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Abstract: Reactive power optimization of distribution networks is of great significance to improve
power quality and reduce power loss. However, traditional methods for reactive power optimization
of distribution networks either consume a lot of calculation time or have limited accuracy. In this
paper, a novel data-driven-based approach is proposed to simultaneously improve the accuracy
and reduce calculation time for reactive power optimization using ensemble learning. Specifically,
k-fold cross-validation is used to train multiple sub-models, which are merged to obtain high-quality
optimization results through the proposed ensemble framework. The simulation results show that
the proposed approach outperforms popular baselines, such as light gradient boosting machine,
convolutional neural network, case-based reasoning, and multi-layer perceptron. Moreover, the
calculation time is much lower than the traditional heuristic methods, such as the genetic algorithm.

Keywords: ensemble learning; reactive power optimization; distribution networks; data-driven;
cross-validation

1. Introduction

Reactive power optimization is one of the widely used means to reduce power loss and
improve power quality by regulating the state of equipment, such as shunt capacitor bank,
on-load tap changer (OLTC), and static var compensator (SVC). As a crucial component of
the planning and scheduling of distribution networks, reactive power optimization is of
great importance for both practical engineering and theoretical study [1].

Traditional methods of reactive power optimization can be subsumed under just
two categories: heuristic algorithms [2] and mathematical programming algorithms [3].
Specifically, mathematical programming algorithms mainly consist of dynamic program-
ming, linear programming, and non-linear programming. Although these mathematical
programming algorithms have low complexity and fast computational speed, they have
difficulty in dealing with non-linear and high-dimensional reactive power optimization
problems, which results in limited optimization accuracy. The popular heuristic algorithms
mainly include particle swarm optimization (PSO), simulated annealing (SA), and genetic
algorithm (GA). Despite these heuristic algorithms significantly outperforming mathe-
matical programming algorithms in terms of optimization accuracy, they involve heavy
computational burdens, especially for large-scale distribution networks [4]. Therefore, it is
necessary to develop a new method with a fast computational speed and high accuracy.

Driven by the development of smart meters, sensors, and communication technolo-
gies, the historical data stored in supervisory control and data acquisition systems show
explosive growth, which brings opportunities to the application of data-driven technology
in reactive power optimization. The existing data-driven-based algorithms for reactive
power optimization can be subsumed under just two categories: similarity-based algo-
rithms [5] and model-based algorithms [6]. Specifically, similarity-based algorithms mainly
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consist of case-based reasoning (CBR), expert systems, Apriori algorithms, and large ran-
dom matrix theory, which intend to calculate distances between historical cases and new
cases [7]. However, it is inappropriate to assign the strategy of historical cases to new cases
directly, especially when the current load distribution is significantly different from the
historical load distribution. For model-based algorithms, they mainly include light gra-
dient boosting machine (LightGBM), multi-layer perceptron (MLP), convolutional neural
network (CNN), etc. Specifically, these model-based algorithms use models (e.g., deep
neural networks) to project the non-linear relationship between power loads (e.g., active
power and reactive power) and dispatching strategies, and their accuracy is higher than
those of similarity-based algorithms, especially when the power loads change dramatically.
While these model-based algorithms can be effective reactive power optimization, each has
its own advantages and disadvantages, limiting its accuracy in the application of reactive
power optimization.

Ensemble learning employs multiple models to achieve better performance than could
be obtained from any of the constituent models alone. Up to now, ensemble learning has
shown convincing performance in classification, function approximation, prediction, etc. [8].
Reactive power optimization of distribution networks can be regarded as a special regres-
sion problem, projecting the relationship between power loads and dispatching strategy
through different models. Therefore, ensemble learning should have the potential for
reactive power optimization of distribution networks. In [9,10], ensemble learning is used
to estimate the linear power flow of distribution networks. In other words, these previous
publications employ ensemble learning to map the non-linear relationship between the
magnitude and phase angle of voltage and power loads. They can only be used to obtain
the power flow of distribution networks and cannot provide guidance for the operation
state of the power equipment to achieve the optimal power flow.

Further, this paper focuses on how to apply ensemble learning to obtain the optimal
dispatching strategy for the reactive power optimization task of distribution networks,
namely, the application of ensemble learning in optimal power flows. Compared with previ-
ous publications [9,10], the proposed method is concerned with optimal power flows rather
than simple power flow calculations. The key contributions are summarized as follows:

(1) A fully data-driven and scalable method is proposed for reactive power optimization
of distribution networks without solving complex physical models. Additionally, the
proposed approach is applied to different distribution networks by simply fine-tuning
the structures and parameters.

