. [8] systematically reviewed PMUs as sensors and briefly explained for-
mulation and techniques used in OPP. Sefid et al. [2] reviewed OPP in the smart grid
but discussed very few published articles related only to OPP. Misclassification of meta-
heuristic techniques presented is correctly presented in our paper. Baba et al. [21] reviewed
a few published articles available in the literature about OPP for network observability.
Johnson et al. [22] reviewed different properties of OPP formulation and shortcomings of
the techniques in OPP. This work is appreciable, but the challenges discussed for future
research by Johnson et al. are not claimable, as the past research provides us with global
optimum value, solutions with ZIBs, N − 1 contingency, channel limitation, and numerical
observability. These all so-called challenges discussed by the author are available with
references, and true challenges are discussed in our paper.

Abdulkareem et al. [23] reviewed a few published articles with benefits and drawbacks
of each approach in OPP. After reviewing the fast growth in OPP, this paper resolves
limitations of existing reviews in the literature by presenting a flow chart to have a complete
picture of all the optimization techniques used for OPP in the literature. We have classified
optimization techniques into two major categories: conventional and non-conventional
techniques. We have thoroughly discussed, with tables, the most common techniques and
briefly the less common techniques used in OPP. We have called attention to all the objective
functions, constraints, and the most important PMU installation schemes, so one can have a
comprehensive understanding by just skimming through this article. Furthermore, different
tools to solve the OPP are also discussed in this study. At the end of this paper, we point
towards the research gap to provide direction for future research.

The main contributions of the paper are as follows:

1. A comprehensive review of state-of-the-art optimal PMU placement techniques
is presented.

2. We have outlined the strengths and weaknesses of research efforts in the PMU place-
ment problem. Critical discussion is also made on the previously published review
articles in optimal PMU placement.

3. A taxonomy of optimization techniques, used in optimal PMU placement, is presented
that gives a framework for grouping different optimization algorithms. The literature
discussed in this paper follows the same taxonomy.
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4. A summary of commonly used techniques like linear programming, genetic algorithm,
and particle swarm optimization is presented. A comparative analysis of common
algorithms used in the PMU placement problem is also provided in tables.

5. Comprehensive discussion on testbed systems, optimization solvers, and pros and
cons of different techniques in the literature of optimal PMU placement is provided.

6. An extensive list of references covering the work of the last two decades is provided.
Important missing gaps in this field of research are also discussed in detail.

The organization of this paper is as follows. Taxonomy of techniques used to solve
OPP, fundamental statements of the objective function, and observability constraints are
given in Section 2. OPP using conventional and non-conventional optimization techniques
is discussed in Sections 3 and 4. Testbed systems, optimization solvers, pros and cons
of different algorithms, and detailed future scope are discussed in Section 5. Finally, the
conclusion of this work is given in Section 6.

2. Optimal PMU Placement

Optimization is a branch of mathematics that helps in finding the best solution to
any physical phenomena translated into a mathematical equation. Optimization theory
provides algorithms to solve properly stated mathematical equations using computer-
aided programs [24,25]. It is bifurcated into conventional and non-conventional techniques.
Conventional techniques are linear programming (LP), non-linear programming (NLP),
dynamic programming (DP), and combinational optimization, etc. Non-conventional
techniques are particle swarm optimization, evolutionary algorithm, genetic algorithm,
simulated annealing algorithm, and tabu search methods [26], etc.

The optimization for PMU placement in the power system is called the optimal
PMU placement (OPP) problem. In OPP, if PMUs are placed on every single bus in the
power system, then they provide redundant information about power system parameters.
However, due to the high cost of the PMU device, its installation, phasor data concentrator
(PDC), communication infrastructure, upgrading of old substations (if not compatible), and
additional cost to deal with big data makes PMU installation uneconomical. Moreover, as a
consequence of Ohm’s Law, when a PMU is placed at a bus, neighboring buses also become
observable. This implies that it is feasible to have complete or maximum observability
(numerical as well as topological) with minimum PMU devices by establishing PMUs at
specified buses only [27] using optimization for large networks. Optimization also assists
in resolving different contingencies and constraints in PMU placement planning. To solve
the constraints of communication availability, conventional measurements (CMs), faults,
and burdens on the line or transformer, modern techniques outperform the conventional
techniques [18]. In OPP, the most commonly used techniques are linear programming,
particle swarm optimization, genetic algorithm, and greedy search algorithm. Optimization
techniques used for OPP are shown in Figure 2.

In OPP problem formulation, different objective functions, constraints, contingencies,
and installation schemes are used. The most common problem formulated for OPP is a
binary integer linear problem. Problem formulation is briefly presented on the basis of
objective function and constraints.
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Figure 2. Taxonomy of optimization techniques used in optimal PMU placement.

2.1. Fundamental Statement of Objective Function

There are two most common objective functions used in literature that minimize
the number of installed PMUs to minimize the cost and maximize the redundancy by
incorporating the observability into the objective function. Minimizing the number of
PMUs is given in Equation (1), as stated below:

F1 = min
m

∑
i=1

Pi × Ci (1)

In Equation (1), the variable P is the PMU device to be installed on a bus i, m is the
total number of buses, C is the cost of device that can be a constant if all the devices are of
the same price, and Pi is a binary decision variable.

Pi =

{
1 If device P is installed on bus i
0 If device P is not installed on bus i

In Equation (2), the objective function is to maximize the redundancy by incorporating
observability as a part of the objective function, where Oi is the number of times bus i is
observed via installed PMUs.

