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Abstract: The standard of manual operation in smart grid, which require accurate manipulation, is
high, especially in experimental, practice, and training systems based on virtual reality (VR). In the
VR training system, data gloves are often used to obtain the accurate dataset of hand movements.
Previous works rarely considered the multi-sensor datasets, which collected from the data gloves, to
complete the action evaluation of VR training systems. In this paper, a vectorized graph convolutional
deep learning model is proposed to evaluate the accuracy of test actions. First, the kernel of vectorized
spatio-temporal graph convolutional of the data glove is constructed with different weights for
different finger joints, and the data dimensionality reduction is also achieved. Then, different
evaluation strategies are proposed for different actions. Finally, a convolution deep learning network
for vectorized spatio-temporal graph is built to obtain the similarity between test actions and standard
ones. The evaluation results of the proposed algorithm are compared with the subjective ones labeled
by experts. The experimental results verify that the proposed action evaluation method based on
the vectorized spatio-temporal graph convolutional is efficient for the manual operation accuracy
evaluation in VR training systems of smart grids.

Keywords: virtual reality; manual operation accuracy evaluation; graph convolutional neural network

1. Introduction

With the rapid development of artificial intelligence and computer vision, the virtual
reality (VR) technology has been widely used in vocational training, medical care, enter-
tainment, criminal investigation, and other fields. The rapid development of smart grid
brings more challenges to the security and stable operation of the power system, which
makes the operation training of the power engineers very important. VR training resulted
in better retention, task performance, learning speed, and engagement than the video
training counterpart, maintaining system usability [1]. This paper proposes an interactive
VR training system as an efficient and low-cost solution for training systems in smart grids,
which have entered the era of large power grids with high voltage, long distance, and
high parameters.

A simplified virtual reality training system for radiation shielding and measurement
in nuclear engineering is proposed, which enables beginners and non-experts to experience
the environment of radiation sources and radiation shielding walls [2]. In the VR training
of power grid, the evaluation, recognition, and analysis of hand actions are very important.
The evaluation results are obtained based on the data gloves, which is used to obtain the
coordinates, angular velocity, motion direction, and other data information of the wrist and
finger joints. These action data have high dimensionality and high difference, which makes
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them hard to deal with. How to efficiently evaluate the actions based on the movement
dataset collected by data gloves is the critical problem for the application of the VR training
system in smart grids.

A prerequisite for highly accurate movement evaluation is the accurate acquisition of
relevant data on hand movements. VR technology can detect data on hand movements
in real time, which is highly compatible with the need to obtain highly accurate data.
Three-dimensional pick-and-place tasks (10Cubes) have been developed in a virtual world,
10Cubes could calculate the hand shake level for the cure of Parkinson’s disease (PD) [3].
This paper combines artificial intelligence technology with VR technology, the target
elements such as actions and objects in the virtual environment can be serialized and the
required features can be extracted for analysis, and the relevant models can be used for
adaptive learning to improve the accuracy of action evaluation by using VR technology.

The main contributions of this paper as follows: 1. The application of VR technology
to the operation training of the power grid is proposed, and a method to process the data
obtained from the data glove to datatize the action features is also proposed; 2. a deep
learning model is proposed with high recognition accuracy for the action evaluation in the
operation training of the power grid; 3. A graph convolution kernel with a spatio-temporal
mechanism is constructed, adding an attention mechanism and applying a division strategy
for hand skeletal joints to improve the input of vector graph convolution deep learning
model and improve the accuracy of action evaluation.

The organization of this paper is presented as follows: 1. The Introduction presents
the training of power grid program using VR technology and the problem of how to
make the accuracy of action evaluation improved in a virtual environment and, finally,
introduces the solution proposed in this paper; 2. The Literature Review introduces the
current research results and solutions to related problems in the world and summarizes
the problems found to be unsolved, introduces the data glove and proposes a solution;
3. The Vectorized Spatio-temporal Graph Convolutional for VR action evaluation used in
this paper is introduced, and the method of constructing the graph convolution kernel,
attention mechanism, and division strategy are also introduced; 4. In the Application
section, the action data acquisition method is introduced, and the obtained experimental
results are analyzed; 5. In the Conclusion, to summarize the whole paper, it is demonstrated
that the Vectorized Spatio-temporal Graph Convolutional deep learning model can be
applied to hand recognition in a virtual environment, and it is proven that the accuracy can
be improved by applying spatio-temporal graph convolution, attention mechanism, and a
hand skeletal joint division strategy to the Vectorized Spatio-temporal Graph Convolutional
deep learning model.