(2) Each method has its own advantages and disadvantages, while the proposed approach
can learn widely from others’ strong points to improve the optimization accuracy. To
improve the generalization of the ensemble model, k-fold cross-validation is employed
to train the model.

(3) Numerical experiments on the real-world dataset are performed to validate the effec-
tiveness of the ensemble framework for reactive power optimization of distribution
networks. The simulation results show that the proposed approach achieves state-of-
art performance with superior accuracy. Further, the calculation time is much lower
than the traditional heuristic methods, such as GA.

The rest of this paper is organized as follows: Section 2 formulates the reactive
power optimization model. Section 3 describes the application of ensemble learning in
reactive power optimization. Simulations and results are discussed in Section 4. Section 5
summarizes the conclusions.

2. Reactive Power Optimization Model

Normally, the goal of reactive power optimization is to reduce power loss and improve
the power quality of distribution networks [11]. Without loss of generality, the changes of
power loss and voltage offset are defined as a comprehensive objective function of reactive
power optimization in this paper:
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Ploss
+ (1−W)

dU − dU′

dU
(1)

dU =
n

∑
i=1

∣∣∣∣U0 −Ui
U0

∣∣∣∣ (2)

Ploss =
N

∑
l=1

Rl
P2

l + Q2
l

U2
l

(3)

where W is the weight (i.e., W is 0.5 in this paper), which is used to balance the power loss
and voltage offset; Ploss is the power loss before reactive power optimization; P′loss is the
power loss after reactive power optimization; dU is the voltage offset before reactive power
optimization; dU′ is the voltage offset after reactive power optimization; n is the number
of nodes in distribution networks; N is the number of branches in distribution networks;
U0 is the rated voltage; Ui is the voltage of node i; Rl is the resistance of branch l; Pl is the
active power of terminal node in the branch l; Ql is the reactive power of terminal node in
the branch l; and Ul is the voltage of terminal node in the branch l.

Additionally, the reactive power optimization model of distribution networks has to
meet the following constraints:

(1) Power flow constraints in distribution networks
Pi −Ui

n
∑

j=1
Uj
(
Gij cos δij + Bij sin δij

)
= 0, i = 1, 2, · · · n

Qi −Ui
n
∑

j=1
Uj
(
Gij sin δij − Bij cos δij

)
= 0, i = 1, 2, · · · n

(4)

where δij is the phase difference of the voltage between node i and node j, Gij is the
conductance between node i and node j, and Bij is the susceptance between node i and
node j.

(2) Current and voltage constraints in distribution networks{
Ui,min ≤ Ui ≤ Ui,max, i = 1, 2, · · · n
Il ≤ Il,max, l = 1, 2, · · ·N (5)

where Ui,max is the upper bound of voltage for node i, Ui,min is the lower bound of voltage
for node i, and Il,max is the upper bound of current for branch l.

(3) Equipment constraints in distribution networks
0 ≤ QCi,t ≤ QC,max, i = 1, 2, · · · nC
Ti,min ≤ Ti,t ≤ Ti,max, i = 1, 2, · · · nT
0 ≤ QSVCi,t ≤ QSVC,max, i = 1, 2, · · · nSVC

(6)

where nC is the number of nodes with the shunt capacitor bank, nT is the number of nodes
with OLTC, nSVC is the number of nodes with SVC, QC,max is the maximum reactive power
generated by the shunt capacitor bank, Ti,min is the minimum tap position of the OLTC,
Ti,max is the maximum tap position of the OLTC, and QSVC,max is the maximum reactive
power generated by the SVC.

Moreover, different sub-models (i.e., neural networks) are used to project the com-
plex relationship between power loads and dispatching strategy. The new form of the
comprehensive objective function can be defined as its opposite. Considering that these
sub-models are difficult to deal with constraints directly, the penalty function method
is employed to transform the reactive power optimization model into an unconstrained
optimization problem.

maxF2 = F1 − λ1
n
∑

i=1
[ε(Ui −Ui,max) + ε(Ui,min −Ui)]

−λ2
N
∑

l=1
ε(Il − Il,max)

(7)
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where F2 is a new form of the comprehensive objective function, λ1 is the penalty coef-
ficient of voltage constraints, ε is the step function, and λ2 is the penalty coefficient of
current constraints.

