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Abstract: The zigzag channel is the uppermost channel type of an industrial printed circuit heat
exchanger (PCHE). The effect of geometric properties on the flow and heat transfer performance
of the channel is significant to the PCHE design and optimization. Numerical investigations were
conducted on the flow and heat transfer characteristics of supercritical CO2 (sCO2) in semicircular
zigzag channels by computational fluid dynamics method. The shear stress transfer (SST) k–ωmodel
was used as turbulence model and the National Institute of Standards and Technology (NIST) real
gas model with REFPROP database was used to evaluate the thermophysical parameters of sCO2 in
this numerical method. The effectiveness of the simulation method is verified by experimental data.
Thermal hydraulic performance for zigzag channels with different pitch lengths, bending angles, and
hydraulic diameters are studied comparatively based on this numerical method, with the boundary
conditions which cover the pseudocritical point. The comparison results show that reducing the
bending angle and pitch length will strengthen the effect of boundary layer separation on the leeward
side of the wall and enhance the heat transfer performance, but the pressure drop of the channel
will also increase, and the decrease of channel hydraulic diameter is beneficial to the heat transfer
enhancement, but it is not as significant as that of the straight channel.

Keywords: supercritical CO2; zigzag channel; micro channel; heat transfer; computational fluid dynamics

1. Introduction

A printed circuit heat exchanger (PCHE) is a type of compact heat exchanger with high
efficiency, high application pressure, and high application temperature. It was invented
in Australia in 1980 and promoted for commercial application by Heatric. It has broad
application prospects in the fields of ultra-high-temperature gas-cooled reactors, floating
liquefied natural gas storage units, and other industrial energy [1]. PCHE typically employs
diffusion-bonded arrays of plates where microchannels are formed by chemical etching [2].
The typical cross section shape is semicircular and the hydraulic diameter in a PCHE
passage is between 700 µm and 1.5 mm [3]. The flow channel geometries can be designed as
straight, zigzag, S-shape, and airfoil-finned channels [4]. However, the zigzag-type channel
is more widely used in industrial applications. CO2 is a nontoxic and inexpensive gas. It
has excellent thermophysical properties (high specific heat, high thermal conductivity, and
low viscosity) near the pseudocritical point, as shown in Figure 1, which can considerably
enhance the heat transfer without sacrificing the hydraulic performance [5]. Consequently,
the application of CO2 in PCHE has become the focus of researchers.

Heat transfer and hydraulic characteristics are the basis of PCHE thermal design.
Various experimental and numerical investigations have been performed to optimize the
channel structures, fluid mediums, and operation conditions. Nikitin and his team first
published the experimental results of the flow and heat transfer characteristics of sCO2 in
zigzag PCHE in 2016 and developed the correlations of Nu and f, while the correlations
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are only applicable to channels of the specific geometric parameters and Reynolds number
range of those used in the experimental study [6]. Kruizenga et al. investigated the
thermal–hydraulic performance of sCO2 in a straight channel with semicircular cross
section using both experimental and numerical methods, the analysis results showed that
the commercial computational fluid dynamics (CFD) software can well predict the internal
heat transfer characteristics of the PCHE channel [7]. Saeed and Kim also conducted the
numerical analysis of an sCO2 PCHE using ANSYS-CFX and validated the simulation
results using published experimental data [8]. Tu and Zeng studied the flow and heat
transfer performance in semicircular straight channels of sCO2 fluid for both cooling and
heating process using CFD method. A modified model based on Douglas A. Olson [9]
correlation was proposed to predict the heat transfer performance of sCO2 in semicircular
channels for both heating and cooling conditions [10]. These literature conclusions fully
confirm the feasibility of the numerical method.
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Figure 1. Thermophysical properties of supercritical CO2 at different pressure: (a) specific heat;
(b) density; (c) dynamic viscosity; (d) thermal conductivity.