2. Literature Review

The similarity function of humanoid robot imitating human motion based on motion
rhythm is proposed, and the solution method of motion trajectory when it is highly similar is
given [4]. The pose word bag method is proposed to align the action sequences, which can
calculate the similarity between the two action sequences more accurately [5]. Based on the
benchmark analysis method of Kinect technology, the differences of action characteristics of
people of different ages are analyzed and the action characteristics are obtained [6]. A general
combination of action features is proposed, and a multidimensional dynamic time adjustment
method is used to evaluate the similarity of actions [7]. On the basis of the Kinect SDK
obtaining the position information of bone joints and describing quaternion rotation, a human
pose recognition algorithm that simulates human bone motion is proposed in [8]. A human
body structure model combined with spatio-temporal information is proposed to describe
action features and achieved good results in the evaluation of action similarity [9]. Space-time
trajectory is used to represent the coordinates of limb joints and their changes with time, so that
the action similarity evaluation is assigned to the similarity calculated for trajectory shape on
Riemannian manifold [10]. A fast, simple, and more robust moving pose feature MP (Moving
Pose) is proposed to evaluate the similarity of human motion with low delay [11]. On the
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basis of proposing a function similar to mime motion and establishing kinematic constraints
including ground contact conditions, a high-precision motion algorithm satisfying kinematic
constraints is proposed in [12]. A joint angle sequence model for human motion recognition
is proposed, which uses Kinect sensors to obtain depth images and improves the matching
between motion capture and images [13]. A full-connection depth Long-Short Memory Network
(Long Short-Term Memory, LSTM) model is proposed to identify human action [14]. A human
action recognition model based on the combination of LSTM and CNN is proposed in [15]. A
construction worker’s motion recognition model using the Long Short-Term Memory (LSTM)
network based on an evaluation of the effectiveness of motion sensors’ numbers and locations
to maximize motion recognition performance is proposed in [16].

For human-specific action recognition problems based on extremely unbalanced
datasets, a specific action recognition method suitable for extremely unbalanced datasets
is proposed in [17]. Based on the characteristics of human skeleton sequence data to fully
integrate data modeling and graph structure, the use of graph convolutional networks is
proposed in [18]. A novel skeleton transformer module is designed based on the attention
mechanism, which achieves automatic rearrangement and selection of important skeleton
joints by linear transformation, and classifies actions using CNN models. This class of
methods mainly uses the advantages of CNN model in dealing with image recognition
problems to achieve action classification of skeleton sequences is proposed in [19]. Use a
convolutional neural network (CNN) to estimate human poses by analyzing the projection
of the depth and ridge data that use a convolutional neural network (CNN) to estimate
human pose by analyzing the projection of the depth and ridge data, this method can
eliminate the 3D information loss and drift of joint positions that can occur during the
estimation of human poses [20]. The coordinates of the skeleton joints can be transformed
into a tensor and fed into the designed Neural Network learning action features is proposed
in [21]. A hierarchical RNN combines features from different body parts in layers. In the
shallow layer, each sub-network extracts features on individual joints, and then fuses these
feature representations in the layers. After all, the node information is fused, the network
performing the final action is proposed in [22].

After the GCN was proposed, the graph attention network was designed according
to the attention mechanism by superimposing the hidden self-attention layer, assigning
different weights to different nodes in the neighborhood, and, finally, classifying nodes on
the graph structure data is proposed in [23]. A GCN-based model for human action recog-
nition was first proposed in 2018, called the ST-GCN (spatio-temporal graph convolutional
network), in [24]. Subsequently, an Action-Structured GCN is proposed for human action
recognition and prediction based on this model, which uses the attentional idea to design
A-links to evaluate the importance of linkage between any nodes and uses S-link to obtain
higher order dependencies of the graph and learns the spatio-temporal characteristics of
the action by the combination of the two types of links. The GCN-based approach uses
graph structure to model the skeleton and extracts features by convolutional operations on
the graph to recognize and predict actions is proposed in [25].

Based on BP neural network, an intelligent optimization method of motion manage-
ment system has carried out experiments and analysis from feature extraction, feature
selection, and principal component analysis to the selection of support vector machine
model functions [26]. A novel multiview video-based markerless system is proposed, that
uses 2D joint detections per view (from OpenPose) to estimate their corresponding 3D
positions while tackling the people association problem in the process to allow the tracking
of multiple persons at the same time [27]. A novel algorithm called RSC-Net is proposed,
which consists of a Resolution-aware network, a Self-supervision loss, and a Contrastive
learning scheme, and this network is able to learn the 3D body shape and pose across dif-
ferent resolutions with a single model [28]. Rigorous robust benchmarks, termed COCO-C,
MPII-C, and OCHuman-C, are built to evaluate the weaknesses of current advanced pose
estimators, and a new algorithm termed AdvMix is proposed to improve their robustness
in different corruptions [29]. To improve the practicality of the lower extremity exoskeleton
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robot, a wavelet packet transform (WPT)-based sliding window difference average filtering
feature extract algorithm and the unscented Kalman neural network (UKFNN) recognition
algorithm is proposed in [30]. For observing the state information between the object and
the hand by using customized ten kinds of HIM manipulation in order to recognize the
complex HIMs, a human in-hand motion (HIM) recognition system based on multi-modal
perception information fusion is proposed in [31]. A hybrid feature selection method by
combining filter and wrapper methods (FESCOM) was proposed to eliminate irrelevant
features for motion recognition of upper-limb exercises [32].

