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Abstract: This paper aims to study the applicability of machine-learning algorithms, specifically
neural networks, for forecasting the effectiveness of Improved recovery methods. Radial jet drilling is
the case operation in this study. Understanding changes in reservoir flow properties and their effect
on liquid flow rate is essential to evaluate the radial jet drilling effectiveness. Therefore, liquid flow
rate after radial jet drilling is the target variable, while geological and process parameters have been
taken as features. The effect of various network parameters on learning quality has been assessed. As
a result, conclusions on the applicability of neural networks to evaluate the radial jet drilling potential
of wells in various geological conditions of carbonate reservoirs have been made.

Keywords: radial jet drilling; reservoir flow simulation; technology effectiveness; machine learning;
neural network; carbonate reservoirs

1. Introduction

The global oilfield development trends show a considerable increase in the number
of improved recovery methods (IOR) due to the ever-growing share of unconventional
resources. IOR is conducted to improve well productivity and oil recovery, increase injection
well performance, isolate water inflows, etc. The study target herein is carbonate reservoirs
of Perm Krai (Russia). To enhance well productivity, a range of IOR technologies are
extensively performed at these reservoirs: acid fracturing, bottomhole acidizing, casing
perforation and radial water jet drilling (RJD).

Addressed in this study, radial jet drilling is the most promising technology based on
the ratio of the operation cost to the resulting incremental oil flow rate.

Radial jet drilling technology was first proposed by Rad Tech International Inc. in the
late 1970s. The technology involves creating highly permeable flow channels in producing
reservoir intervals, thereby increasing displacement coverage, and jetting directional flow
channels to tap bypassed oil [1].

The radial jet drilling technique creates two to four channels in the producing reservoir
interval, usually with a 90◦ angle between the channels. The channels are 3 to 8 cm in
diameter and up to 100 m long. To clean the channel and increase its permeability, the jetting
using a high-pressure nozzle is followed by the acid treatment in carbonate reservoirs [2].

The technology is extensively and successfully deployed in oil production worldwide.
For example, the RJD practice at some overseas oil fields is presented in [3]. A significant oil
production increase by 200% has been observed at the Tarim oil fields (China). In Ref. [4],
described is the RJD application for oil recovery from a reservoir with low permeability
and ultra-maturity near wellbore using enhanced stimulation to force the withdrawal.
Successful operations have been noted in a thick oil-saturated reservoir, where radial
channels extend beyond the depleted area, engaging untapped interbeds, and in case of
good reservoir energy properties. In Ref. [5], the flow-rate growth factor as a result of
RJD under various reservoir conditions was estimated; it can be noted that the highest
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incremental flow rates are typical of reservoirs with low permeability and four radial
channels. When comparing incremental flow rates depending on the number and length of
channels and reservoir permeability, the greatest effects were attained for low permeability
reservoirs with four 300 ft (91 m) long channels.

In Refs. [6,7] it is noted that RJD is most effective under high-viscosity oil conditions
involving the formation of no-flow areas in reservoir’s low-permeability areas.

In Ref. [8], the effectiveness of radial jet drilling technology at the Vakhitovskoye oil
field (Russia) at production target D1 is analyzed. The success rate of radial drilling is
estimated at 75%. Recorded has been oil production increase of 1.5 to 5 times following the
technology deployment.

The article discusses the problem of the methodology for predicting the effectiveness
of IOR technologies on the example of RJD technology using neural networks.

The oil industry has been extensively implementing machine learning for routine
processes automation, well log data interpretation and seismic data processing. Such tasks
involve a huge bulk of data.

There are a lot of machine learning algorithms that solve three tasks—regression,
classification and clustering. Main types of algorithms employ supervised, unsupervised
learning—a type of machine learning algorithm used to draw inferences from a dataset
consisting of input data without labeled responses, semi-supervised learning and reinforce-
ment learning [9].