Subsequently, a large number of studies focused on finding better channel types. Kim
et al. compared the heat transfer and hydraulic performance of sCO2 in PCHE with zigzag
and airfoil-shaped fins. It was found that the thermal performance of the airfoil fin was
close to that of zigzag, but the airfoil fin had lower pressure loss [11]. Mohammed et al.
investigated the effect of channel shapes (zigzag, curve, and step) on the thermal and
hydraulic performance of PCHE and found that the zigzag channels have the highest value
of heat transfer coefficient and pressure drop [12]. Matsuo et al. conducted numerical
simulations of three different channel types (zigzag, chamfered zigzag, airfoil) to study the
geometrical effects on the local heat transfer coefficient and pressure drop for supercritical
CO2 in PCHE and developed new correlations for Nu of the zigzag channels [13]. In the
research of [14–16], the PCHE with zigzag channel and discontinuous S-shaped fins were
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numerically and experimentally investigated, and it was found that the S-shaped channel
can significantly improve the hydraulic performance while keeping almost equal heat
transfer performance compared to the zigzag channels.

There are also studies focusing on thermal hydraulic characteristics of the other fluid
media in PCHE channels. Dai et al. studied the flow and heat transfer performance of water
in the semicircular zigzag passage experimentally [17]. Minghui Chen et al. investigated the
thermal–hydraulic performance of a zigzag channel PCHE using helium as fluid media [18].

Most of the studies on the flow and heat transfer characteristics of PCHE channels
use a specific geometric parameter channel or straight channel, or the comparison between
zigzag channel and other types of channels such as S-type and discontinuous airfoil fin
type. The experimental data and empirical correlations given in these studies are also
limited to a certain type of channel, and the operating pressure, fluid bulk temperature,
and Reynolds number are limited to a certain range. However, there are few studies on
the effect of geometric parameters on the flow and heat transfer performance of a zigzag
channel. This paper aims at modeling the forced convection heat transfer of CO2 within
the zigzag channels, which are the main channel type of PCHE, and studies the effects of
its main geometric parameters (hydraulic diameter, pitch length, and bending angle) on its
internal flow and heat transfer parameters, especially near the pseudocritical point. The
numerical method and analysis results of this study can be used as a reference for PCHE
industrial design and channel performance investigation.

2. Numerical Modeling

A numerical method for analyzing the steady-state flow and heat transfer properties
of a zigzag channel is defined. In this method, ANSYS Fluent 2019 is used to solve the
governing equations of the steady turbulent flow of sCO2 in the zigzag channels. The NIST
real gas model with REFPROP V9.1 database was used to evaluate the thermodynamics
and transport of approximately of CO2. Yoon et al. [19] and Ren et al. [20] conducted
comparative studies using STD k–e, realizable k–e, and SST (shear stress transport) k–ω
turbulence models to simulate the thermal–hydraulic performance of sCO2 intube-flowing
and found that the SST k–ω turbulence model gives the best quantitative prediction. The
same conclusion was likewise reached in [21–24]. Therefore, the SST k–ωmodel is adopted
for further analysis in this study. The pressure-based coupled algorithm was used to
establish the coupling of velocity and pressure. The numerical simulation is considered
convergent as all iterative residuals of the governing equations are less than 10−5, and
area-weighted average outlet temperature and area-weighted average inlet pressure are
stable.

2.1. Geometry and Boundary Conditions

The flow and heat transfer performance of CO2 in horizontal zigzag channels is
investigated in this paper. Figure 2 shows a schematic diagram of the computational
domain with the boundary condition adopted in this research. The study will consider the
effects of different geometric factors, including hydraulic diameter, bending angle, and
pitch length on the internal flow and heat transfer characteristics of the channel, as shown
in Table 1. To check the independent effect of the geometric parameter, the comparative
study only changes one geometric parameter at a time, and the rest remains unchanged.
For example, for investigating the effect of bend angle θ on the channel flow and heat
transfer performance, four types of bend angle, 100◦, 115◦, 140◦, and 180◦ (straight), are
considered for the geometric model, while Lp is fixed to 7.75 mm and dh is fixed to 2 mm.