An AR-based Training System for Piano Performance is proposed, two user studies
conducted by us show that the system requires relatively less cognitive load and may
increase learning efficiency and quality [33]. AR technology is another novel research
direction, but it may require more devices for support.

In conclusion, many existing methods can extract action features from color and deep
images, while multi-sensor vector datasets for data gloves have few processes for such
data to complete action evaluation of VR systems. In the VR technology-based power grid
training, human–computer interaction and data acquisition are inseparable from the data
gloves, which are used in this paper as shown in the Figure 1.

Figure 1. VR data glove.

In view of the problems existing in the appellate research, this paper collects the
data through the data gloves in the virtual reality environment, first preprocesses the
data, and provides different evaluation strategies for different actions, so as to establish
a Vectorized Spatio-temporal Graph Convolutional deep learning model to complete the
action evaluation in the VR environment.

3. Vectorized Spatio-Temporal Graph Convolutional for VR Action Evaluation Method

Human motion recognition is an active research field in computer vision and has been
widely used in various fields. However, traditional motion recognition and evaluation
often rely on manual feature extraction. These methods will miss many high-level features
contained in hand structure. Dynamic hand movement contains important operation
information. In the operation training of power grid, the evaluation of hand movement
needs higher accuracy. Therefore, a learning model that can improve the accuracy of
action recognition is urgently needed.

The accuracy of action recognition for a certain action is usually expressed by the
following equation:

Gaccuracy(x) =
Ncorrect(x)
Ntotal(x)

, (1)
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where x is the action type, Ncorrect(x) is the number of times that the action sequences
belonging to type x in the test action dataset are correctly classified, and Ntotal(x) is the
total number of action sequences belonging to type x in the test action dataset:

P(x) = max
{

Gaccuracy(x)
}

, (2)

a learning model to maximizes the value of the Gaccuracy(x) is needed.
In this paper, a vector graph convolution depth learning model is proposed to solve

some problems existing in traditional motion recognition and evaluation and to improve
the accuracy of motion recognition. Firstly, the hand motion data are obtained through
the data glove, and the hand structure sequence is used as the input to construct the
hand vector graph. Then, the depth features in the vector graph are extracted through
the graph convolution network and adding attention mechanism to maximize the value
of P(x), in order to complete the comparison and evaluation of the tester’s motion and
standard motion.

3.1. Algorithm Refinement Process Design

This paper constructs a dataset by using the data obtained from the data glove to assist
the power grid operator to correct the non-standard operation during his own training.
Through cooperation with relevant professional staff in the industry, UE4 is used and
three basic static functions are written in combination with the blueprint to collect the
hand operation actions, record the hand bone key points in NTU RGB + D dataset format,
and finally change the convolution core of ST-GCN network and train the dataset according
to the hand actions during operation. The obtained training model can complete the
hand movement recognition, and has strong generalization performance and robustness.
The detailed flow chart of hand motion recognition algorithm is shown in Figure 2.

Figure 2. Algorithm refinement flow chart.

3.2. Algorithm Refinement Process Design

The article maximizes the value of P(x) by learning the model using a Vectorized
Spatio-temporal Graph Convolutional deep learning model. Different from 2D or 3D
convolution neural networks, the implementation details of graph volume are different.
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In spatio-temporal convolution graphs, the spatial graph in a single frame is represented by
adjacency matrix A, and the self-connection in the graph is represented by identity matrix I.
Therefore, in the volume product of a single frame spatial graph, the following equation
can be used:

fout = Λ
1
2 (A + I)Λ

1
2 finW. (3)

For the spatio-temporal graph, fin in the equation is an input characteristic graph,
which is represented by tensors (C, V, T). The convolution is the result of standard
two-dimensional convolution multiplied by normalized adjacency matrix.

Because the division of receptive fields in the process of graph volume always involves
the division of subsets of adjacent nodes, different division methods have different imple-
mentation details. For non-unitary subset partition, the original adjacent matrix needs to
be decomposed into several matrices for operation:

A + I = ∑
j

Aj. (4)

In the above equation, the adjacency matrix is disassembled into the sum of adjacency
matrices in different subsets. For example, in the strategy mode divided according to the
center of gravity of the hand structure, the A0 = I, A1 = Acentriptal , and A2 = Acentri f ual ,
the above equation is changed to the following:

fout = ∑
j

Λ−
1
2 AjΛ−

1
2 finWj. (5)

The weight vectors of the plurality of output channels are stacked to form a weight matrix
W. Actually, the feature map input in space-time is taken as the tensor (C, V, T) dimension.