Supervised learning algorithms will be described in more detail, as they will be
considered in this study. Supervised learning is facilitated by an algorithm for learning a
function that maps an input to an output based on example input-output pairs. It infers a
function from labeled training data consisting of a set of training examples. Advantages
and disadvantages of some algorithms will be described next. The principle of linear
regression is to find a linear relationship in the data. As advantages of linear regression
can be defined the simplicity and the speed, while the main disadvantages are the inability
to capture nonlinear relations without first transforming the inputs [10]. Naive Bayes a
collection of classification algorithms based on the Bayes theorem. This algorithm facilitates
easy understanding, configuration, and interpretation of results, but it fails to predict rare
events and it is prone to overfitting [11]. Regression trees learn in a hierarchically fashion
by repeatedly splitting your dataset into separate branches that maximize the information
gain of each split. Ensemble methods, such as Random Forests and Gradient Boosted
Trees, combine predictions from many individual trees. Decision trees can learn non-linear
relationships and are robust to outliers. However, unconstrained, individual trees are
prone to overfitting [12]. Support Vector Machine is a binary classification method which
creates a model that can generalize well with an optimum global solution. It works very
well with a separated margin and a non-linear function; the main disadvantages of this
algorithm are a long training time and poor performance when working with noisy data.
Deep learning refers to multi-layer neural networks that can learn extremely complex
patterns. Their architectures can be adapted to many types of problems. In addition, they
are computationally intensive to train, and they require much more expertise to tune [8–12].

Application of machine learning for the oil and gas industry tasks seems practical for
the following reasons: 1. A rich experience in different studies of wells (well logs, well
tests and others), different operations on wells (for example IOR technologies) and a lot of
information about reservoirs from laboratory studies (fluid studies and core studies), allow-
ing to create large databases, analyze them and create predictive models; 2. Algorithmic
developments: improved activation functions, optimized weights initialization algorithms,
more advanced optimizers, such as RMSProp and Adam, improved gradient propagation
methods, etc.; 3. Hardware upgrades (GPUs, TPUs).

The application of Generative Adversarial Networks to solve the problem of incom-
plete seismic data is described in Ref. [13]. The study shows a coefficient of determination
between 0.8 and 0.99, which is accurate enough to reproduce seismic data that could not
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be recorded during the survey. The results of seismic data recovery are also provided in
References [14–16] and others.

The potential for use of machine-learning algorithms for well log data interpretation
has been amply described. In Ref. [17], the use of a Bayesian neural network for forecasting
missing intervals of geophysical survey results is proposed. Correlation coefficients for
test sets ranged between 0.94 and 0.97. The application of various algorithms for the
interpretation of logging curves is described in References [18–20].

A few works address the prediction of section lithology while drilling [21–24].
Predictive analytics problems are also solved while optimizing oil and gas field de-

velopment processes. In Ref. [25], key applications of neural networks in hydrocarbon
development and production are overviewed. Neural networks for the prediction of
well operation processes are presented in References [26–28]. As noted, the predicted
value error is less than 5% against the actual values when using the Long Short-Term
Memory algorithm. Surrogate modeling to replace reservoir simulators is described in
References [29,30].

The problems of virtual flow logging based on machine-learning models are addressed
in References [31,32].

Many numbers of works cover intelligent history matching of dynamic reservoir
models [33–35] and others.

The problems of forecasting the effectiveness of oil recovery enhancement technolo-
gies, production stimulation and well stimulation are considered in References [36–44],
where the following algorithms are mainly used: Shallow and Deep Artificial Neural Net-
works (ANN), Naïve Bayes (NB), Decision Tree (DT), Random Forest (RF) and Dimension
Reduction using Principal Component Analysis (PCA); the model’s correlation coefficients
vary significantly between 0.6 and 0.9.

It should be noted that while artificial intelligence technologies are extensively used
in the oil and gas industry, their efficiency is variable for different tasks. High accuracy of
models is observed in the problems with large arrays of data (well logging and seismic
surveys), while for the IOR technology effectiveness forecasting the prediction accuracy
is lower due to a much smaller amount of data, as well as many factors influencing the
technology effectiveness, such as geological, process, technical and human factors.

This study analyzes the efficiency of radial jet drilling technology in the Perm Krai,
proposes a method for predicting the effectiveness of the technology RJD and analyzes the
applicability of neural networks with different architectures and optimization algorithms.

During the study, it was found that it is more expedient to build a model for each
stratigraphic interval; as a result, it was possible to obtain models with correlation coef-
ficients from 0.59 to 0.81 and an absolute error from 3.6 to 1.98 m3/day, which made it
possible to significantly improve the results standard statistical methodology for predicting
the effectiveness of radial jet drilling.