Note that dynamic reactive power optimization has the third constraint, while static
reactive power optimization does not need to consider them. In this paper, the time
interval control strategy is used to divide a day into several time intervals [12]. Then,
the dynamic reactive power optimization is simplified to multiple static reactive power
optimizations within the interval. Therefore, the third constraint was not added to the
comprehensive objective function, since they have been implicitly considered by the time
interval control strategy.

3. Methodology
3.1. Framework of the Proposed Method

Ensemble learning is a popular meta approach of machine learning that obtains strong
performance by combining the forecasting results from multiple different sub-models [13].
As one of the contributions of this paper, this section presents a framework that can
ensemble three popular sub-models to obtain dispatching strategies of reactive power
optimization, as shown in Figure 1.
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Figure 1. The framework of the proposed method.

First of all, the power loads are regarded as original features to train Model 1, which
outputs the forecasting values (i.e., dispatching strategy). The power loads and the pre-
dicted dispatching strategy of distribution networks are considered as new input features of
the next sub-model. Then, the new input features are used to train Model 2, which predicts
the dispatching strategy of the training set and test set. The power loads, the predicted
dispatching strategy of Model 1 and Model 2 are considered as new input features for the
next sub-model. Similarly, the new input features are used to train Model 3, which predicts
the dispatching strategy of the test set. Finally, final results can be obtained by averaging
forecasting values of all sub-models.

Traditional hold-out validation is dependent on just one train-test split, which makes
its performance depend on how the data are divided into the training set and test set.
Relatively, k-fold cross-validation is a popular resampling technique, which is widely used
to improve the generalization of different models in computer visions [14]. The technique
has a single parameter k, which refers to the number of groups that a given dataset is to
be divided into. So far, k-fold cross-validation has shown outstanding performance for
different fields such as classification and prediction tasks. As another contribution of this
paper, k-fold cross-validation is generalized from computer vision into the training process
of each sub-model for reactive power optimization. The specific framework is shown in
Figure 2.

Firstly, samples in the training set are sectioned into k equal groups. The samples in the
first k − 1 groups are used to train a sub-model, which predicts the dispatching strategies
of samples in the kth group and test set. Secondly, the samples in the training set (except
for samples in the (k − 1)th groups) are utilized to train a sub-model, which predicts the
dispatching strategies of samples in the (k− 1)th group and test set. Similarly, k sub-models
can be trained to predict the dispatching strategies of samples in the training set and test
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set. Finally, the predicted dispatching strategies of the training set are considered as a new
feature, which is used to train the next sub-model, and the average values of the test set are
the output results of this sub-model.
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Figure 2. The framework of k-fold cross-validation for reactive power optimization.

Compared with other data-driven-based methods, CNN, MLP, and LightGBM have
better performance in many fields. Therefore, they are employed as examples to verify
the effectiveness of the proposed ensemble framework [15]. Note that these three models
may be replaced with other advanced models in future work. In the following sections,
this paper shows how to employ sub-models to map the non-linear relationship between
power loads and dispatching strategies, which is one of the contributions.

3.2. Convolutional Neural Network

The emergence of CNN has greatly promoted the development process of deep learn-
ing and artificial intelligence. So far, CNN has been widely used in various fields, such as
target detection, fault diagnosis, time-series prediction, and semantic segmentation due
to its powerful feature extraction capability [16]. As shown in Figure 3, a simple CNN
structure consists of a convolutional layer, a pooling layer, and a dense layer.
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Figure 3. A simple structure of CNN.

Specifically, the convolutional operation is performed to extract features of input data,
and then a bias vector is added to obtain the output data of convolutional layers:

Ycon = σcon(Xcon ∗Wcon + Bcon) (8)

where Ycon is the output data of convolutional layers, Xcon is the input data of convolutional
layers, σcon(·) is the activation function of convolutional layers, Wcon represents weights of
convolutional layers, and Bcon represents bias vectors of convolutional layers. Note that the
output data of convolutional layers is utilized as the input data to the following maximum
pooling layers.