F2 = max
m

∑
i=1

Oi (2)

As a multi-objective problem, both of the objective functions can be combined easily by
changing the sign of function F2 and treating it as a minimization function. The combined
formulation is given in Equation (3), as stated below:

F3 =
m

∑
i=1

Pi −
1

N × max(OallPMU
i + 1)

m

∑
i=1

Oi − 0.35 (3)

where N is the total count of buses in the power system, OallPMU
i is the number of times

that bus i is observed when all the buses are having PMUs. The coefficient in the second
term of Equation (3), makes sure that function F1 has higher importance than function F2 in
the OPP. Further investigation on different objective functions and constraints (linear and
non-linear) can be found in review article [22] on OPP.
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2.2. Fundamental Statement of Observability Constraint

In power system monitoring, observability is defined such that all the measurements
provide enough information for state estimation. In the state estimation, an optimal
estimate of the power system’s current state is important, which is provided using data
from measurements and network topology. For state estimation, important state variables
are bus voltage (magnitude and angle). If these two variables are known, all remaining
variables such as line current (magnitude and phasor), active and reactive power in lines,
and active and reactive power of load can be calculated easily [28–30]. Conventionally, state
estimation data are voltage magnitude and angles, active and reactive power flows, and
power injections that have a non-linear relationship with states of the power grid. These
state estimators are non-linear, time-consuming, and solved using iterative methods. The
most commonly used technique is weighted least square, as shown in Equation (4). The use
of synchrophasors measurement makes the estimator linear and the solution non-iterative,
which can be obtained from PMU devices in reality [31].

z = h(x) + e (4)

In Equation (4), z is a measurement vector made up with traditional measurements;
h(x) is a measurement function made up of non-linear relationships between the measure-
ment vector and the state vector x, and e is an error vector.

The observability of the power system is explored by two major techniques. One is
numerical observability and the other is topological observability. Numerical observability
has the drawback that it needs to solve complex Jacobean matrix calculations, which make
the solution complicated, resulting in lesser use of this technique. Topological observability
is a much more common way in which the full rank of spanning tree is obtained [27]. Ap-
proaches to observability can be classified as topological, numerical, or hybrid (combined
topological and numerical) approaches. The most commonly used constraint is the topo-
logical observability in the literature. Complete topological observability of the network,
under normal conditions, is given in Equations (5) and (6). Here, ’O’ is the observability
vector consisting of observability expressions ois, each standing for the ith observability
constraint.

O = AX (5)

O ≥ u (6)

A =


1 0 . . . 1
1 1 . . . 0
...

...
...

...
1 0 . . . 1


whose elements are given below:

Aij =

{
1 if either i = j or i&j buses are joined by a branch
0 Otherwise

X =
[
x1 x2 . . . xN

]T and u =
[
1 1 . . . 1

]T

where A is the node incidence matrix or binary connectivity matrix, with size N × N; X is a
row vector having size N × 1 with elements xi, i = 1, 2, ..., N, and u is a row vector N × 1
consisting of ones, representing a bus observable by one PMU.

3. OPP Using Conventional Optimization

Conventional techniques that are used in optimal PMU placement are classified as
mathematical iterative search and exhaustive search techniques. Details of articles that
used conventional techniques are discussed below.
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3.1. Mathematical Iterative Algorithms

In mathematical iterative search, an initial value is used to make a sequence of the
improved estimate, in which the nth estimate is taken from the previous value. To solve
the mathematical problem of x variable, we put the value of x0 to find the value of x1.
The solution to the problem is converged when, after successive iterations, the value of
xn−1 becomes equal to the value of xn up to three decimal places. Mathematical iterative
technique-based PMU placement is discussed below:

3.1.1. Greedy Algorithm Based OPP

The greedy search algorithm comprises many algorithms that try to find the quickest
solution instead of finding the optimal solution of any optimization problem [32]. These
algorithms provide the local optimum value of the solution in most cases and give global
optimum solutions in very few problems. Work done in OPP using greedy search algorithm
is discussed below:

(a) Information Theoretic Approach (ITA)

In ITA, also known as the data analytic approach, a set of candidate models is examined
to discover the model probability that is closer to the truth than all others models in the
set. Li et al. [33] used greedy ITA for OPP and used mutual information (MI) among states
of the system and measurements. MI was used as an objective function and incorporated
observability and uncertainty reduction.

(b) Posterior Cramér-Rao Bound (PCRB)

The basic tool to find estimation performance along with the Markovian model is the
Posterior Cramér-Rao Bound. It defines the bounds for the variance of a biased estimator.

Yang et al. [34] used greedy approach PCRB for OPP. To crack the optimization
problem, the greedy search algorithm was used. For submodular and non-submodular
objective functions, the greedy search algorithm guarantees a solution and provides better
results, respectively.

3.1.2. Linear Programming (LP) Based OPP

Linear programming is a technique to maximize or minimize a linear mathematical
problem [35]. The cost is used as an objective function considering the constraints on
decision variables. In LP, the decision variable cannot be negative and used to solve
NP-complete problems. PMU placement using LP techniques are discussed below:

(a) Binary Integer Linear Programming (BILP)

The BILP technique is used to solve a system of linear equalities or inequalities in
binary unknowns (0 or 1).

Binary unknowns are used where the formulated problem has solutions in discrete
binary form (Yes or No).

Abbasy et al. [36] proposed the OPP technique using BILP by considering both con-
ventional existing injection flow (IF) measurements and loss of one or more PMUs. Enshaee
et al. [37] used BILP for CNO and increased measurement redundancy by incorporating
outage scenarios of a PMU or a line to solve OPP. PMU channel limitation and the effect of
zero injection buses (ZIBs) is also incorporated.

Amare et al. in [38] used BILP to find OPP with CNO and considered N − 1 con-
tingency. unobservable buses depth, multi-stage sequential appointment, critical buses
monitoring, existing location of PMU, unsuitable locations for PMU, and information about
the critical buses are inputs to the BILP for cracking the problem.

Rezaeiankoochi et al. [39] used BILP to solve OPP and considered post-disturbance
coherency at unrelated depths of observability. To accomplish these, dissimilar probabilistic
parameters are used to create scenarios. Subsequently, the subtractive clustering algorithm
was used to find central buses that are constructed on the likeness of the post-disturbance
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variation. Afterward, by selecting each bus as a central bus, different scenarios are solved
for placing PMUs.

Ahmed et al. [13] used BILP for OPP and considered N − 1 contingency for complete
network observability of the system.

Mahaei et al. [40] used BILP for OPP and considered CNO along with the multistage
installation of PMUs, two adjacent injection measurements, and N − 1 contingency.

Bei et al. in [41] proposed generalized procedure to solve the OPP and different
situations like: loss of PMU, zero and non-zero injection buses and power flow measure-
ment device on branches. PMU failure was also investigated using linear estimator-based
measurements from PMU, computational performance and bad data processing.