As shown in Table 2, the inlet temperature was changed from 280 K to 350 K to ensure
the bulk temperature Tb covers the pseudocritical point of CO2 for this analysis. The
outlet pressure of CO2 varies between 7.5 MPa and 9 MPa to keep its condition near the
pseudocritical point. Constant wall heat flux (12 kW/m2 for heating case and −12 kW/m2

for cooling case) and mass flux 200 kg/m2-s were adopted in this numerical simulation.
The thermal properties of CO2 were obtained from NIST Database (REFPROP V9.1).
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Table 1. Geometric parameters.

Geometric Parameters Values

Channel hydraulic diameters, dh, mm 1.17 (experimental validation), 2, 4
Bending angle, θ, ◦ 100, 115, 140, Straight

Channel pitch length, Lp, mm 3, 4.5, 6, 7.75
Channel total length, L, mm 500

Table 2. Boundary conditions in detail.

Inlet Outlet Wall

Temperature (K) Mass flux (kg/m2-s) Pressure (MPa) Constant heat flux (kW/m2)
280~350 200 7.5, 8, 9 ±12

2.2. Governing Equations

The governing equations regarding the continuity, momentum, and energy are ex-
pressed as Equations (1)–(3).

(1) Continuity equation:
∂

∂xi
(ρui) = 0 (1)

(2) Momentum equation [25]:

∂

∂xj

(
ρuiuj

)
= − ∂p

∂xi
+

∂τij

∂xj
+ ρgi (2)

(3) Energy equation:
∂

∂xi
(ui( ρE + p)) =

∂

∂xi

(
ke f f

∂T
∂xi

)
(3)

where ρgi is the gravitational body force, ui is overall velocity vector, T is the tem-
perature, ρ is the density, ui is the velocity vector, E is the total energy, p is the static
pressure, τij is the stress tensor, and ke f f is the effective conductivity (ke f f = k + kt, kt
is the turbulent thermal conductivity).

(4) Direct numerical simulation (DNS) of Navier–Stokes equations is the most accurate
method for turbulence; however, it is not feasible in most situations to resolve the
wide range of scales in time and space as the CPU requirements by far exceed the
existing capacity. For this reason, averaging procedures such as the Reynolds method
have to be applied to the Navier–Stokes equations to filter out the turbulent spec-
trum [26]. However, the averaging process introduces additional unknown terms into
the transport equations that need to be provided by suitable turbulence models. The
SST k–ω turbulence model is used in this paper and is described as follows.
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The transport equations of the k–ω model are expressed as Equations (4) and (5):

∂

∂xi
(ρkui) =

∂

∂xj

(
Γk

∂k
∂xj

)
+ Gk − ρβ∗kω (4)

∂

∂xi
(ρωui) =

∂

∂xj

(
Γw

∂ω

∂xj

)
+ Gω − ρβω2 (5)

where Gk is the generation of turbulence kinetic energy k due to mean velocity gradients,
Gω is the generation of ω, and Γk and Γw represent the effective diffusivity of k and ω
calculated by Equations (6) and (7).

Γk = µ + µt

(
F1

σk1
+

1− F1

σk2

)
(6)

Γω = µ + µt

(
F1

σω1
+

1− F1

σω2

)
(7)

where σk and σω are turbulent Prandtl numbers for k and ω, respectively, µ is the dynamic
viscosity of the fluid, and F1 is calculated as Equations (8)–(10).

F1 = tan h
(

φ4
1

)
(8)

φ1 = min

[
max

( √
k

0.09ωy
,

500µ

ρy2ω

)
,

4ρk
σω2Dωy2

]
(9)

Dω = 2(1− F1)ρσω2
1
ω

∂k
∂xj

∂ω

∂xj
(10)

The turbulent viscosity µt of the SST kω model is calculated using Equations (11)–(15).

µt =
ρk
ω

1

max
(

1
a∗ ,
√

2Sij F2
a1ω

) (11)

Sij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
(12)

F2 = tanh
(

φ2
2

)
(13)

φ2 = max

(
2

√
k

0.09ωy
,

500µ

ρy2ω

)
(14)

a∗ = a∗∞

 a∗0 +
ρk

6µω

1 + ρk
6µω

 (15)

where µt is the turbulent viscosity, y is the wall distance, and the constants used in the SST model
are as follows: a∗∞ = 1, a1= 0.31, σk1 = 1.176, σk2 = 1, σω1 = 2, σω2 = 1.168, a∗0 = 0.024.