As shown in Figure 4, the maximum pooling layer is employed to reduce the dimen-
sionality of input data:

Ypool = max
R

(
Xpool

)
(9)

where Ypool is the output data of maximum pooling layers, Xpool is the input data of
maximum pooling layers, and R is the domain of definition for maximum pooling layers.
Note that the output data of maximum pooling layers is utilized as the input data to the
following convolutional layers or dense layers.
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To reshape the multi-dimensional tensors into a one-dimensional vector, a flatten
layer is inserted between dense layers and the last maximum pooling layer. Moreover, the
vectors from the flatten layer are fed to a dense layer to obtain dispatching strategies:

Ydense = σdense(XdenseWdense + Bdense) (10)

where Ydense is the output data of dense layers, Xdense is the input data of dense layers,
σdense(·) is the activation function of dense layers, Wdense represents weights of dense
layers, and Bdense represents bias vectors of dense layers.

3.3. Multi-Layer Perceptron

Normally, the MLP consists of multiple dense layers. In this paper, the encoder–
decoder pipeline is used to project the non-linear relationship between power loads and
dispatching strategies, as shown in Figure 5.
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For the encoder, low-dimensional latent variables can be obtained by feeding input
data to multiple dense layers:

Yen = σen(Xen ∗Wen + Ben) (11)

where Yen is the output data of the encoder; Xen is the input data of the encoder, σen(·) is
the activation function of the encoder, Wen is weights of the encoder, and Ben is bias vectors
of the encoder. Note that the output data of the encoder is used as the input data of the
decoder.

For the decoder, low-dimensional latent variables can be obtained by feeding input
data to multiple dense layers:

Yde = σde(Xde ∗Wde + Bde) (12)

where Yde is the output data of the decoder; Xde is the input data of the decoder, σde(·)
is the activation function of the decoder, Wde represents weights of the decoder, and Bde
represents bias vectors of the decoder.
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3.4. Light Gradient Boosting Machine

LightGBM is a high-performance and distributed gradient boosting framework im-
proved from the decision tree, which is widely used for regression and classification
tasks [17]. Specifically, multiple decision trees are trained in an additive manner to forecast
the residual errors of the prior models. Suppose that a LightGBM model with ntr trees is
trained with nsa samples, and the additive training process can be represented as:

_
y
(0)
i = 0

_
y
(1)
i = f1(xi) =

_
y
(0)
i + f1(xi)

_
y
(2)
i = f1(xi) + f2(xi) =

_
y
(1)
i + f2(xi)

· · ·
_
y
(t)
i =

t
∑

k=1
fk(xi) =

_
y
(t−1)
i + ft(xi)

(13)

where ft(·) is the learned function of the tth decision tree, and
_
y
(t)
i is the forecasting values

of the ith sample at the tth iteration.

During iteration, the current forecasts
_
y
(t)
i and the learned function ft(·) are updated

by minimizing the loss function:

loss =
nsa

∑
i=1

D(yi,
_
y
(t)
i ) +

ntree

∑
k=1

Ω( fk) (14)

where Ω(·) is a regularization, and D(·) is the distance between current forecasts
_
y
(t)
i and

real values yi, such as the mean squared error (MSE):

D(yi,
_
y
(t)
i ) = (yi −

_
y
(t)
i )

2
(15)

Moreover, LightGBM can be seen as an improved version of extreme gradient boosting
in the following aspects:

Firstly, the gradient-based one-side sampling (GOSS) is incorporated into LightGBM.
GOSS achieves a good balance between the accuracy of LightGBM and the number of
samples. More attention should be paid to samples with a larger gradient in training, which
have a greater impact on the gain. Secondly, LightGBM employs a leaf-wise with depth
limitation rather than the traditional level-wise algorithm to improve accuracy. Thirdly,
exclusive feature bundling (EFB) is utilized to reduce the dimension of features. Moreover,
new features can be obtained by binding mutually exclusive features together. Fourthly,
the histogram is used to identify the optimal segmentation point in LightGBM, which
constructs a histogram with width, and discretizes successive floating-point eigenvalues to
multiple integers.

4. Case Study
4.1. Parameters and Data Description

In order to fully test the performance of the proposed ensemble model, the modified
IEEE 33-bus radial distribution network and modified IEEE 69-bus radial distribution net-
work are employed for simulation and analysis. The parameters (e.g., resistance and reac-
tance of branches) can be found in [18,19], and the topologies are shown in Figures 6 and 7.