Sarailoo et al. [42] proposed the addition of new PMUs in the network with already
installed PMUs for robustness, maximizing data availability profile and avoiding com-
munication interruption and transmission faults. A three-stage scalable synchrophasor
availability constrained placement algorithm was proposed to solve OPP using integer
linear programming (ILP). Gou [43] proposed generalized OPP formulation considering
CNO and INO along with the redundant placement of PMU using ILP. Kavasseri et al. [44]
proposed an economical solution for the shared placement of PMU and CMs. The problem
was primarily modeled as nonlinear integer programming and then adapted to equivalent
integer linear programming via the Boolean method. Results require lesser PMUs, and the
methodology was economical as compared to conventional measurement in fixed locations
or absent. Sodhi et al. [45] proposed OPP in different stages to limit the burden of invest-
ment using ILP and multi-criteria decision-making (MCDM) techniques. ILP approach was
utilized to perceive the optimum place of the PMUs for comprehensive observability of
system even in case of a branch or PMU contingency, and MCDM helps to prioritize the
locations considering utility concern to locate weights for three criteria for installation in
different stages.

Dobakhshari et al. [46] proposed OPP with conventional equipment. This study also
incorporates a solitary line or PMU contingency with bursting observability. In finding the
least number of PMUs circuit equations of PMU, conventional measurement, and network
topology to find a global optimal solution, which was different from the previous methods.
Communication limitation was also incorporated. Gou et al. [47] proposed OPP using a
unified algorithm along with bad data detection and observability analysis. Each iteration
tries to obtain optimum location by making the power system observable or making critical
buses non-critical.

The cost of synchrophasors is evolving day by day. In total expenses, the price of the
advancement of a substation is much more than PMU. In such a scenario, the consideration
of minimizing the PMU number is not enough, and minimizing the substation number is
also essential. This issue was solved by Pal et al. [48] using ILP based on dual-use line relays
(DULRs), which function in minimizing the overall cost of the system. Simultaneously,
optimization of communication infrastructure, cybersecurity infrastructure, labor cost, and
device cost was discussed.

For consideration of ZIBs, conventional measurements (CMs) are constructed by
logically summing up bus observability functions in [49]. The limitations caused by ZIBs
and CMs are identified that were previously not considered. Singh et al. [50] proposed
OPP using ILP with two contingencies. One contingency was based on voltage stability
and the other was based on intense islanding. To fulfill two objectives, two contingencies
were considered via a single multi-objective function to minimize PMUs and maximize
observability. Gou [51] proposed OPP using ILP with and without conventional power
flow and injection measurement.

Optimization of substation number by placing simultaneously traditional PMUs and
dual-use line relays was accomplished in [52]. Redundancy in the measurement of serious
elements and estimating the transformer tap ratios were incorporated in the study via
the general optimal substation coverage (GOSC) algorithm. Techno-economic benefits are
achieved using the GOSC algorithm. Rashidi et al. in [53] used Lyapunov exponent for full
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system observability, improved actual stability monitoring, and assessment of the system.
Firstly, the maximization of the redundancy of critical buses was achieved. Secondly, each
bus’s role in the system stability and critical buses was recognized using the Lyapunov
exponent founded approach. Rakpenthai et al. [54] used ILP for optimization of redundant
measurements and heuristic methods for arranging the measurement positions for PMUs
placement.

Monitoring of current and voltage phasors by placing PMUs on the branch was
accomplished in [55], with optimal PMU placement keeping the entire network observable
using the ILP technique. Huang et al. [56] proposed OPP, which gives controlled islanding
of the power system for network observability under the typical state and controlled
islanding state. Maximization of redundancy and minimization of PMU number are the
objective functions that are combined by the weighting variable. Consideration of zero
injection bus, PMU failure, and line outage are also included for system observability.

PMUs used for monitoring need to be patched after some time to avoid vulnerabilities
causing shut down of PMUs for some time. If PMUs are placed redundantly, then a set
of PMUs can be placed offline while maintaining the complete system observability. The
challenge in optimizing the patching plan to patch all the PMUs in the smallest number
of rounds and maintaining observability all the time was discussed in [57]. The case
problem was cracked by the ILP technique, and large networks are solved using a greedy
heuristic algorithm. Mousavian et al. [58] proposed OPP in two stages using ILP. In the
first stage CNO and in the second stage N − 1 contingency along with the switching of
transmission lines were taken into account. Huang et al. [59] proposed OPP considering
steady-state readiness of synchrophasor information at each bus to meet the defined level
and communication channels limitation. A Markov model was built for evaluating the
synchrophasor availability. In [60], estimation theory criteria are used as a base for PMU
placement. PMU reading of both current-voltage and conventional state estimation under
the Bayesian framework was used to place PMUs. Convex optimization relaxation was used
to achieve less computation. Numerical optimality was guaranteed by convex relaxation
bypassing the combinatorial search.

Junhyung Bae [61] proposed optimal placement of PMUs and accounted for the
network protection against cyberattacks. Redundant PMUs are allocated on the vulnerable
buses for this purpose. The formulation of the problem is binary and is solved using the
binary integer linear programming technique.

Chen et al. [62] proposed optimal PMU placement with improved redundancy using
the BILP technique. Effect of ZIB, conventional measurements, contingency analysis, and
channel limitation of PMUs is incorporated. The redundancy level of each bus is optimized
by assigning weights to an auxiliary variable.

Koochi et al. [63] proposed optimal PMU placement with complete network observ-
ability and backup protection to detect faults on the transmission line. Channel capacity of
different companies of PMUs is also considered in the formulation.

Hyacinth et al. [64] proposed optimal PMU placement with maximized measurement
redundancy based on the three major attributes in deciding placement locations: the degree
of the vertex (DOV), the average neighborhood degree of the vertex (ANDOV), and the
bus observability index (BOI) in the first stage and minimized the number of PMUs in
next stage.

Baba et al. [65] proposed optimal PMU placement using BILP to maximize measure-
ment redundancy and minimize the number of PMUs considering contingency, channel
limitation, and ZIB (named as pure transit node).

Elimam et al. [66] proposed optimal PMU placement using ILP and considered net-
work impedance parameters (series and shunt), contingency analysis, the effect of ZIB,
channel limitation, and small-signal stability of the network.
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(b) Mixed-Integer Linear Programming (MILP)

MILP adds one additional condition in ILP that at least one decision variable does not
have discrete value, which means that at least one variable is not an integer. Work done in
OPP using MILP is discussed below.