In future works, it is necessary to expand the selection with other wells stimulation
technologies for carbonate reservoirs in the Perm region—acid treatments, hydraulic frac-
turing, etc. There are also plans to develop a methodology of predicting efficiency of IOR
technologies in various geological conditions and software that allows integrating the
forecast of input fluid rates after stimulation of wells with long-term forecasts in reservoir
simulation models

2. Case Study

This study discusses the RJD operations carried out in the wells accessing the carbonate
reservoirs of various ages and structures of Perm Krai oilfields. These reservoirs belong to
the Famennian, Tournaisian, and Bashkirian ages.

The reservoirs of different geological ages are characterized by different properties and
field dynamics. The rocks of Famennian deposits represent accumulations of porous and
vuggy reservoirs of the Solikamsk depression. The reservoir properties of the Famennian
deposits are strongly affected by rock fracturing. The reservoirs of Tournaisian deposits
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feature high heterogeneity of geological section and small thicknesses, which results in low
productivity of the wells [45]. The Bashkirian reservoirs are of porous type, with porosity
represented by intra-form and inter-form voids. The best reservoir properties are seen in
biomorphic limestones with foraminiferal structure, while in some interlayers they are
dense due to secondary calcitization [46].

Various IOR technologies are used for carbonate reservoirs of Perm Krai, including
RJD.

The RJD technology is one of the core techniques (Figure 1) used in the Chernushin-
skaya (21%), Osinskaya (29%), and Nozhovskaya (30%) oilfield groups. In the Severnaya
oilfield group, the key technologies include acid treatment (36%) and acid fracturing (29%).
The most frequently deployed technology in the Osinskaya and Kungurskaya oilfield
groups is re-perforation with acid treatment (29%). Drilling perforation, sidetracking,
additional perforation and re-perforation are applied much less frequently than other
techniques (2–12%) in all the groups of oil fields.
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Figure 1. Distribution of IOR technologies by oilfield groups in Perm Krai.

A total of 590 radial drilling operations have been carried out in carbonate reservoirs in
different strata: Bashkirian (Bsh), Vereian (V3V4), Kashirian-Vereian (KV) and Tournaisian-
Famenian (T-Fm). Figure 2 shows the distribution of wells from different reservoirs by
cumulative incremental oil production due to the RJD operations.
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Figure 2. Distribution of reservoirs by cumulative incremental oil production due to RJD.
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For the Perm Krai’s carbonate reservoirs over the past 10 years, the RJD technology
has become a core technique for declining wells with end-of-life low flow rates.

Figure 3 shows the distribution of cumulative incremental oil production and incre-
mental oil flow rates.
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Figure 3. Value distribution bar chart: (a) cumulative incremental oil production due to RJD and
(b) incremental oil flow rates due to RJD.

Figure 3 shows a dramatic spread of values for incremental oil production
(0.5–139,798 tons, with a standard deviation of 10,395 tons) and incremental oil flow rates
after the RJD technology deployment (0.2–35.5 tons/day, with a standard deviation of
3.4 tons/day). Since the technology effectiveness varies greatly subject to geological and
process conditions, an all-inclusive approach to the selection of candidate wells is essential
to enhance the process efficiency of the technology application. The relevance of this work
is premised on high uncertainty of the outcome.

Efficient radial jet drilling relies on the comprehensive approach to candidate wells and
the selection of priority wells subject to geological and process conditions. For this purpose,
the effect from IOR operations shall be forecasted and the incremental oil flow rates shall be
understood at the stage of candidate well selection, which will allow a cost–benefit estimate
of the planned IOR.

3. Materials, Methods and Background

Presently, the following techniques are mainly used to forecast the IOR effects: forecast
based on geological and field analysis, statistical analysis, machine-learning methods and
reservoir simulation [47–49].

When using geological and field analysis, the results are limited to a specific produc-
tivity factor estimate, with disregard for a set of geological and process parameters. A
detailed ‘manual’ analysis of wells based on geological and field production analysis using
analytical and statistical methods is time-consuming and relatively subjective [50].