For the modified IEEE 33-bus radial distribution network, the rated voltage is 10 kV.
The OLTC includes 17 different tap positions, which vary from −8 to 8. Generally, decen-
tralized capacitor banks and SVCs at the end of feeders can reduce the power loss and
voltage offset. Therefore, capacities and locations of the equipment as assumed as follows:
The six shunt capacitor banks are added at Node 17, and seven shunt capacitor banks are
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added at Node 32. The capacity of each shunt capacitor bank is 100 kvar. The SVC is added
at Node 8 and the reactive power of the SVC varies from 0 to 500 kvar.
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For the modified IEEE 69-bus radial distribution network, the rated voltage is 10 kV,
and the OLTC also includes 17 tap positions. The reactive power of all SVCs varies from
0 to 400 kvar. The seven shunt capacitor banks are added at Node 17, Node 26, Node 51,
and Node 67. The SVCs are added at Node 9, Node 33, and Node 44. The capacity of each
shunt capacitor bank is 100 kvar.

The smart meter dataset of London is used for power loads of the modified IEEE
33-bus radial distribution network and the modified IEEE 69-bus radial distribution net-
work. This dataset’s hourly household power load curves are in 112 blocks from November
2011 to February 2014 [20]. The power loads of three adjacent blocks are randomly se-
lected to analog the electricity consumption of each node in distribution networks. Only
5000 samples are filtered for simulation via data cleaning, since the collected time of each
block is different. Further, 80% of the samples are randomly selected to train each model,
and 10% of the samples are randomly selected as the validation set. The rest are employed
to evaluate the performance of the trained models. The active power and reactive power
are used to form the input feature of one sample. For the modified IEEE 33-bus radial
distribution network, the input feature is a vector of 1 × 64 scale. For the modified IEEE
69-bus radial distribution network, the input feature is a vector of 1 × 136 scale. Before
training sub-models, dispatching strategies should be obtained as labels. In this paper,
the GA is performed 40 times independently, and then the best dispatching strategy is
considered as the label of each sample.

All programs for reactive power optimization are implemented in PyCharm with deep
learning libraries (e.g., Tensorflow 1.0 and Keras 2.0). The parameters of the laptops are: a
dual-core 2.40 GHz processor, 6 GB memory cards, Intel(R) Core(TM) i3-3110M.

Furthermore, the probing method is used to find the appropriate structures and
parameters for sub-models and baselines by performing multiple experiments and fine-
tuning the parameters [21]:

(1) For the CNN, it includes a convolutional layer, a maximum pooling layer, a flatten
layer, and a dense layer with 4 units. The number of convolutional filters is 16, and the
size of the convolutional kernel is 2 × 2. The pool size is 3 × 3. The activation function of
the deny layer is the sigmoid function, and the others are the rectified linear unit (ReLU)
function. The optimizer is the adaptive moment estimation (Adam) algorithm, and the
loss function is the MSE between forecasting labels and real labels. (2) For the MLP, The
middle layer consists of 3 dense layers, and their numbers of neurons are 38, 32, and 16,
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respectively. The activation functions of the middle layer are all ReLU functions, and the
activation function of the output layers is the sigmoid function. The loss function and
optimizer are the same as the CNN. (3) For LightGBM, the boosting type is the traditional
gradient boosting decision tree, and the maximum tree depth for base learners is 5. The
boosting learning rate is 0.005, and the number of boosted trees is 1000. The minimum
number of data needed in a child is 80, and the sub-sample ratio of the training instance is
0.8. The maximum tree leaves for base learners is 25, and the sub-sample ratio of columns
is 1. (4) The parameters of the CBR are the same as the algorithm in [5]. (5) For GA, the size
of chromosomes is 50, and the number of iterations is 300. The probability of variation is
0.2, and the probability of chiasma is 0.5.

4.2. Effect of k-Fold Cross-Validation

To compare the performance of k-fold cross-validation and traditional hold-out valida-
tion, LightGBM, MLP, and CNN are used as sub-models to form an ensemble model. The k
varies from 2 to 15, and the step size is 1. Each case is repeated 30 times. The mean loss
functions (i.e., MSE between forecasting and real labels) of the test set, as shown in Table 1.

Table 1. Results of ensemble models with different parameters.