The second-order upwind scheme of Equation (16) is used to discretize the convective
term of the above governing Equation [27].

ϕ f ,sou = ϕ +∇ϕ·→r (16)

where ϕ and ∇ϕ are the cell-centered value and its gradient in the upstream cell and
→
r is

the displacement vector from upstream cell centroid to the face centroid.
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2.3. Data Reduction

The hydraulic diameter, dh, was defined as Equation (17):

dh =
4A

Cwet
(17)

where A is the semicircular cross section area of the channel, and Cwet is the wet circumfer-
ence of the cross section.

The average heat convection coefficient, h, was defined as Equation (18):

h =
Qw

Tw − Tb
(18)

where Qw is the heat flux of the wall, Tw is the average wall temperature, and Tb is the fluid
bulk temperature.

The channel total pressure drop, ∆P, was defined as Equation (19):

∆P = Pin − Pout (19)

where Pin and Pout are area-weighted average pressure at the inlet and outlet of the channel,
respectively.

2.4. Grid Independence and Model Validation

Meshes in this study are generated using ICEM CFD 2019, and the size of the first layer
adjacent to the wall is less than 2× 10−6 m to keep the wall y+ < 1. Structured hexahedral
cells are used in the whole computational domain, and the mesh is locally densified at the
bend of the flow direction, as illustrated in Figure 3.
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Figure 3. Mesh structure of the computational domain.

Mesh independence analysis was performed with five different mesh sizes of 91,656,
152,988, 233,508, 314,028, and 394,548. Percentage changes in physical variables h and ∆P
were chosen as the basis for independence judgment. As the comparison result listed in
Table 3, the relative error percentage of h changes from 11.01% to 1.17%, and the relative
error percentage of ∆P changes from 19.78% to 0.59% with the mesh refinement. Conse-
quently, the mesh size of 314,028 elements is considered sufficient, and 300,000 is used as
the baseline for all the rest of the simulations.
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Table 3. Mesh independence analysis.

No. Number of Elements h (W/m2-K) Error (%) ∆P(Pa) Error (%)

1 91,656 1655.298 11.01% 629.7 19.78%
2 152,988 1644.926 11.56% 639.9 21.72%
3 233,508 1737.778 6.57% 605.9 15.26%
4 314,028 1838.227 1.17% 528.8 0.59%
5 394,548 1860.027 0.00% 525.7 0.00%

2.5. Validation by Experimental Data

The experimental data in [28] were used to verify the accuracy of the numerical
method. The experiments were carried out to investigate the thermal performance of sCO2
in a straight channel with semicircular cross section. The hydraulic diameter and total
length of the channel are 1.17 mm and 500 mm. The operating pressure, heat flux, and
mass flux are 8.1 MPa, −20 kW/m2, and 330 kg/m2-s, respectively. As shown in Figure 4,
the CFD simulation results and experimental data maintain a good consistency with the
maximum relative error 17.1% over all analyzed Tb range, which covers the pseudocritical
point. Thus, the numerical method adopted in this study for the flow and heat transfer
performance of sCO2 in the semicircular channel is reliable and comparatively accurate.
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Figure 4. Validation with experimental data [28].

3. Results and Discussion
3.1. Effect of Lp on the Channel Flow and Heat Transfer Performance

To study the effect of Lp on thermal and hydraulic performance of zigzag channel,
three different Lp (3, 4.5, and 6 mm) are considered for this comparative study. The other
geometric factors dh and θ take the valve 1.17 mm and 115◦, respectively, and remain
unchanged to avoid coupling effects. The channel has an inlet mass flux of G = 200 kg/m2-
s, an outlet pressure of Pout = 8 MPa, and a wall heat flux of Qw = ±12 kw/m2-k. The
bulk temperature Tb of CO2 varies between 280 K and 360 K, covering the pseudocritical
temperature Tm.