Aminifar et al. [67] proposed OPP with consideration of the predefined probability of
observability. The placement of PMUs includes the outage probability and stochastic nature
of the equipment. MILP was practiced for optimization projected. Due to financial and
physical constraints, the placement of PMUs was staged into multi-year planning. When a
probabilistic constraint was accounted for in the model, the solution provides acceptable
outage protection in a probabilistic manner. In [68], an analytic framework for OPP was
presented with consideration of cost/benefit investigation, long-term economic facts, and
current technical problems.

Esmaili et al. [69] used MILP for the new redundant observability scheme in the OPP
problem. The method proposed has a new objective function that was used to improve
the observability redundancy while utilizing the same PMU number as in the prevailing
method. Nikkhah et al. [70] proposed contingency constraint OPP on n-k redundancy
criteria via robust optimization. Network observability, underneath any contingency state
that contains damage to k = 2 PMUs, was ensured by the developed security criterion.
Aminifar et al. [71] discussed OPP for AC/DC systems for observability using MILP.
Phasors are no longer valid for HVDC, so the integration of HVDC in HVAC would disturb
the measurement of PMU indirectly. The objective was to minimize the installation cost of
PMU while taking into account the observability in the AC/DC transmission system and
the variable cost of PMU. Results dictate that the DC line effect was negative in the OPP
problem, i.e., the minimum PMU number was increased. Ruben et al. [72] used MILP to
solve two objectives: minimizing the cost of PMUs and gross error detection for CNO. The
model was flexible to change weights of objectives as per the budget of the customer.

Zhu et al. [73] proposed optimal placement of PMUs and communication links and im-
plemented the concept of zero injection buses to minimize the overall cost of installation of
the wide-area monitoring system. The main contribution of this work is that it incorporated
data transmission bandwidth under consideration.

(c) Equivalent Integer Linear Programming (EILP)

A theory of EILP claims that all integer programming problems are equivalent to
infinitely many other integer programming problems. The equivalence means that the
solution to any one problem in the equivalence class can find the solution to every other
problem in the class.

Azizi et al. [74] proposed OPP using EILP. Such placement has a completely linear state
estimation, which eliminates the issues in SCADA-based state estimation. EILP models can
easily include additional constraints like N − 1 contingency, channel limitation, and the
ZIBs. A summary of LP based OPP is presented in Table 2.

Table 2. A summary of LP based OPP.

Ref. Technique Objective Function
Constraints

Observability Contingency Installation Scheme

[42] BILP Min. no. of PMUs,
Min. no. of Data links Pseudo observability N − 1, measurements

and communication
3-stage installation of

PMUs
[43] BILP Min. no. of PMUs CNO and INO – Effect of ZIB and CMs

[44] BILP Min. no. of PMUs and
flow measurements

CNO and
observability in case

of faults
– Effect of CMs
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Table 2. Cont.

Ref. Technique Objective Function
Constraints

Observability Contingency Installation Scheme

[45] BILP
Min. no. of PMUs,

Max. System
observability

CNO N − 1 Multistage installation
of PMUs

[46] BILP Min. no. of PMUs CNO, N − 1 and
measurements

Effect of CMs, flow
measurements,

Channel limitation,
and measured
injection buses

[47] BILP Min. no. of PMUs CNO Measurements
Effect of CMs,

converting CMs to
non-CMs

[48] BILP

Min. Substation
disruption, Max. bus
observability using

DULRs

– N − 1

Handling relays
synchrophasors,

critical buses,
prohibited

substations, existing
PMUs, unknown

transformer tap ratio,
ZIB, and channel

limitation
[49] BILP Min. no. of PMUs CNO N − 1 Effect of CMs and ZIB

[50] BILP
Min. no. of PMUs,

Max. System
observability

– N − 1 Effect of ZIB

[51] BILP Min. no. of PMUs CNO – Effect of CMs and old
power flows

[52] BILP Min. Substation
disruption – N − 1

Handling Channel
capacity, prohibited

substation,
preinstalled PMUs,

ZIB, relays
synchrophasors,
Redundancy in

critical measurements,
estimating unknown
tap setting and tap

ratios of transformer

[53] BILP Min. no. of PMUs CNO N − 1 Redundancy in
critical measurements

[54] BILP Min. no. of PMUs CNO N − 1 –

[55] BILP Min. no. of PMUs for
branch monitoring CNO N − 1 and

transformer
Improved

redundancy

[56] BILP Min. no. of PMUs CNO N − 1 Effect of ZIB and
controlled islanding

[58] BILP Min. no. of PMUs CNO N − 1 Effect of line
switching

[59] BILP
Min. no. of PMUs,

communication links,
and operation cost

– N ≥ 1
Limitation on

communication
infrastructure

[36] BILP
Min. no. of PMUs,

Max. system
observability

– N − 1 Effect of CMs and ZIB

[37] BILP Min. no. of PMUs CNO with maximum
redundancy N − 1

Effect of channel
limitation and ZIB

[39] BILP Min. no. of PMUs CNO –
Effect of

post-disturbance
coherency of the buses
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Table 2. Cont.