Cases MSE (p.u.) Training Time (s) Cases MSE (p.u.) Training Time (s)

hold-out 0.0200 1414.51 k = 8 0.0164 778.76
k = 2 0.0173 108.53 k = 9 0.0162 854.20
k = 3 0.0159 206.67 k = 10 0.0167 895.95
k = 4 0.0157 294.97 k = 11 0.0160 977.53
k = 5 0.0165 386.76 k = 12 0.0162 1100.97
k = 6 0.0167 481.69 k = 13 0.0170 1209.63
k = 7 0.0163 635.90 k = 14 0.0195 1389.93

The following conclusions can be drawn from Table 1: (1) Compared with the tra-
ditional hold-out validation, k-fold cross-validation shows smaller loss functions, which
indicate that k-fold cross-validation outperforms hold-out validation. This is because every
fold appears in the training set k − 1 times, which in turn ensures that each sample appears
in the dataset, thus enabling the sub-models to represent the latent features better. (2) With
the increase in k, the loss function first decreases and then increases, which indicates that
k should not be too small or too large. In addition, the training time of each sub-model
increases linearly with the increase of k. Hence, the loss function and training time should
be considered at the same time, when k is set. In general, four can be considered as a good
starting point for k, and higher values or lower values may be fine for other datasets. (3) Al-
though the proposed ensemble model requires some time to pre-train the models before
using them, this training time is not very long and it is acceptable in practical engineering.

4.3. The Effect of the Order on Performance

In order to analyze the influence of the sub-models’ orders on the performance of the
proposed method, 15 cases with different ranking are set, and each case is repeated 30 times.
The mean loss functions (i.e., MSE) of the test set are shown in Table 2 and Figure 8.

The following conclusions can be drawn from Figure 8 and Table 2: (1) Comparing the
loss functions of Case 6, Case 13, Case 14, and Case 15, it is found that multiple different
sub-models are more conducive to improving the performance of the ensemble model than
multiple identical sub-models. (2) Sometimes, the performance of the ensemble model
composed of different sub-models may not be better than that of another ensemble model
with the same sub-models, because the performance of the former is significantly affected
by the order of different sub-models. For example, the loss function of Case 2 is larger than
those of Case 13, Case 14, and Case 15. Generally, different sub-models can be selected
to form the proposed ensemble model, and their order should be determined by the loss
function of the validation set.
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Table 2. The different cases.

Cases Order of Sub-Models Cases Order of Sub-Models

Case 1 CNN, MLP, LightGBM Case 9 MLP, CNN, CNN
Case 2 CNN, LightGBM, MLP Case 10 MLP, LightGBM, LightGBM
Case 3 MLP, CNN, LightGBM Case 11 LightGBM, MLP, MLP
Case 4 MLP, LightGBM, CNN Case 12 LightGBM, CNN, CNN
Case 5 LightGBM, CNN, MLP Case 13 CNN, CNN, CNN
Case 6 LightGBM, MLP, CNN Case 14 MLP, MLP, MLP
Case 7 CNN, LightGBM, LightGBM Case 15 LightGBM, LightGBM, LightGBM
Case 8 CNN, MLP, MLP
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4.4. Comparative Analysis with Baselines

Normally, the dynamic reactive power optimization can be simplified into multiple
static reactive power optimization problems using the time interval control strategy [12].
Specifically, the power load curve is divided into multiple time intervals, and then the static
reactive power optimization is performed in each time interval to obtain a comprehensive
dispatching strategy for dynamic reactive power optimization. Therefore, the static reactive
power optimization can be used as an example to validate the effectiveness of the proposed
method in this section.

To illustrate the effectiveness of the proposed ensemble model, the traditional heuristic
algorithm (e.g., GA) and popular data-driven-based algorithms (e.g., CBR, MLP, CNN, and
LightGBM) are used as the baselines. Each method is repeated 30 times, and the mean
results of the test set are shown in Table 3.