The basic model for forecasting the RJD effectiveness, used by a regional oil company,
involves statistical forecasting of incremental liquid and oil flow rates through the well-
productivity factor [51,52]. That is, the effect of RJD is estimated for similar wells or
neighboring wells and recalculated for a RJD candidate well using the well-productivity
factor. Only liquid flow rate, reservoir pressure and bottomhole pressure parameters are
involved in the calculation. In our opinion, these parameters are insufficient to reliably
predict the potential of wells for RJD. The results of the comparison of predicted and actual
values according to the basic technique are given in Figure 4. The R-squared of this model is
very low and equals to 0.16.
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Figure 4. Forecast results of liquid flow rate after RJD using the basic technique.

When using geologic and dynamic simulation, the subjectivity of modeling and
history-matching shall be factored in, which markedly affects the model’s forecasting
performance. High time consumption and cost of work in geologic and hydrodynamic
simulation dictate the need for its application mainly for designing high cost well (sidetracks
and horizontal wellbores).

Clearly, no methodology provides an accurate forecast of incremental oil production,
but only evaluates the operation potential at a specific well.

This study evaluates the applicability of machine-learning techniques, specifically
neural networks, for the RJD effectiveness forecasting tasks. Supervised learning requires a
sample of independent feature parameters and a target variable. A multi-layer perceptron
with different network setting parameters was used in this work. The perceptron model is
shown in Figure 5.
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Inputs are the features that are fed into the input of the neural network; weights are
values that are calculated during the training of the model. With every error, i.e., training
error, the values of the weights are updated. The purpose of the bias is to shift each
point in a specific direction for a specified distance. Bias allows for the higher quality and
training of the model is faster; the MLP consists of three or more layers (an input and an
output layer with one or more hidden layers) of nonlinearly-activating nodes; activation
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or step functions are used to generate non-linear neural network. Weighted summation:
the multiplication of every feature or input value associated with related values of weights
gives us a sum of values that is known as weighted summation [53,54].

The calculation process is described by Formula (1):

a = ϕ

(
n

∑
i=1

ωixi

)
(1)

Post-IOR flow rate is the target variable here. When evaluating the RJD technology ef-
fectiveness, changes in the liquid flow rate are assessed, since the RJD alters flow properties
of the near-wellbore and far-field formation areas. The liquid flow rate change parameter is
used in the simulation of well productivity enhancement activities on reservoir simulation
models in standard simulators.

To forecast the effectiveness of the technology, a database of geological and process
parameters has been created. For neural networks training, the parameters that influence the
RJD technology effectiveness the most have been selected, as described in the articles [47,48]:

• average thickness hnn, m;
• porosity Kpor, %;
• average oil viscosity in the formations µ, mPa·s;
• piezoconductivity χ, cm2·s;
• reservoir pressure Pres, MPa;
• bottomhole pressure Pbhp, MPa;
• well skin factor S;
• liquid production rate before the RJD, qliq, m3/day;
• water cut, W, unit fraction;
• compartmentalization for oil layers, Kcomp (oil), units.

A total of 590 radial drilling operations have been carried out at 43 oil fields in Perm
Krai. Geophysical survey results and performance data are available for all the wells, while
well test results have been obtained for 259 wells only. Therefore, training and testing were
conducted for these wells only. It should be noted that all operations were carried out in
the carbonate reservoir, but for formations of different stratigraphic intervals: Bashkirian
(104 RJD jobs), Tournaisian (131 RJD jobs) and Famennian (24 RJD jobs).

The study was conducted in several steps:

1. Training and testing over the whole set (259 wells). Sweeping through various network
hyper-parameters. The training and testing sets were divided randomly in an 85/15
ratio, respectively;

2. Training and testing separately for the Bashkirian and Tournaisian strata. The jobs
performed on the Famennian reservoirs are insufficient to be reviewed individually.
The training and testing sets were divided randomly in an 85/15 ratio and 70/30 ratio,
respectively [55];

3. Training on the wells accessing the Bashkirian reservoir and testing on the wells
exploiting the Tournaisian reservoir.

Mean absolute error (MAE) (Formula (2)) and coefficient of determination (R2) (For-
mula (3)) between the rated and actual values were used as metrics to assess the quality of
the models obtained:

MAE =
1
n

n

∑
i=1
|yi − ŷi| (2)

R2 = 1− ∑ (yi − ŷ)2

∑ (yi − y)2 (3)
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Data before calculation were standardized using Formula (4):

xst =
x0 − x√

σ2
(4)

The mean square deviation is the error function.