Ref. Technique Objective Function
Constraints

Observability Contingency Installation Scheme

[40] BILP
Min. no. of PMUs,
Max. measurement

redundancy

CNO with two
adjacent injection

measurements
N − 1

Effect of CMs and
PMUs multistage

installation

[61] BILP Min. no. of PMUs CNO – Effect of CMs and
cyberattack

[62] BILP
Min. no. of PMUs,
Max. measurement

redundancy,
CNO N ≥ 1

Effect of Channel
limitation, CMs and

ZIB

[63] BILP Min. no. of PMUs CNO –
Effect of Channel

limitation and backup
faults protection

[64] BILP Min. no. of PMUs CNO –
based on three

attributes DOV, the
ANDOV, and BOI

[65] BILP Min. no. of PMUs CNO N − 1 Effect of channel
limitation and ZIB

[66] BILP Min. no. of PMUs CNO N − 1

Effect of channel
limitation, ZIB,

network impedences,
and small signal

stability of network

[67] MILP
Min. no. of PMUs,

max system
observability

–
Probability of power
system components

outage

Financial and physical
constraints, PMUs

Multistage installation

[69] MILP Min. no. of PMUs,
Max. redundancy CNO N ≥ 1 –

[70] MILP Min. no. of PMUs CNO N − 1 Effect of ZIB

[71] MILP Min. no. of PMUs CNO N − 1 Variable cost PMUs
and ZIB

[72] MILP Min. no. of PMUs CNO – Budgeted PMUs
allocation

[73] MILP

Min. no. of PMUs,
Min. no. of

communication
channel,

CNO N − 1
Effect of ZIB and data

transmission
bandwidth

[74] EILP Min. no. of PMUs – N − 1

Effect of
communication

infrastructure, CMs
and ZIB

3.1.3. Non-Linear Programming (NLP) Based OPP

NLP is an optimization technique where either the objective function is non-linear or
one or more constraints are non-linear. Manousakis et al. [75] proposed OPP as a quadratic
minimization problem employing continuous decision variables subjected to the non-
linearity in boundaries of observability. The unconstrained nonlinear weighted least square
approach was used to find the optimum solution. Chakrabarti et al. [76] proposed OPP and
maintained the measurement redundancy for CNO using integer quadratic programming.
Existing measurement technology can be incorporated into the proposed formulation.
CNO was also possible in the case of N − 1 contingency. Qi et al. [77] proposed OPP and
calculated empirical observability Gramian around the power system operating region
to quantify system state observability under specified placement. The determinant of
empirical observability Gramian was maximized by the formulated problem and unraveled
by a nomad solver.
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Lofberg et al. [78] used a binary semi-definite programming model (BSDP) to for-
mulate OPP that was solved using BILP. The model considered any number and kind
of existing PMUs, SCADA measurements, or AC or DC measurements. The global opti-
mal solution was also guaranteed by the model and gives the minimum number of the
phasor measurement unit as compared to other techniques. Manousakis et al. [79] used
BSDP to solve OPP and considered zero injection buses, synchrophasor channel limits,
and CMs in the power network. Li et al. [80] used integer semi-definite programming for
OPP and gathered data from PMU and SCADA for enhanced hybrid state estimation. For
comparison of PMU placement impact, a useful metric was introduced that accounts for
three main requirements in state estimation of network, i.e., convergence, observability,
and performance.

Shi et al. [81] proposed optimal PMU placement and considered minimization of
mean squared error between the measurement output and the system. Effect of ZIB, N-1
contingency, and limitation of communication channel per PMU were formulated. The
problem of binary nonlinear optimization taxonomic category is solved by an efficient
proposed algorithm that is scalable and gives at least a local optimal solution. The algorithm
is also tested on benchmark grids for the validity of the algorithm.

3.2. Exhaustive Search

Exhaustive search optimization checks every possible solution. In our opinion, this
method is recommended to solve OPP, as OPP is an offline problem, and we can easily
trade off time and save the cost of extra PMUs. The only problem is, the solution of OPP
for large power networks will need more time and high computation power, which is
acceptable in offline planning. PMU placement using different exhaustive techniques are
discussed below:

3.2.1. Graph Theory-Based OPP

Graph theory is the study of relationships in terms of nodes and vertices and is used
to model pairwise relations between objects. Ghosh et al. [82] used graph theory and
analytical hierarchy process for multi-criteria decision-making in OPP and considered
CNO, maximum measurement redundancy, ZIBs, and N − 1 contingency. The proposed
formulation gives improved results and better measurement redundancy. Xie et al. [83]
used the graph theory method to find OPP and the minimum set of critical measurements
for CNO. The decentralized monitoring system was the key contribution of the article.

3.2.2. Binary Search-Based OPP

This is also known as half interval search that divides the interval into two halves and
finds the value in a sorted array. It finds value in any of two intervals by comparing the
targeted value with the middle value. Chakrabarti et al. [84] used binary search method for
OPP and considered CNO and N − 1 contingency. The technique is used to overcome the
limitations of the genetic algorithm as well as integer programming.

4. OPP Using Non-Conventional Optimization

Non-conventional techniques are classified into heuristic, metaheuristic, and machine
learning techniques. Heuristics are problem-dependent with a pre-defined set of rules to
explore the search space. Metaheuristics are problem-independent and maneuver and alter
subordinate heuristics to produce a good quality solution with efficacy that can be applied
to a broad range of problems.

4.1. Heuristic Techniques

A heuristic technique solves a problem using a practical or shortcut method to give
solutions that can or cannot be optimal in a limited timeframe. PMU placement using
heuristic techniques is discussed below:
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4.1.1. Unified Algorithm Based OPP

The unification of existing adaptive-learning-rate optimization algorithms, such as
adaptive mean square gradient (AMSGrad), adaptive moment estimation (Adam), AMS-
Grad with weighted gradient and dynamic bound of learning rate (AMSGWDC), Adam
with weighted gradient and dynamic bound of learning rate (GWDC), and adapting step-
sizes by the belief in observed gradients (AdaBelief), etc., is called a unified algorithm.
It chooses any of the above-given techniques and combines them (as the name suggests,
unified) to find the optimal solution. Lu et al. [85] used a unified PMU placement model
that incorporates zero injection observation reliability. PMU number was reduced and the
reliability of ZI observation was increased as a result of the proposed method, and complete
system observability was ensured.

4.1.2. Fuzzy Decision Based OPP

When data are incomplete or vague, fuzzy decision-making is used to solve single or
multi-criteria problems. Aghaei et al. [86] proposed OPP with a multi-objective probabilistic
model. Optimization of two objective functions that minimize the number of PMUs and
maximize system redundancy was done simultaneously with N − 1 contingency and ZIBs.

4.1.3. Monte Carlo Simulation Based OPP

When the dataset is very large or complicated, random samples are taken and com-
pared to find the optimal results using the Monte Carlo technique. Esmaili et al. [87]
proposed OPP using a channel-oriented method employing the explicit cost of synchropha-
sor and their channels as the objective function. Channels are assigned only if it was
economically justified. For the dependability of the power system, synchrophasors and
their channels are applied to two or more reliable buses and branches. Additionally, to
observe delicate areas of the power system and to prevent voltage collapse, the synchropha-
sors and their channels are allotted in order to observe the buses that are defenseless
to voltage stability status. Also, Monte Carlo simulation was practiced to recognize the
contingencies that are incorporated in the problem. Lu et al. [88] proposed OPP using
vulnerability index and its derivatives. First, the dataset required by the partitioning was
generated using the Monte Carlo simulation. Second, a genetic algorithm was used to
partition the network. Subsequently, quadratic programming was practiced to crack the
optimal phasor measurement unit assignment problem. Finally, a dynamic vulnerability
assessment was performed by placing a phasor measurement unit on a respective bus
location.