As shown in Figure 5, h of the three channels gradually increases and reaches the
maximum value as the Tb of the fluid approaches Tm. This is due to the surge of the specific
heat and thermal conductivity of CO2 near the pseudocritical point. ∆P of the three types
of channels decrease with the increase of Tb. This is mainly because the density of CO2
decreases with the rising of Tb. It can be seen from the comparison results of the three
channels that the heat convection coefficient h and pressure drop ∆P both decrease with
the rising Lp.

Figure 6 shows the velocity vector along the zigzag channel with different Lp. The
flow-field distribution possesses certain periodicity. A large velocity gradient occurs at the
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channel corner and the maximum velocity in the channel also appears in this area. Boundary
layer separation occurs at the corner of the channel and the local velocity increases due to
the appearance of vortex. As the velocity direction is different from the wall direction of the
next pitch, it can strengthen the mixing of the mainstream and the fluid near the wall, which
is conducive to the heat transfer enhancement. As can be seen from the partial enlarged
view, the local velocity increases with the reduction of channel Lp, which means that the
fluid at the boundary region is mixed with the fluid in the core region more sufficiently. As
a result, the reduction of Lp enhances the channel heat transfer, and improves the channel
total heat convection coefficient h. The local flow resistance ∆P also rises with the reduction
of Lp as the wall separation increases.
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Figure 5. Effect of LP on flow and heat transfer performance: (a) h of cooling case; (b) ∆P of cooling
case; (c) h of heating case; (d) ∆P of heating case.

Figure 7 represents the local convective heat transfer coefficient in zigzag channel with
different Lp. The local heat transfer coefficient increases significantly on the windward
side of the corner area. It is because the boundary layer is locally thinner under the direct
flushing of the incoming flow. As mentioned above, the local fluid velocity increases with
the decrease of channel Lp, which also leads to the local heat transfer coefficient increasing.

3.2. Effect of θ on the Channel Flow and Heat Transfer Performance

In this part of the analysis, four different θ of the channel (100◦, 115◦, 140◦, and straight)
are considered for this comparative study with the inlet mass flux G = 200 kg/m2-s, outlet
pressure Pout = 8 MPa, and wall heat flux Qw = ±12 kw/m2-k. dh and Lp of the channels
remain unchanged with the values 2 mm and 7.75 mm, respectively. The bulk temperature
Tb of the CO2 varies between 280 K and 360 K to cover the pseudocritical temperature Tm.



Energies 2022, 15, 2099 9 of 16Energies 2022, 14, x FOR PEER REVIEW 9 of 16 
 

 

 
Figure 6. Velocity vector along the zigzag channel with Lp of 3 mm, 4.5 mm, and 6 mm. 

 
Figure 7. Local heat transfer coefficient of the zigzag channel with Lp of 3 mm, 4.5 mm, and 6 mm. 

3.2. Effect of θ on the Channel Flow and Heat Transfer Performance 

In this part of the analysis, four different θ of the channel (100°, 115°, 140°, and 
straight) are considered for this comparative study with the inlet mass flux G = 200 kg/m2-
s, outlet pressure Pout = 8 MPa, and wall heat flux Qw = ±12 kw/m2-k. dh and Lp of the chan-
nels remain unchanged with the values 2 mm and 7.75 mm, respectively. The bulk tem-
perature Tb of the CO2 varies between 280 K and 360 K to cover the pseudocritical temper-
ature Tm.  

As can be seen from Figure 8, h and ∆𝑃𝑃 both decrease with the increase of θ, and 
better thermal performance for all of the zigzag channels is demonstrated, compared with 
the straight channel. The variation trend of h and ∆𝑃𝑃 of zigzag channel with Tb is the same 
as that of the straight channel. This provides an approach for defining the flow and heat 

Figure 6. Velocity vector along the zigzag channel with Lp of 3 mm, 4.5 mm, and 6 mm.

Energies 2022, 14, x FOR PEER REVIEW 9 of 16 
 

 

 
Figure 6. Velocity vector along the zigzag channel with Lp of 3 mm, 4.5 mm, and 6 mm. 

 
Figure 7. Local heat transfer coefficient of the zigzag channel with Lp of 3 mm, 4.5 mm, and 6 mm. 