The following conclusions can be drawn from Table 3: (1) Generally, the smaller the
power loss and voltage offset, the better the performance of the model. Note that power
loss and voltage offset are two conflicting metrics sometimes. Therefore, the comprehensive
objective function is presented to balance them to evaluate the model performance in
an integrated manner. The larger the comprehensive objective function, the better the
performance of the model. Specifically, the average comprehensive objective function of
CBR is the smallest, which shows that dispatching strategies of historical cases found
by the CBR are not well suited to current cases, since the historical power load may
significantly vary from the current power loads. (2) Although the performance of the
ensemble model is slightly weaker than GA with regard to the average comprehensive
objective function and its variance, the ensemble model outperforms other data-driven-
based algorithms (e.g., CNN, CBR, MLP, and LightGBM) due to the fact that the average
comprehensive objective function of the ensemble model is larger than those of data-
driven-based algorithms. This phenomenon shows that the ensemble model can seek
better performance from multiple sub-models for reactive power optimization. (3) The
online calculation time is one of the important metrics to evaluate the performance of
each model for reactive power optimization. Normally, suitable dispatching strategies
should be obtained within 60 s [22], during which real-time power systems obtain the
observations and then calculate solutions for all power equipment. For single reactive
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power optimization of the modified IEEE 69-bus radial distribution network, the online
time consumptions of the ensemble model, GA, CNN, MLP, LightGBM, and CBR are 0.23 s,
64.77 s, 0.08 s, 0.06 s, 0.09 s, and 4.37 s, respectively. Although data-driven-based algorithms
require some time to pre-train models, their online time consumptions are much lower than
traditional heuristic algorithms, such as GA. (4) Further, the online calculation time of GA
increases significantly with the size of distribution networks (e.g., the number of nodes and
equipment), while the online calculation time of the ensemble model is not sensitive to the
size of distribution networks, which shows that proposed model is also suitable for reactive
power optimization of large-scale distribution networks. This is one of the advantages of
the proposed model, i.e., the online calculation time is very short, and is well suited for the
real-time optimization of power systems.

Table 3. The average results of different methods.

Networks Methods
Power Loss (MW) Voltage Offset (p.u.) Comprehensive

Objective Function (p.u.) Calculation
Time (s)

Mean Value Variance Mean Value Variance Mean Value Variance

The modified IEEE
33-bus radial
distribution

network

Ensemble model 0.2314 0.1290 0.7975 0.2851 1.1411 0.0291 0.17
GA 0.2316 0.1286 0.7942 0.2854 1.1423 0.0288 21.30

CNN 0.2316 0.1292 0.8028 0.2858 1.1396 0.0292 0.06
MLP 0.2318 0.1295 0.8108 0.2883 1.1383 0.0294 0.04

LightGBM 0.2317 0.1292 0.8052 0.2865 1.1392 0.0292 0.07
CBR 0.2317 0.1286 0.8179 0.2933 1.1339 0.0328 4.01

The modified IEEE
69-bus radial
distribution

network

Ensemble model 0.6331 0.1284 3.6311 0.2861 0.8343 0.0349 0.23
GA 0.6332 0.1273 3.6278 0.2867 0.8367 0.0345 64.77

CNN 0.6337 0.1287 3.6364 0.2873 0.8329 0.0352 0.08
MLP 0.6334 0.1293 3.6444 0.2944 0.8317 0.0358 0.06

LightGBM 0.6339 0.129 3.6388 0.2921 0.8323 0.0352 0.09
CBR 0.6346 0.1264 3.6515 0.2977 0.8239 0.0396 4.37

4.5. Reactive Power Optimization with Renewable Energy Sources

In order to achieve carbon neutrality, the integration of renewable energy sources
in distribution networks has become more and more popular in recent years. To test the
performance of different models for reactive optimization of distribution networks with
renewable energy sources, the IEEE 33-bus radial distribution network is again modified,
as shown in Figure 9.
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ergy sources.

In particular, the first PV system is added to Node 24 and the second PV system is
added to Node 21. The first wind turbine (WT) is added to Node 25, and the second
wind turbine is added to Node 12. Assume that the power factor of a node with a wind
turbine or PV system is fixed (power factor is 0.95). The power generation of renewable
energy sources originates from the National Renewable Energy Laboratory [23,24]. The
time resolution of power generation is also 1 h. To ensure that the penetration of renewable
energy sources in distribution networks was between 10% and 50%, the original power
generation of renewable energy sources is scaled up appropriately. Each method is repeated
30 times respectively and the mean results of the test set are shown in Table 4.
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Table 4. The average comprehensive objective function for reactive power optimization of distribution
networks with renewable energy sources.