4.2. Metaheuristic Techniques

Metaheuristic techniques guide through the search space to find near-optimal solutions
ranging from local search to complex learning processes. Metaheuristic techniques used in
OPP are discussed below:

4.2.1. Chemical Reaction Based OPP

It is an algorithm based on the principles of chemical reactions to transform reactants
to a product through a sequence of reactions, Wen et al. [89] proposed multistage OPP with
budget constraints. When problem size is big, the problem of relocating the existing PMUs
or purchasing and installing new PMUs is very complex to solve by the mathematical
program design method and is unable to unravel within the timescale. Therefore, chemical
reaction optimization was introduced for OPP.

4.2.2. Cuckoo Search Based OPP

This is a nature-inspired algorithm that is based on the brood parasitism of the cuckoo
species with Lévy flights random walks. The modified binary cuckoo optimization algo-
rithm (MBCOA) was practiced to crack the synchrophasor placement problem in [90]. The
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process was classified as a topological approach. It was found that MBCOA gives the better
result as minimum iterations as compared to other methods.

4.2.3. Differential Evolution Based OPP

This works on the principles of the evolutionary process and can quickly explore a
very large search space. Dubey et al. [16] proposed OPP using multi-objective differential
evolution that incorporates the effect of communication infrastructure, PDC, optical fiber,
existing CMs, and N − 1 contingency. The results are also provided for pre-existing PMUs
and optical fiber paths.

4.2.4. Gravitational Search-Based OPP

This is a nature-inspired algorithm based on the principles of Newton’s law of gravity
and motion. Singh et al. [91] proposed OPP using gravitational search algorithm for
maximum system observability. The Dijkstra algorithm (DA) was used to find the minimum
path between PMU and PDC. Pratap et al. [92] proposed OPP using binary gravitational
search algorithm for complete network observability. The multi-objective problem was
formulated for minimizing the number of PMUs and improving observability redundancy.
Results have reduced or equal PMUs in the network and improved or equal observability.

4.2.5. Genetic Algorithm (GA) Based OPP

Genetic algorithm is a metaheuristic optimization technique inspired by Darwin’s
theory [93] that mimics biological crossover of genes to produce new offspring and the fittest
survive [94]. Castro et al. [95] proposed OPP with system security issues of single PMU
loss criteria. Consideration of synchrophasor pre-allocation was also discussed in a realistic
situation. Satish Kumar et al. [96] proposed OPP using ILP and genetic algorithm for
comprehensive observability of the power system. The test of observability was carried out
by root vector rather than on the triangularization of the matrix to reduce the computational
efforts and time. Marin et al. [97] proposed OPP using a genetic algorithm for CNO. The
association between the PMU number and current phasors measured on each PMU was
found. Results showed that this method finds the minimum phasors measured via PMU
for the insertion of minimum PMUs. Kumar et al. [98] proposed OPP for component
reliability and increasing the system observability. A genetic algorithm was practiced
to crack multiple optimal solutions for CNO. For selecting the most suitable solution
within multiple solutions, a reliability index was proposed. By the use of the proposed
reliability index, the observability criteria are used to find the buses for PMU placement.
The analytical hierarchical process was used to find the multi-phasing of synchrophasor
placement. Appasani et al. [99] proposed co-optimal settlement of PMU and communication
infrastructure (CI) to curtail propagation delay for the wide-area monitoring system. Links
reliability and geographical topological variations are also considered and in terms of
cost and reliability, the microwave-based CI provides better results that were verified by
evaluating the eastern power grid of India.

(a) Binary Genetic Algorithm (BGA)

The population generated in BGA is in binary form. Each gene in a chromosome is
represented by 0 or 1 bit. In the interval [0,1], each gene in a chromosome is converted into
a normalized continuous (real) form in the generated population.

Almasabi et al. [100] proposed multistage OPP using BGA. Most important buses can
be preferred first and helped in handling the application-based OPP.

(b) Non-Dominated Sorting Genetic Algorithm (NSGA)

NSGA is a genetic algorithm for multi-objective optimization. This algorithm is very
effective but is criticized for its computational complexity and lack of elitism. Milosevic
et al. [101] proposed OPP for Pareto-optimal solutions. The benefit of this procedure is that
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it delivers a complete Pareto-optimal front as an alternative to the single-point key and has
an application where multi-objective large search space optimization is required.

(c) Immunity Genetic Algorithm (IGA)

IGA is inspired by the defense process of the immune system and engages a genetic
algorithm (GA) to concisely filter out initial antibody repertoires for the immune system.
Aminifar et al. [102] propose OPP using IGA. Algorithm efficiency was improved by in-
cluding an immune operator in the canonical genetic algorithm. The use of native and
previous knowledge related to the problem was the core theme, which was determined
from topological observability and inattention as a vaccine. Injecting this vaccine increased
convergence speed remarkably. Asgari et al. [103] proposed OPP for immobile and flexible
PMU assignment scenarios to have CNO with N − 1 contingency. The N − 1 index was
included in the objective function as a new term to have OPP with the effect of measurement
channel and redundancy. Minimizing PMUs was the primary objective, and minimizing
voltage and current measurements are the sub-objectives. The two scenarios are: PMU
rearrangement after network expansion and no PMU rearrangement after network expan-
sion and just installing new PMUs. The results show that the second scenario is practically
implementable.

(d) Cellular Genetic Algorithm (CGA)

CGA combines evolutionary algorithm and genetic algorithm, in which an individual
mates with its closest neighbor and is not allowed to mate randomly. It includes (selection,
variation, replacement).

Miljanic et al. [104] proposed OPP using CGA with consideration of channel avail-
ability, basic observability, metering configuration robustness, and N − 1 contingency. The
solutions indicate PMU channel availability helps to save money in optimal metering
configurations. A summary of GA based OPP is presented in Table 3.