3.2. Effect of θ on the Channel Flow and Heat Transfer Performance 

In this part of the analysis, four different θ of the channel (100°, 115°, 140°, and 
straight) are considered for this comparative study with the inlet mass flux G = 200 kg/m2-
s, outlet pressure Pout = 8 MPa, and wall heat flux Qw = ±12 kw/m2-k. dh and Lp of the chan-
nels remain unchanged with the values 2 mm and 7.75 mm, respectively. The bulk tem-
perature Tb of the CO2 varies between 280 K and 360 K to cover the pseudocritical temper-
ature Tm.  

As can be seen from Figure 8, h and ∆𝑃𝑃 both decrease with the increase of θ, and 
better thermal performance for all of the zigzag channels is demonstrated, compared with 
the straight channel. The variation trend of h and ∆𝑃𝑃 of zigzag channel with Tb is the same 
as that of the straight channel. This provides an approach for defining the flow and heat 

Figure 7. Local heat transfer coefficient of the zigzag channel with Lp of 3 mm, 4.5 mm, and 6 mm.

As can be seen from Figure 8, h and ∆P both decrease with the increase of θ, and
better thermal performance for all of the zigzag channels is demonstrated, compared with
the straight channel. The variation trend of h and ∆P of zigzag channel with Tb is the
same as that of the straight channel. This provides an approach for defining the flow and
heat transfer correlations in zigzag channels, as there have been several studies on the
correlations of Nu of the sCO2 semicircular straight channel [29,30].

Figure 9 shows the comparison of the velocity vector along the channel with different
bend angles of the zigzag channel. A sharper bending angle will significantly increase the
local fluid velocity at the turning position and aggravate the separation of the boundary
layer, which will result in more violent mixing of fluid between the wall area and the core
region. It means that the decrease of θ enhances the channel convective heat transfer under
the geometric parameters of the current study. Therefore, h increases with the decrease of θ.
As θ =180◦, the channel becomes a straight channel, and h is smaller than any of the zigzag
channels with bending angles.
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Figure 8. Effect of θ on flow and heat transfer performance: (a) h of cooling case; (b) ∆P of cooling
case; (c) h of heating case; (d) ∆P of heating case.
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Figure 10 shows the contour plots of local convective heat transfer coefficient in zigzag
channel under different θ. It can be seen that the convective heat transfer coefficient of
the wall surface of the zigzag channel is significantly higher than that of the straight
channel. The region with the highest local convective heat transfer coefficient appears on
the windward side of the turning angle of zigzag channel. It is because this area is washed
by the mainstream and has a locally thinner boundary layer.
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3.3. Effect of dh on the Channel Flow and Heat Transfer Performance

In this comparative evaluation study, three different dh of 1.17, 2, and 4 mm are used.
The other geometric factors Lp and θ are set to 4.5 mm and 115◦, respectively and remain
unchanged. The channel has an inlet mass flux of G = 200 kg/m2-s, an outlet pressure of
Pout = 8 MPa, and a wall heat flux of Qw = ±12 kw/m2-k. The bulk temperature Tb of CO2
varies between 280 K and 360 K, covering the pseudocritical temperature Tm.

With the reduction of channel dh, the distance from the mainstream region to the wall
also decreases, which is theoretically conducive to the heat transfer performance, and there
are indeed such conclusions in the study on the thermal performance of the straight channel
in [24,31]. Nonetheless, for the zigzag channels, the heat convection coefficient h does not
show an obvious increasing trend with the decrease of dh. It can be seen from Figure 11 that
h and ∆P increase significantly as dh changes from 4 mm to 2 mm, especially in the heating
cases. However, when dh changes from 2 mm to 1.17 mm, neither h nor ∆P show significant
change. This is different from the conclusion in the semicircular straight channel study.