4. Results

In the first step, calculations were carried out for the whole set of wells.
A neural network with three layers was used, while the activation function of rectified

linear unit (ReLU) was applied for non-linear activation between the layers (Goodfellow
et al., 2016). The Adam algorithm [56] was used as an optimizer. The number of neurons in
each layer was compared (Table 1).

Table 1. Comparison of networks with a different number of neurons in each layer.

Number of
Neurons per Layer Epochs Activation

Function
MAE

(Train)
R2

(Train)
MAE
(Test) R2 (Test)

16–8–1 300 ReLU 4.1 0.57 4.3 0.5
128–64–1 168 ReLU 3.3 0.68 5.1 0.4

Next, various optimizers were compared (Table 2).

Table 2. Comparison of network optimizers.

Number of Neurons
per Layer Optimizer Epochs Activation

Function
MAE

(Train) R2 (Train) MAE (Test) R2 (Test)

16–8–1 Adam 300 ReLU 4.1 0.57 4.3 0.5
16–8–1 RMSprop 300 ReLU 4.3 0.54 4.5 0.4
16–8–1 Adamax 300 ReLU 5.4 0.4 6.3 0.34
16–8–1 Nadam 300 ReLU 2.9 0.73 5.1 0.38

A sweep of various activation functions was also run (Table 3).

Table 3. Comparison of activation functions.

Number of Neurons
per Layer Optimizer Epochs Activation

Function
MAE

(Train) R2 (Train) MAE (Test) R2 (Test)

16–8–1 Adam 300 ReLU 4.1 0.57 4.3 0.5
16–8–1 Adam 300 sigmoid 15 0.4 16 0.3
16–8–1 Adam 300 linear 4.2 0.52 4.7 0.48
16–8–1 Adam 300 LeakyReLU 3.2 0.7 3.7 0.57
16–8–1 Adam 300 PReLU 3.8 0.65 5.8 0.44
16–8–1 Adam 300 ELU 3.9 0.63 4.9 0.47

The number of network layers was then compared (Table 4).

Table 4. Comparison of networks with a different number of layers.

Number of Neurons
per Layer Optimizer Epochs Activation

Function
MAE

(Train) R2 (Train) MAE (Test) R2 (Test)

16–8–1 Adam 300 LeakyReLU 3.2 0.7 3.7 0.57
128–64–1 Adam 300 LeakyReLU 2.9 0.73 3.7 0.57

64–32–28–1 Adam 300 LeakyReLU 3.4 0.65 3.7 0.52
64–32–28–12–1 Adam 300 LeakyReLU 3.2 0.7 5.4 0.32
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The values of model quality metrics in the result of calculations are not high. However,
it should be noted that a wide range of factors have an impact on the effect of the technology
deployment in the well: geological, process, technical and human factors. Therefore, the
mean absolute error of flow rate after RJD of 2.9–3.7 m3/day is in general a satisfactory
result, which allows evaluating well potential in different geological conditions. Moreover,
the reservoirs belong to different stratigraphic intervals, as pointed out in the case study
section. Thus, the Famennian reservoirs defined by fracturing, differ greatly in their flow
properties. Initial liquid flow rates with them can be relatively high (up to 50 m3/day), yet
the effect dwindles very quickly, probably due to reservoir pressure decline and typical
fracture closing.

It is suggested to enter the obtained well potential values in terms of liquid flow rate
into the hydrodynamic simulator (Tempest, T-Navigator and Eclipse) and forecast the
further dynamics of indicators for a long-term period.

The analysis of Tables 1–4 shows that the most successful option is a multilayer
perceptron with three layers, with a few neurons per layer of 128–64–1, Adam optimizer,
LeakyReLU activation function [57]. Combinations of different activation functions in
different layers were also tested in the course of the study, yet no improvement in the
results was observed.

For the Bashkirian (Bsh) reservoirs, an improvement in the model performance was
observed, R2 (Train)—0.81, R2 (Test)—0.68 (Table 5), but in this case, activation function
Relu was better than LeakyReLU. The dataset of wells for the reservoir is of the same
stratigraphic interval, with similar properties and dynamics of the efficiency of RJD.

Table 5. The training results for the Bsh reservoirs.