Penetration Level (%) Ensemble Model CNN MLP LightGBM CBR

10% 1.1391 1.1266 1.1258 1.1237 1.1055
20% 1.1173 1.1113 1.1104 1.1097 1.1044
30% 1.1095 1.1063 1.0988 1.0975 1.0953
40% 1.0975 1.0944 1.0933 1.09921 1.087
50% 1.0782 1.0677 1.0644 1.0643 1.064

No matter how the penetration changes, the comprehensive objective function value
of the proposed ensemble model is the largest, which shows that the ensemble model
has better performance than other data-driven-based algorithms (e.g., CNN, CBR, MLP,
and LightGBM) for reactive power optimization of distribution networks with different
penetration levels.

5. Conclusions

To improve the accuracy and reduce the calculation time of reactive power opti-
mization, a novel ensemble learning-based model is presented in this paper. Through
the simulation analysis on two radial distribution networks, the following conclusions
are obtained:

(1) The accuracy of models trained by k-fold cross-validation is higher than that of hold-
out validation. In addition, k should not be too small or too large. Four can be
considered as a good starting point for k, and higher values or lower values may be
fine for other data sets.

(2) Multiple different sub-models are more conducive to improving the performance
of the ensemble model than multiple identical sub-models. Additionally, the per-
formance of the ensemble model is significantly affected by the order of different
sub-models. Normally, different sub-models can be selected to form the proposed
ensemble model, and their order should be determined by the loss function of the
validation set.

(3) The proposed ensemble model outperforms other data-driven-based algorithms
(e.g., CNN, CBR, MLP, and LightGBM) in terms of optimization accuracy and stability.
In addition, the calculation time is much lower than the traditional heuristic methods
(e.g., GA), especially for large-scale distribution networks.

(4) No matter how the penetration changes, the ensemble model has better performance
than other data-driven-based algorithms (e.g., CNN, CBR, MLP, and LightGBM) for
reactive power optimization of distribution networks.
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Nomenclature
Abbreviations
OLTC on-load tap changer
SVC static var compensator
PSO particle swarm optimization
SA simulated annealing
GA genetic algorithm
GOSS gradient-based one-side sampling
CBR case-based reasoning
CNN convolutional neural network
MLP multi-layer perceptron
LightGBM light gradient boosting machine
ReLU rectified linear unit
Adam adaptive moment estimation
Parameters
W the weight to balance the power loss and voltage offset
Ploss the power loss before reactive power optimization
P′loss the power loss after reactive power optimization
dU the voltage offset before reactive power optimization
dU′ the voltage offset after reactive power optimization
n the number of nodes in distribution networks
N the number of branches in distribution networks
U0 the rated voltage
Ui the voltage of node i
Rl the resistance of branch l
Pl the active power of terminal node in the branch l
Ql the reactive power of terminal node in the branch l
Ul the voltage of terminal node in the branch l
δij the phase difference of the voltage between node i and node j
Gij the conductance between node i and node j
Bij the susceptance between node i and node j
Ui,max the upper bound of voltage for node i
Ui,min the lower bound of voltage for node i
Il,max the upper bound of current for branch l
nC the number of nodes with the shunt capacitor bank
nT the number of nodes with OLTC
nSVC the number of nodes with SVC
QC,max the maximum reactive power generated by the shunt capacitor bank
Ti,min the minimum tap position of the OLTC
Ti,max the maximum tap position of the OLTC
QSVC,max the maximum reactive power generated by the SVC
F2 a new form of the comprehensive objective function
λ2,λ1 the penalty coefficients
ε the step function
Ycon the output data of convolutional layers
Xcon the input data of convolutional layers
σcon(·) the activation function of convolutional layers
Wcon weights of convolutional layers
Bcon bias vectors of convolutional layers
Ypool the output data of maximum pooling layers
Xpool the input data of maximum pooling layers
R the domain of definition for maximum pooling layers
Ydense the output data of dense layers
Xdense the input data of dense layers
σdense(·) the activation function of dense layers
Wdense weights of dense layers
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Bdense bias vectors of dense layers
Yen the output data of the encoder
Xen the input data of the encoder
σen(·) the activation function of the encoder
Wen weights of the encoder
Ben bias vectors of the encoder
Yde the output data of the decoder
Xde the input data of the decoder
σde(·) the activation function of the decoder
Wde weights of the decoder
Bde bias vectors of the decoder
ntr the number of decision trees
nsa the number of samples
_
y
(t)
i the forecasting values of the ith sample at the tth iteration

ft(·) the learned function of the tth decision tree
Ω(·) a regularization
D(·) the distance between current forecasts and real values
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