The model of the whole network is composed of 9 different spatio-temporal convo-
lution layers, as shown in the Figure 3. Because different nodes need to share weights in
the whole graph convolution process, the coherence between different input data is very
important. When the data are sent into the whole model, it needs to go through a batch
normalization layer to normalize all hand information. In order to prevent over fitting of
data, this paper uses the Dropout method to randomly discard some data units, and sets
the fourth and seventh layers as pooling layers. Finally, the feature vector is generated
through full connection and classified by SoftMax function to explain what is the action
input hand data sequence.

3.3. Construction of Hand Vector Graph

After determining to use the Vectorized Spatio-temporal Graph Convolutional deep
learning model, the hand vector map needs to be constructed as the input to this learning
model. The data obtained by the data glove are a series of data for a period of time,
including the information of hand joint points at different time points. In order to extract
the motion features of the whole hand movement, it is necessary to construct a hand
structure vector diagram, which is an undirected graph, as shown in Figure 3. G = (V, E)
is composed of T frames with N joint points in each frame. In this vector diagram, all
nodes from different frames form the set V = {vti|t = 1, ..., T; i = 1, ..., N}, in which t
represents the serial numbers of all frames, and i represents the serial numbers of key
points in a certain frame. Therefore, the feature vector F(vti) of the i-th node in the t-th
frame is the three-dimensional coordinate of the point. The eigenvectors of all nodes are
used as the inputs of convolution neural network, and convolution calculation is carried
out. Constructing the whole hand motion convolution graph can be divided into two steps.
In the first step, in each frame sequence, all the hand joint points are connected in a natural
connection mode to form a spatial map of the hand structure. Secondly, for different joint
points of the hand, as shown in Figure 4, the same joint points in continuous frames are
connected to form a time chart of the hand structure.
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Figure 3. Figure convolutional network model structure.

Figure 4. Hand actions vector diagram.

Then, the space map and time map are connected to form a Shi Kongtu based on the
hand structure. Comparing graph convolution with CNN convolution network, the co-
ordinates of each hand node can be regarded as a channel, and this model is applied to
two-dimensional coordinates or three-dimensional coordinates. Similarly, the edge set E is
composed of two molecular sets. The first subset is the connecting line of hand joint points
in each frame, expressed as ES = {vtivtj|(i, j) ∈ H}, where H is all joint points in the hand
structure. The second subset is between frames, the same joint point connection, and this
interframe connection is represented as EF = {vtiv(t+1)i}. Therefore, for a particular joint
point, connecting all its edges ES can be regarded as the spatial motion track of the joint
point. All point sets and edge sets are hand vector graphs.

The connected hand motion vector graph can be compared with the input picture
in CNN. The picture in CNN is equivalent to the pixel intensity vector arranged in the
2D image grid, while the skeleton motion space-time graph is the joint coordinate vector
arranged in the 3D coordinate system. The classification method is roughly the same as
CNN. The high-level feature map in the original skeleton space-time map is extracted by
multi-layer convolution and finally classified by the SoftMax classifier.

3.4. Construction of Hand Vector Graph

After processing the input, the next step is to construct the graph convolution kernel
using the learning model. At the τ moment, there are point set Vt of N joint points in the
spatial plot and the edge set is obtained from these joints ES = {vtivtj|(i, j) ∈ H}. Using a
graph convolution kernel of a K× K size and an input convolution graph with c channels,
the output at graph node x on a certain channel can be shown in the following equation:

fout(x) = ∑K
h=1 ∑K

W=1 fin(P(x, h, w))W(h, w), (6)

where P represents the sampling function, which specifically means the set of adjacent
nodes within the field of view of node x in a graph. It is equivalent to Z2 × Z2 → Z2.

In the traditional image convolution, this sampling process can be represented as
the P(x, h, w) = x + P

′
(h, w), centered on the sampling function will obtain the adjacent

surrounding pixels, plus the x pixel itself, which is the visible receptive field.
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In a graph convolution, if a graph node vti is specified, its receptive field will be
defined as the set of points adjacent to the point.