4.2.6. Particle Swarm Optimization (PSO) Based OPP

PSO is a technique that is inspired by bird flocks and schooling fish. It is a population-
based technique. In this technique, initialization of the population of random solutions
gives the optimal solution by updating the generations [105,106]. Binary particle swarm
optimization (BPSO) is a form of PSO applied to binary domains but uses the concepts of
velocity and momentum from continuous PSO. Saleh et al. [107] proposed OPP for state
estimation having CNO. An improved particle swarm optimization algorithm was prac-
ticed along with the weighted least square method intended for state estimation. Rather
et al. [108] proposed OPP for CNO by considering a realistic cost-effective model. The
hidden or unaccounted practical cost was involved in the installation of PMU. This hidden
but significant cost was incorporated as an integral part of the total cost. Pal et al. [109]
proposed OPP by minimizing substation number. A large portion of the substation installa-
tion cost was the deployment cost and not the device cost. Particle swarm optimization
was used to observe all voltage levels with a minimum number of substations where
installation was made subject to the practical constraints. Rahman et al. [110] proposed
OPP using modifications in binary particle swarm optimization. It integrates v-shaped
sigmoid functions and mutations strategy for OPP with CNO, ZIB, N − 1 contingency, and
PMU channel limits. OPP was done based on uppermost measurement redundancy. Maji
et al. [111] proposed effective exponential binary particle swarm optimization for OPP. The
algorithm contains a nonlinear inertia weight coefficient, which helps in improving the
searching capability of the system. A summary of PSO based OPP is presented in Table 4.
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Table 3. A summary of GA based OPP.

Ref. Technique Objective Function
Constraints

Observability Contingency Installation Scheme

[95] GA
Min. no. of PMUs,
Max. measurement

Redundancy
CNO N − 1 Pre-installed PMUs

[88] GA
Min. no. of PMU,

Max. vulnerability
index

CNO N − 1 –

[96] GA Min. no. of PMUs CNO – –

[97] GA
Min. no. of PMUs
based on current

phasor measurements
CNO – –

[98] GA Min. no. of PMUs CNO – Multistage installation

[99] GA
Min. no. of PMUs,
Min. Propagation

delay
CNO – –

[100] BGA

Min. no. of PMUs,
Min. cost of

communication
infrastructure

CNO N − 1 Multistage installation

[101] NS-GA
Min. no. of PMUs,
Max. measurement

Redundancy
CNO N − 1 –

[102] IGA
Min. no. of PMUs,

Min. no. of
unobserved buses

CNO – –

[104] CGA Min. no. of PMUs CNO N − 1
Channel and

communication
limitation

Table 4. A summary of PSO based OPP.

Ref. Technique Objective Function
Constraints

Observability Contingency Installation Scheme

[107] BPSO Min. no. of PMUs Numerical CNO – –

[108] BPSO Min. total realistic
cost CNO N ≥ 1 –

[109] BPSO min. no. of
substations CNO –

Prioritize critical
elements. Prohibited

substation installation
and digital relays as

relays synchrophasors

[110] BPSO

Min. no. of PMUs,
Max. Measurement
redundancy, Max.

System observability

CNO N − 1 channel limitation

[111] BPSO Min. no. of PMUs CNO N − 1 Multistage

4.2.7. Cellular Learning Automata (CLA) Based OPP

To analyze physical systems cellular automata (CA) models are used, which are dis-
crete spatially extended dynamical systems. Mazhari et al. [112] proposed multi-objective
OPP with maximum measurement redundancy, CMs, ZIBs, and N − 1 contingency with
CNO. CLA with new local rules was used to find OPP.
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4.2.8. Artificial Bee Colony Based (ABC) OPP

The ABC algorithm is based on the intelligent foraging behavior of a group of hon-
eybees. ArulJeyaraj et al. [113] proposed multi-objective OPP for CNO and maximizing
voltage stability. A fuzzified binary ABC algorithm was used due to the conflicting nature
of objective functions. Weak buses found using fast voltage stability index were prioritized
in PMU placement to prevent outage.

4.2.9. Ant Colony (AC) Based OPP

The AC algorithm is based on the intelligent behavior of a group of ants to find the
optimal path using graphs. It has an advantage over simulated annealing and genetic algo-
rithm when the graph may change dynamically. Mouwafi et al. [114] proposed a two-stage
OPP. The first stage was solved using ant colony optimization to find minimum number
and position of PMUs for CNO along with channel limitation and N − 1 contingency. In
the second stage, a reduction strategy was proposed to find minimum PMUs measuring
channel capacity with CNO.

4.2.10. Binary Imperialistic Competition Algorithm (BICA) Based OPP

The imperialist competitive algorithm (ICA) was introduced by Atashpaz-Gargari and
Lucas [115] after inspiration from socio-political behaviors. Mohammadi et al. [116] used
BICA for OPP and considered pre-installed synchrophasors and optical fiber links in the
power system. Mahari et al. [117] also used BICA for OPP with CNO.

4.2.11. Tabu Search (TS) Based OPP

TS is used to optimize a multi-parameter model that can yield better results. However,
the implementation is not insignificant and is capable of solving many of the problems once
it is created. Korres et al. [118] proposed OPP using a recursive tabu search (RTS) scheme
for CNO. It investigates the two TS restrictions, i.e., tabu length and tabu search iterations,
along with three different TS initialization schemes and provided numerical observability.

4.2.12. Simulated Annealing Based OPP

Simulated annealing develops trial structural models to investigate energy hypersur-
faces, to cross obstructions, and to look for regions with low energy structures allows a
high degree of latitude in the growth of initial starting points. Nuqui et al. [119] proposed
a tree search method and simulated annealing for OPP, given that unobservable regions
diminish gradually with CNO. In addition to OPP, the authors also identified the location
for new facilities.

4.3. Machine Learning (ML) Based OPP

The learning and adaptation power of computer systems without explicit instructions
through training from data is called machine learning. ML-based optimization runs on
real-time data streaming to give optimal solutions. For optimization, different machine
learning algorithms, i.e., fitting logistic regression models and training artificial neural
networks, are used.

Ghosh et al. [120] used Bayesian networks to find overall PMU reliability by including
different necessary submodules and components of PMUs. The status of PMU was assessed
based on its components. Hence, reliability improvement of PMU through reliability
allocation to its submodules and components has been adopted. Full observability reliability
(OR), loss of data expectation (LODE), and loss of situational awareness (LOSA) were also
reported, validating improved PMU reliability. The description of the problem to identify
the single line outage was described in [121]. The voltage phasor of each bus node was
changed due to the change in the network topology. An ideal case of the PMU at each
bus was considered and then regularized techniques for optimization help to place PMUs
on a subset of buses in which as many outage events can be discriminated with the help
of a subset of buses. The test results show that the classifier performs as well when 25%
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of buses are furnished with the PMUs compared to the ideal case where entire buses are
furnished with PMUs.