Through the previous analysis cases, we found that the separation of boundary layer
promotes the mixing and diffusion in the fluid and enhances the heat transfer performance of
the zigzag channel. However, on the other hand, it will also reduce the effective heat transfer
area of the wall, which is disadvantageous to the heat exchange. Figure 12 shows us another
possible scenario. As for the dh = 4 mm diameter case, the boundary layer separation area
accounts for a large proportion of the total heat exchange area and the weakening effect of the
separation of boundary layer on heat transfer becomes dominant. It can also be seen from
Figure 13 that the local heat convective coefficient of the dh = 4 mm channel has not been
obviously enhanced on the windward side compared to the dh = 1.17 mm and dh = 2 mm
channels.

As can be also seen from Figure 12, the boundary layer separation effect is weakened
with the decrease of the dh. In the dh = 1.17 mm and dh = 2 mm diameter cases, the boundary
layer separation area will not account for as large a proportion of the total wall area as
that presented in dh = 4 mm case, which means that the boundary layer separation has a
positive effect on the heat transfer performance of the 1.17 mm and 2 mm channels. When
Lp >> dh, this positive effect is enhanced with the increase of dh. At the same time, there is
an opposite influence whereby the heat transfer will be weakened with the increase of dh
due to the increasing distance between mainstream region and the wall. The combination
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of these two effects makes the convective heat transfer coefficient close for the 1.17 mm and
2 mm channels.
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Figure 11. Effect of dh on flow and heat transfer performance: (a) h of cooling case; (b) ∆P of cooling
case; (c) h of heating case; (d) ∆P of heating case.
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All three geometric parameters produce effects on the flow and heat transfer perfor-
mance of the zigzag channel and have a certain regularity. When the size of dh is close
to Lp, the wall separation caused by channel turning will not strengthen the heat transfer
performance. For industrial design, from the point of view of enhancing heat transfer, the
Lp should be significantly larger than dh for the zigzag channels.

4. Conclusions

The thermal and hydraulic performance of sCO2 in zigzag channels of different pitch
lengths (3 mm, 4.5 mm, 6 mm, 7.75 mm), bending angles (100◦, 115◦, 140◦, straight), and
hydraulic diameters (1.17 mm, 2 mm, 4 mm) are studied comparatively with the boundary
condition covering the pseudocritical point using the CFD method. In this numerical
method, the SST k–ω is adopted as the turbulence model and shows the quantitative
prediction of the experiments’ heat transfer data. The following conclusions were obtained:

(1) The drastic change of CO2 thermophysical parameters has a significant effect on the
hydraulic and heat transfer characteristics of the zigzag channel near the pseudocriti-
cal point, and its variation tendency with bulk temperature is the same as that of the
straight channel.

(2) The reduction of pitch length enhances the effect of boundary layer separation behind
the corner, which can improve the heat transfer performance. As a result, the heat
convective coefficient and pressure drop of sCO2 in the zigzag channel increase with
the decrease of the pitch length.

(3) The decrease of channel bend angle can also increase the local velocity at the turning
location and enhance the boundary layer separation effect. Therefore, the heat convec-
tive coefficient and pressure drop of sCO2 in the zigzag channel both increase with
the decrease of channel bend angle.

(4) The decrease of channel hydraulic diameter is conducive to the heat transfer of the
zigzag channel, but it is not as significant as that of the straight channel, because
the boundary layer separation effect will be weakened with the decrease of channel
hydraulic diameter.
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Nomenclature

A Cross section area [m2]
C Circumference [m]
Cp Specific heat [J/kg-K]
d Diameter [m]
f Friction factor
G Mass flux [kg/m2-s]
h Heat convection coefficient, [W/m2-K]
k Thermal conductivity [W/m-K], turbulent energy [J/kg]
LP Pitch length [m]
Nu Nusselt number
P Pressure [Pa]
Q Heat flux [W/m2]
Re Reynolds number
T Temperature [K]
u Fluid velocity [m/s]
y Wall distance [m]
ρ Density [kg/m3]
∆P Pressure drop [Pa]

Greek Symbols

α Heat convection coefficient: [W/m2-K]
ρ Density [kg/m3]
ω Specific rate of turbulence dissipation [s−1]
µ Dynamic viscosity [kg/m-s]
y Wall distance [m]
θ Bend angle [◦]

Subscripts

b Bulk
h Hydraulic
in Inlet
m Pseudocritical point
out Outlet
w Wall
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