Number of
Neurons per

Layer
Optimizer Epochs Activation

Function MAE (Train) R2 (Train) MAE (Test) R2 (Test)

128–64–1 Adam 300 LeakyReLU 3.3 0.72 3.9 0.58
128–64–1 Adam 265 ReLU 2.6 0.81 3.6 0.68

The training results are shown in Figure 6.
The training quality for wells at the Tournaisian (T) reservoirs is lower (Table 6).

Table 6. The training results for the T reservoirs.

Number of
Neurons per

Layer
Optimizer Epochs Activation

Function MAE (Train) R2 (Train) MAE (Test) R2 (Test)

128–64–1 Adam 265 ReLU 1.98 0.68 2.6 0.59

The training results are shown in Figure 7.
While for the T reservoirs, there is a number of fields with higher-viscosity oil

(48–87 mPa·s), the liquid flow rate is comparable with the rest of the wells, which may
explain the lower coefficients of determination against the Bsh reservoirs. However, these
results are improving the quality of predictions from basic statistic model (described in the
materials, methods and background) and the mean absolute error here is lower and equals
1.9–2.6 m3/day, which allows quite a reliable forecasting of the wells flow rates. It is also
expected that an increase the numbers of wells in the dataset will lead to an increase in the
quality of the forecast, which is why the model is useful to predict the effectiveness RJD for
T reservoirs wells.
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In general, it should be noted that training and prediction for individual targets of
different stratigraphic units provides a significant improvement in model quality metrics.
The obtained models can be used with sufficient reliability for the prediction of wells’
potential for RJD.

Despite reservoirs being from different strata, though located in the same territory
and the same oilfields and being composed of carbonate rocks, we carried out training for
the Bsh reservoirs set and testing for the T reservoirs set with a 44/56 ratio and opposite
training on T and testing on Bsh (Table 7, Figure 8).

Table 7. The training results for the wells at Bsh and T reservoirs.

Train/Test Number of
Neurons per Layer Optimiser Epochs Activation

function
MAE

(Train)
R2

(Train)
MAE
(Test) R2 (Test)

Bsh/T 128–64–1 Adam 365 ReLU 1.74 0.81 7.8 0.12
T/Bsh 128–64–1 Adam 365 ReLU 2.8 0.64 5.7 0.43

Training for reservoir wells of the Bashkirian age shows reliable results but does
not allow predicting the RJD effect for the Tournaisian reservoir wells, which show the
overfitting of the model. In another case, the model fits on T reservoirs better, but it is
also not suitable for forecasting. To solve problems of overfitting, the dropout method was
used. Dropout is a regular technique that reduces the odds of overfitting by dropping out
neurons at random, during every epoch [58,59]. It did not work well.

The low quality of the Bsh/T and T/Bsh models does not allow them to be used for
forecasts. It was noting the difference in the geological structure of these reservoirs and oil
properties. The efficiency of radial jet drilling at these strata’s is different and has different
dynamics. The ranges of some parameters also differ significantly (Table 8), and therefore,
it is not possible to train the model on one type of reservoir and obtain predictions for
another.

Table 8. Descriptions statistics for Bsh and T reservoirs parameters.

Bashkirian Reservoir

qliq, m3/day µ, mPa·s χ, cm2·s Kcomp, units
mean 5.33 15.59 176.96 6.67

std 4.97 11.28 314.74 3.36
min 0.10 1.02 2.00 1.00
max 27.20 34.71 1840.00 17.00

Tornesian reservoir
mean 4.94 34.04 145.00 8.87

std 3.46 29.51 651.57 4.18
min 0.11 1.51 2.00 1.00
max 23.00 87.1 7409.40 28.00
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5. Discussion

It is possible to forecast liquid flow rates following RJD by single model for all car-
bonate reservoirs of Perm Krai (mean absolute error is 3.3 m3/day), yet it would be more
accurate to say that this is a forecast of well potential for RJD in different geological con-
ditions. The best training/testing result was obtained on a multilayer perceptron with
3 layers, 128–64–1 neurons per layer, using the Adam optimizer and the LeakyReLU
activation function. The training results: mean absolute error of flow rate after RJD is
2.9/3.7 m3/day and R-squared is 0.73/0.57 for training and prediction, respectively. Over-
all, these results improved the prediction quality for the existing statistical approach that
consists of forecasting liquid flow rates through the specific-productivity coefficient for the
analogue wells (Figure 5), where R-squared is 0.16. Models fitted on dataset with all wells of
different strata reservoir do not have high accuracy. Wells from each strata have different
dynamics of flow rates, reservoir pressure and productivity. Additionally, the Tournaisian
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reservoir features high heterogeneity and fissures, and some oil fields have high-viscosity
oil, while Bashkirian reservoirs are of a porous type and wells have more stable liquid flow
rates.