5. Discussion and Future Work
5.1. Testbed Systems

For OPP results, verification literature include IEEE 14-bus, 30-bus, 57-bus, and 118-
bus systems as the most commonly used testbed systems. In the OPP problem, the Polish
system and energy corporation systems were the largest systems used, with 2746 and 2285
buses, respectively, to date.

5.2. Optimization Solvers

To solve the problem of PMU placement, different optimization solvers are used in
the literature. Optimization solvers help to improve decision-making around planning,
allocating, and scheduling scarce resources. MATLAB, TOMLAB, IBM, ILOG, VPLEX,
GAMS, and GUROBI are the popular solvers that are used in the available literature.

5.3. Pros and Cons

In this paragraph, we will discuss the pros and cons of commonly used techniques in
OPP. Different optimization techniques have their benefits and drawbacks. In literature, the
linear programming technique is widely used because OPP for CNO is a linear problem.
Some practical constraints make this problem nonlinear, and these are solved with other
optimization techniques. ILP is computationally fast but faces difficulty with non-linear
constraints. The problem of non-linear constraints in OPP was solved by converting them
to linear constraints using the linearization method. Particle swarm optimization has easy
implementation with more efficient control and fewer parameter adjustment problems. The
problem with PSO is that the computational time increases with the increased size of the
solution. A genetic algorithm provides the best Pareto optimal solution instead of a single
solution. The problem with GA is the long execution time. The greedy search algorithm
is good at providing the local optimal value with less computation, but it provides a
global solution only in very few cases. Simulated annealing is good at giving complete
observability as well as valuable dynamic data of the power system. The problem with
SA is very high computation time, which is why a reduction in time calculation is always
necessary. The artificial neural network provides many solutions that depend on the
computational model but faces the problem with the complexity of network structure. As
per discussion and investigation, ILP is more suitable than conventional techniques and
metaheuristic (PSO and GA) is more suitable as compared to heuristic and ML technique
to solve OPP.

5.4. Future Scope

Following are the factors that need further investigation in the PMU placement problem.

5.4.1. Application Based Planning

Currently, the researchers are not confined to complete network observability only
in the OPP problem, but they are trying to find the optimum location of PMUs from the
application point of view. The areas that need more attention are OPP with controlled
islanding, fault tolerance, small-signal analysis, and voltage stability from the application
point of view.

5.4.2. Node-Breaker Model

Almost all the work done in PMU placement was tested and verified on the bus-bus
model or bus-branch model on the IEEE test-beds and very few on practical systems. The
actual power system is depicted by the node-breaker model in reality. Placement of PMUs
on bus-bus or bus-branch models does not satisfy the requirements of a practical power
system in complete monitoring and control in case of contingencies. In the node-breaker
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model, there is no need for network reduction, which helps in combined state estimation
and network topology without approximation [122–126]. The transition from existing
models to the node-breaker model is an unexplored area in PMU placement that will
satisfy all the requirements of a practical power system, but the issue is it needs proprietary
information about the power system.

5.4.3. Hybrid Optimization Algorithm

A hybrid algorithm combines two or more algorithms that solve the same problem,
either choosing one (depending on the data) or switching between them over the course of
the algorithm. In OPP, a combination of ML/AI/classical techniques is an unexplored area
for future work. In our opinion, exhaustive techniques also need more exploration, as OPP
is an offline problem, and we can easily trade off time and save the cost of extra PMUs as
discussed in Section 3.2.

5.4.4. Performance Evaluators

In OPP, different techniques provide us with multiple solutions based on CNO and
different constraints, and there are few indexes to evaluate the performance of the solution.
This area needs further attention to introduce different performance indices to evaluate the
solution set.

5.4.5. µPMU Placement

In OPP, the distribution system is only investigated by a few authors. The distribution
system is completely different from the transmission network, in terms of less deviation
of magnitudes and angles of electrical quantities. The distribution system also faces the
problems of having no proper standardization, distributed generation islanding [127], re-
verse power flow, and false tripping as compared to the transmission system. Micro phasor
measurement units (µPMUs) are new in the market, specially designed for distribution
systems. If the resolution of µPMU is increased for the distribution network, then it will
have much more cost than the PMU for transmission [3,128–131]. The µPMUs have a much
wider range of applications in terms of operation, control, reliability, and future planning
of the system as discussed in [9,132,133]. Lack of proper communication infrastructure and
standardization are big hurdles in emerging µPMU technology for WAMS.

6. Conclusions

The critical issue in power system monitoring is to address the transition from the
conventional power system to the modern power system and ensure the full observability
of the system, or at least the maximum possible observability using PMUs. Therefore,
installing the minimum number of PMUs for complete system observability is the root
formulation in the PMU placement problem. This paper presents a careful summary
of different optimization techniques used along with objective functions used, i.e., cost
minimization of PMUs or maximize network observability, and constraints used, i.e.,
complete network observability, effects of conventional measurements, contingencies,
zero injection buses, communication infrastructure, controlled islanding, and improved
redundancy, PMUs (variable cost, channel limitation, multistage installation), and pre-
installed PMUs for the optimal PMU placement. For OPP results verification, the literature
includes IEEE 14-bus, 30-bus, 57-bus, and 118-bus systems as the most commonly used
testbed systems. MATLAB, TOMLAB, IBM, ILOG, VPLEX, GAMS, and GUROBI are the
popular solvers that are used to solve OPP. The most commonly used technique to solve
this problem is integer linear programming. The pros and cons of different techniques used
in OPP are discussed in the discussion section. It also provides a bird’s-eye view of the
OPP problem as a foundation for the research community and highlights the following
crucial research gaps. Realistic OPP needs to consider application-based planning, the
node-breaker model because it better represents practical power systems, and the use
of hybrid optimization algorithms for optimal results. Moreover, robust performance
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evaluation indices must be developed to compare different solutions offered by different
techniques. The identified research gaps will motivate the research community to find
practical solutions for power systems of the future.
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