In graph volume, if a graph node is specified: B(vti) = {vtj|d(vtj, vti ≤ D)}, where
d(vti, vtj) is represented as the shortest path from point vti to point vtj. In the graph
convolution model, D is set to 1, that is, the adjacent points of a node are all points with
a distance of 1. Thus, it can be deduced that the sampling function P : B(vti)→ V in the
graph convolution can be expressed in the following equation:

P(vti, vtj) = vtj. (7)

In Equation (6), W is the weight function, which means that a weight vector with
dimension C is used as the inner product with the input eigenvector of the sampling
function. In the process of constructing the weight function of graph convolution, the point
set B(vti) of a node vti can be divided into k subsets, and each subset has corresponding
labels which can simplify the heavy task of adding different labels to each adjacent node.
Thus, the mapping of each point in the starting point set B(vti) to its corresponding subset
can be established, lti : B(vti)→ {0, ..., K− 1}, where lti represents the mapping rules for
the adjacent set of adjacent points. From this rule, the tensor (C, K) can be used to construct
the weight function as follows: W(vti, vtj) : B(vti)→ RC. Then:

W(vti, vtj) = W
′
(lti(vtj)), (8)

the main convolutional kernel of the spacetime map can thus be established.
As the redefinition adopts the function with the weight function, Equation (6) can be

applied to the graph convolution:

fout(x) = ∑
vti∈B(vti)

1
Zti(vti)

fin(P(vti, vtj)W(vti, vtj)). (9)

Here, the regularization term Zti(vtj) = |{vtk|lti(vtj)}| equal to the cardinality of the
corresponding subset. This term increases the contribution of the different subsets.

From Equations (7)–(9), it can be obtained:

fout(x) = ∑
vti∈B(vti)

1
Zti(vti)

∗ w
′
(lti(vtj)). (10)

After defining the spatial graph CNN, now begin modeling the spatio-temporal
dynamics in the skeletal sequence. Recall that in the construction of the graph, the temporal
aspect of the graph was constructed by connecting the same joints between consecutive
frames. This allows us to define a very simple strategy to extend the spatial graph CNN to
the spatio-temporal domain. This paper extends the notion of a neighborhood to include
joints with also temporal connections. Extending the model of the spatial domain into the
time domain, the resulting adoption function is the following Equation (11):

B(vti) = {vqj|d(vtj, vti) ≤ K, |q− t| ≤ bΓ
2
c}, (11)

where Γ is the convolutional kernel size of the control time domain.
To complete the convolution operation on the ST graph, the weight function is needed

too, which is the same as the unique case of the spatial graph. Because the timeline is
ordered, directly modified the label mapping lSTto be according to vti generates a spacetime
neighborhood, resulting in the weight function Equation (12), where lti(vtj) is the label
mapping for single frame case at vti:

lST(vqj) = lti(vtj) + (q− t + bΓ/2c)× K. (12)
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In this way, convolution operations are defined for the constructed spatio-time graph.

3.5. Attention Mechanism

In the process of exercise, the importance of different trunk is different. For example,
leg movements may be more important than the neck. Through the leg movements,
running, walking, and jumping can be judged, but the neck movements may not contain
much effective information. Therefore, different torsos can be weighted.

By transforming Equation (9) the equation of graph convolution in spatial dimension is:

fout(x) = ∑Kv
k wk( fin(Ãk

⊙
Mk)). (13)

The spatial graph convolution layer is modified, and the graph attention module is
introduced so that the model can not only learn the parameters of the network, but also
optimize the connected graph to obtain a graph structure more suitable for describing
actions, so as to better predict actions. Specifically, after adding the graph attention module,
the spatial graph convolution equation can be expressed as:

fout(x) = ∑Kv
k wk( fin(A

′
k + Bk)). (14)

Compared with Equations (13) and (14) can be seen that the graph attention module
includes two parts, in which A

′
is a data-driven graph matrix. Firstly, it initializes the

parameters through the graph volume kernel constructed in Section 3.4 and then updates
the parameters in the process of network propagation. Different from Equation (13), Ã
is a numerically fixed adjacency matrix, and M learns the strength of the connection. No
new connection structure can be generated in the whole training process. The use of a
new matrix A

′
can completely replace the effect of interaction with M. Matrix A

′
can not

only make full use of the initial physical connection relationship but can also optimize
the topology of the connected graph in the training process and update the weight of the
edge, so as to realize the effect of replacing two matrices with one matrix. In addition, A

′

is unique in different convolution layers, so it is personalized in each layer and contains
different semantics.

The second part of the module is the graph attention matrix B, which can help the
model better model the action for each sample and increase the personalization of the
model. Specifically, for an input feature, f (vti)(the feature of a node vti), two convolution
layers are first used to map f (vti) into vectors K and Q, namely:

Kti = WK f (vti), (15)

Qti = WQ f (vti), (16)

where WK and WQ are the weight matrices corresponding to the two convolution layers,
respectively. Next, calculate the inner product u(t,i)→(t,j) = <Qti, Kti> of Qti (Q vector of
node vti) and Kti (k vector of node vti). Where nodes vti and vtj are in the same time step;
〈, 〉 stands for inner product symbol. Inner product u(t,i)→(t,j) is called the similarity of
node vti and node vtj. Then, in order to limit the range of u to 0∼1, it is normalized by
SoftMax function, i.e.,:

α(t,i)→(t,j) =
exp(u(t,i)→(t,j))

∑N
n=1 exp(u(t,i)→(t,n))

, (17)

α is the normalized similarity of inner product u, that is, the element of matrix B in
Equation (14). It can be seen that matrix B is also completely learned from different action
samples. It can effectively learn the weights of any two body joint points in different actions.
This data-driven approach increases the flexibility and versatility of the model and enables
the model to effectively predict actions in the face of diverse data. By adding the above-
mentioned graph attention module, the network can continuously optimize the graph
structure in the training process, adapt to the changes of various samples, and form the
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topology that is most suitable for describing actions, thus finally improving the performance
of the model and making the results of action prediction more accurate.

3.6. Partitioning Strategy

In the process of constructing the convolution kernel of the spatio-temporal graph, it
involves the subset division of the adjacent node set of a root node. Because the spatio-
temporal graph is not similar to the image, it has a rigid spatial sequence structure. There-
fore, the size of the receptive field of a point and the subset division of adjacent point
sets play an important role in completing the whole convolution. To determine the sub-
set partition strategy of point set, the following three partition strategies are designed in
determining mapping 1.

The first is the unique partition strategy, which divides the root node and all adjacent
nodes into a subset. In this strategy, the eigenvector of each node is an inner product of
the same weight vector. This strategy is used to represent the inner product of the average
eigenvector and weight vector of all adjacent nodes. This partition strategy is expressed as
K = 1 and lti(vti) = 0, ∀i, j ∈ V.

The second partition strategy is based on distance. The nodes around the root node vti
are divided according to their distance d(vtj) from the root node. Since the limit of distance
D is set to 1 in the process of constructing convolution kernel, the subset can be divided
into two parts. When d = 0, it means that the root node itself is a subset. When d = 1,
it means that all points with a distance of 1 from the root node are a subset. Having two
subsets means that there are two different weight vectors. This division can be expressed
as k = 2 and lti(vti) = d(vti, vtj).

The third division strategy is the spatial configuration division proposed for hand
movement. This division strategy divides the whole point set into three subsets, in which
the root node itself is a subset, the adjacent nodes closer to the center of gravity of the whole
hand structure than the root node itself are divided into a subset, and the adjacent nodes
farther away from the center of gravity of the whole hand structure than the root node itself
are divided into a subset. The center of gravity of the hand structure is determined by the
average three-dimensional coordinates of all joint points in the same frame. The theoretical
basis of this division strategy is that in the process of hand motion, and motion can be
simply divided into centripetal motion and centrifugal motion. This division strategy can
be expressed as the following equation:

lti(vti) =


0. if rj = rl

1. if rj < rl

2. if rj > rl ,

(18)

where ri represents the average distance from all nodes in the figure to the center of gravity
of the hand structure, which is obtained from all data information in the training set.

Using different division strategies for different action types can lead to a substantial in-
crease in the accuracy of action recognition. This paper mainly focuses on action evaluation
of hand movements, so the third division strategy is used to maximize the value of P(x) .

4. Application Instances

There are many risk points in power operations, and these risks can expose the safety
of power operations in a more comprehensive way. The virtual operation experiments
in this paper are carried out in the laboratory, and the experiments are repeated for the
key actions in power operations, and the corresponding data are recorded for the virtual
operation action evaluation experiments.

4.1. Method of Action Data Acquisition

During training, it is necessary to obtain the data of the data gloves in virtual environ-
ment in real time. After many tests, the hand model is divided into several nodes according
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to the finger joints, and the motion data are obtained. Meanwhile, for readability, the action
data are saved in XML format , as shown in the Figure 5.

Because the NTU RGB + D action recognition dataset is a dataset trained with data
features, which is consistent with the idea of extracting hand actions features and saving
them with data described above, and the NTU RGB + D action recognition dataset has a
huge basic database, the data of the data glove stored in the XML file above are integrated
into the data of the NTU RGB + D dataset.

Figure 5. Action data conversion diagram.

The dataset contains 60 categories of actions with a total sample of 56,880, of which
40 categories are daily behavioral actions, 9 categories are health-related actions, and 11 cat-
egories are two-person mutual actions. These actions were performed by 40 individuals
ranging in age from 10 to 35 years old. The dataset was acquired by the Microsoft Kinect
v2 sensor and used three different camera angles, with data captured in the form of depth
information, 3D skeletal information, RGB frames, and infrared sequences , as shown in
the Table 1. In this paper, five important hand movements in the NTU RGB + D dataset are
mainly used as data collection and training for gesture recognition.

Table 1. Select the test action dataset.