For improving the quality of the model’s datasets, all reservoirs were divided to sets
with the same strata. This might help, because reservoir properties and flow rates have
become more homogeneous. However, the results are ambiguous

When building multilayer perceptron models individually for wells of different reser-
voirs, note the increase in model quality for the Bashkirian reservoirs wells, slight decrease
for the Tournaisian reservoirs by the R-squared metric and improvement by the MAE metric.
For the Bashkirian reservoir wells, MAE is 2.6/3.6 m3/day and R-squared is 0.81/0.68; for
the Tournaisian reservoir wells, MAE is 1.98/2.6 m3/day; R-squared is 0.68/0.59. Building a
separate model for the Famennian reservoir wells failed due to the low amount of sampling
values (24 wells). The lower quality for the T model is also explained by the complexity of
the reservoir, the heterogeneity of its properties and fluid properties.

There are a lot of problems when the dataset is sparser, and it is difficult to adequately
model the problem, overfitting, data preparation and others. In order to solve these
problems, preparation and filtering of the data were carried out, and various parameters
of the multilayer perceptron were selected to solve the problems of retraining. Moreover,
the data for the training/test were divided in various proportions from 70/30% to 85/15%,
using the dropout method.

It is important to note that the accuracy of these models has become significantly higher
in comparison with the standard statistical forecasting method. Models are proposed to be
tested in future radial jet drilling operations.

Using the models trained on reservoirs of the same age to forecast the effect for wells
of a different age is not realistic. When the train/test data are Bsh/T (MAE is 7.8 m3/day;
R-squared is 0.12), overfitting is observed; in order to solve problems of overfitting, the
dropout method was used. This helped to model T/Bsh (MAE is 5.7 m3/day; R-squared is
0.43), and of course, this model remained unusable. This case shows how important it is to
use geological data very carefully to build machine learning models. To build models, it
is important to understand the processes of formation of rocks, their properties and their
influence on the processes of oil production.

Perhaps the most accurate models would be those built individually for the formations
of different stratigraphic intervals as well as separately for oil fields; however, there is a
lack of actual RJD experience, as of now.

The main strengths of this approach are as follows:

- Targeted approach to predicting the efficiency of radial jet drilling in various geological
conditions;

- Improvement of forecast quality in comparison with the standard approach;
- Automatization of efficiency calculations;
- The possibility of combining the obtained models with reservoir simulation models

for long-term forecasts.

The limitations of this approach are as follows:

- In the context of machine learning, no high values of metrics for assessing the quality
of the models;

- It is necessary to increase the dataset values for additional training of the models;
- The study was limited only to neural networks (multilayer perceptron), and it is

necessary to use other algorithms of machine learning.

6. Conclusions

The study has assessed the applicability of neural networks to forecast the radial jet
drilling technology effectiveness. In the course of the study, models were built to predict
the efficiency of the RJD for all carbonate reservoirs in Perm Krai (Russia) and individually
for reservoirs of various ages. Individual reservoir models made it possible to improve
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the quality of the forecast in comparison with the existing standard methodology; it is
proposed to use them for the selection of wells for the RJD.

The use of multilayer perceptron models has improved the quality of forecasting
compared to the basic method used by the regional oil company. The application of neural
networks allows to deploy a set of geological and process parameters, which enables a
comprehensive selection of candidate wells. The use of forecasting models is viable in
combination with reservoir simulation models, which will allow using dynamic parameters
required for the neural network model (reservoir pressure, bottomhole pressure and current
liquid flow rate) from the simulation model at any time, even for long-term forecasts, which
the authors have in sight for their future research. Other relevant future research problems
are the following: 1. Improvement of the model’s quality, which can be attained through
a more detailed analysis of the dataset, its correction and increase of sampling values;
2. Application of other neural network models and recurrent models; 3. Application of
machine-learning methods, such as support vector machine, random forest and Naïve
Bayes; 4. Methodology development of predicting efficiency of IOR technologies in various
geological conditions.
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