A1: drink water A2: eat meal A3: brush teeth A4: brush hair A5: drop

A6: pick up A7: throw A8: sit down A9: stand up A10: clapping

A11: reading A12: writing A13: tear up paper A14: put on jacket A15: take off jacket

A16: put on a shoe A17: take off a shoe A18: put on glasses A19: take off glasses A20: put on a hat/cap

A21: take off a hat/cat A22: cheer up A23: hand waving A24: kicking something A25: reach into pocket

A31: point to something A32: taking a selfie A33: check time (from watch) A34: rub two hands A35: nod head/bow

A36: shake hands A37: wipe face A38: salute A39: put palms together A40: cross hands in front

A41: sneeze/cough A42: staggering A43: falling down A44: headache A45: chest pain

A46: back pain A47: neck pain A48: nausea A49: fan self A50: punch/slap

A51: kicking A52: pushing A53: pat on back A54: point finger A55: hugging

A56: giving object A57: touch pocket A58: shaking hands A59: walking towards A60: walking apart

4.2. Experiment and Result Analysis

In order to verify the reliability and feasibility of the vector graph convolution depth
learning model proposed in this paper, it is verified by the accuracy of motion recognition.
Taking the whole VR interactive system based on motion recognition as the experimental
object, the actions made by experimenters in the laboratory were collected, and the feasibil-
ity of the model was determined by recording the recognition accuracy of different actions.
Because the interactive mode of motion recognition abandons the problems of key fixation
and interactive rigidity in the traditional interactive mode, it embodies the advantages
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of the new VR interactive mode. According to the research of actual hand movements
and the types of hand movements in specific application scenarios, and according to the
characteristics of hand movements, reflect the state of hand movements as much as possible.
The main flow of the ST-GCN experiment is shown in the Figure 6.

This paper estimates the posture of hand movements and construct spatio-temporal
maps on bone sequences. After that, the multi-layer spatio-temporal image convolution
operation (ST-GCN) is applied, and a higher-level feature map is gradually generated on
the image. Then, it can be classified into corresponding operation categories by using the
standard SoftMax classifier.

Figure 6. ST-GDN experiment flow chart.

Because ST-GCN shares weights on different nodes, it is very important to keep the
input data ratio consistent on different nodes. In the experiment, the data are regularized
and input into batch normalization. The ST-GCN model consists of nine layers of spatio-
temporal map convolution. The first 3 layers output 64 channels, the middle 3 layers
output 128 channels, and the last 3 layers output 256 channels. There are nine temporal
convolution kernels. In each ST-GCN, residual linking is used, shedding is used for feature
regularization, and half of the neurons are shed. The temporal convolution layers of the
fourth and seventh layers are set as polarization layers. Finally, the outputs of 256 channels
are collected and classified globally by SoftMax. It is optimized by SGD. The learning rate
is set to 0.01 and reduced by 0.01 every 10 epoch iterations.

In this paper, five hand movements, A5, A16, A20, A33, and A34, commonly used in
Table 1 are taken as experimental movements, because other hand movements similar to
rubbing two hands, putting on a shoe, etc., are not conducive to testing the accuracy of
finger actions in hand movements. The cross-validation strategy is adopted, that is, half
of the data is used to train the classifier, and the other half of the data is used to verify
the classification accuracy. Five hundred interactive experiments were conducted on these
five hand movements, and the data were recorded through the data acquisition method in
Section 4.1. The whole data sequence of each action is used to construct the hand action
vector diagram. Half of the data is used to train the model, and the other half is used to
predict. The experimental results of action recognition accuracy are shown in Table 2.

In the NTU RGB + D dataset, there are 948 samples for each action type. Sample
number in Table 2 is the data number for each action type. In this paper, 52 self-test samples
to the sample number for each action type were added into the NTU RGB + D dataset, then
added our own data to each experiment.

The experimental results in Table 2 can be used to obtain the histogram of the accuracy
rate in relation to Sample number, Action type, and Training number, respectively, for better
observation of the experimental results and change patterns.

The histogram of the effect of sample number in Figure 7 shows that when the action
type is 60 and the training number is 10, the accuracy of action recognition increases as the
number of samples increases. When the sample number for each action is 20, the degree
of TOP1 accuracy is 3.33%, and the degree of TOP5 accuracy is 10.28%; when the sample
number for each action is 30, the degree of TOP1 accuracy is 5.84%, and the degree of
TOP5 accuracy is 23.92%; when the sample number for each action is 50, the degree of
TOP1 accuracy is 11.77%, and the degree of TOP5 accuracy is 39.07%; when the sample



Energies 2022, 15, 2071 13 of 17

number for each action is 500, the degree of TOP1 accuracy is 60.76%, and the degree of
TOP5 accuracy is 89.78%. It can be seen that when the sample number of each action is
increasing, the degree of TOP1 accuracy obviously increases. It can be determined that the
sample number is the key factor affecting the maximization accuracy.

Table 2. Accuracy test results.

Action Type Sample Number Training Number Accuracy Rate TOP1 Accuracy Rate TOP5

60 10 10 2.50% 16.67%

60 20 10 3.33% 10.28%

60 30 10 5.84% 23.92%

60 40 10 9.77% 35.40%

60 50 10 11.77% 39.07%

5 500 10 58.55% 100%

10 500 10 65.84% 97.59%

20 500 10 59.04% 90.23%

30 500 10 60.30% 90.70%

60 500 10 60.76% 89.78%

60 500 20 71.30% 93.62%

60 500 40 72.89% 94.21%

60 500 60 77.05% 95.17%

60 500 80 74.94% 94.60%

5 500 160 67.04% 100%

60 1000 80 82.84% 97.44%

Figure 7. Histogram of the effect of Sample number.

The histogram of the effect of action type in Figure 8 shows that when the sample
number is 500 and the train number is 10, the accuracy of action recognition increases with
the increase in the action type. When the action type is 5, the degree of TOP1 accuracy is
58.55%, and the degree of TOP5 accuracy is 100%; when the action type is 10, the degree



Energies 2022, 15, 2071 14 of 17

of TOP1 accuracy is 65.84%, and the degree of TOP5 accuracy is 97.59%; when the action
type is 20, the degree of TOP1 accuracy is 59.04%, and the degree of TOP5 accuracy is
90.23%; when the action type is 40, the degree of TOP1 accuracy is 60.30% and the degree
of TOP5 accuracy is 90.70%; when the action type is 60, the degree of TOP1 accuracy
is 60.76% and the degree of TOP5 accuracy is 89.78%. It can be seen that the degree of
TOP1 accuracy increases when the action type keeps increasing, but the increase is not
significant, and it can be determined that the action type is not the key factor affecting the
maximized accuracy.

Figure 8. Histogram of the impact of action type.

The histogram of the impact of train number in Figure 9 shows that when the sample
number is 500 and the action type is 60, the accuracy of action recognition increases with the
increase in the train number. When the train number is 10, the degree of TOP1 accuracy is
60.76% and the degree of TOP5 accuracy is 89.78%; when the train number is 20, the degree
of TOP1 accuracy is 71.30%, and the degree of TOP5 accuracy is 93.62%; when the train
number is 40, the degree of TOP1 accuracy is 72.89%, and the degree of TOP5 accuracy is
94.21%; when the train number is 60, the degree of TOP1 accuracy is 77.05%, and the degree
of TOP5 accuracy is 95.17%; when the train number is 80, the degree of TOP1 accuracy is
74.94%, and the degree of TOP5 accuracy is 94.60%. It can be seen that the degree of TOP1
accuracy increases as the train number increases, but the increase is not significant, and it
can be determined that the train number is not a key factor affecting the maximization
of accuracy.

In order to verify the reliability and feasibility of the whole VR interaction system, this
paper conducts experimental verification by three indices: action type, sample number, and
train number. Taking the whole VR interaction system based on action evaluation as the
experimental object, tested the actions performed by the experimenter in the laboratory
and determined the feasibility of Vectorized Spatio-temporal Graph Convolutional for
VR action evaluation method by recording the recognition accuracy of VR interaction
operations under different training states, and as seen by the experimental results, when
the number of samples is greater than or equal to 500 and the number of training times
is greater than or equal to 80, the accuracy of all the actions tested exceeds 70%, which
illustrates the reliability of the hand action recognition of the model proposed in this paper.
However, there is a large difference in the accuracy rate between different actions, and the
recognition accuracy is better for the actions with larger amplitude and left-right expansion,
while the recognition accuracy is worse for the actions with smaller amplitude and front-
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back expansion, and the speed and frequency are not easy to be too fast when switching
between different actions; otherwise, it may easily lead to possible misoperation or reduce
the accuracy of command operation.

On the whole, the most critical factor for maximizing the value of P(x) is the sample
number of each action type.

Figure 9. Histogram of the impact of the train number.

5. Conclusions

In view of the less research on hand actions evaluation using glove data in the existing
power grid virtual environment, a vector graph convolution depth learning model is pro-
posed for action evaluation. The spatio-temporal map of hand movement integrates the
temporal and spatial information in the process of hand movement change and improves
the integrity of features. Different partition strategies are designed for graph convolution,
and experiments are carried out to verify the superiority of the model. Through the exper-
imental contents and relevant data results mentioned in the article, the spatio-temporal
convolution depth learning model can train and evaluate the data collected from the rele-
vant actions of the data glove and integrated into the NTU RGB + D dataset and has good
results in testing the accuracy. Therefore, spatio-temporal convolution map neural network
can be applied to hand recognition in a virtual environment.
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