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Abstract: Climate change is an important issue that affects energy consumption, causes health
problems, such as heat stroke, and requires urgent countermeasures. Serious health problems, in-
cluding cardiac arrest, often occur in winter in traditional residences in Japan. Cooling-heating
energy is required to maintain a healthy thermal environment. Although energy efficiency stan-
dards for buildings have been introduced worldwide to reduce energy consumption and various
passive energy-saving methods are being investigated, traditional residences still face difficulties
in conducting renovations because of various restrictions, such as the conservation of historical or
aesthetic values. In this study, these issues and their appropriate countermeasures were investigated
for a traditional townhouse in Kyoto, Japan, “Kyo-machiya” (including its new form “Heisei-no-
Kyo-machiya”). The potential of reducing heating and cooling loads was examined by conducting
numerical analysis considering residents’ lifestyles. Field surveys of the indoor environment were
conducted in both summer and winter. It was revealed that by optimizing the times and positions
of opening and closing the windows and indoor partitions, the indoor air flow could be adjusted
from both thermal comfort (cooling in summer) and discomfort (cold drafts in winter) perspectives,
leading to improving the indoor environment without using energy.

Keywords: Kyo-machiya; indoor environmental control; environment adjusting space; natural
ventilation; cold draft

1. Introduction

Climate change is a crucial issue that requires urgent countermeasures. Overheating
in dwellings in summer, especially in urban areas, has a considerable influence on our
daily lives and health and can result in heat strokes on hot and sunny days, as examined
by Hamdy [1], Santamouris [2], and Taylor [3]. Thus, it is imperative to address these
problems by creating a suitable indoor environment, not only through the passive design
of buildings but also by cooling. The cooling of buildings results in increasing energy
consumption [4] and worsening of the urban environment caused by waste heat from
air-conditioning (AC) systems [5]. However, health problems, such as cardiac arrest, often
occur in winter, especially in dwellings with poor thermal insulation [6,7]. In Japan, one of
the causes of these health problems is the habit of bathing in hot water in cold bathrooms.
To prevent these, raising the temperature of the bathroom and dressing room using heating
devices [8] is effective but requires more energy.

Therefore, improving energy saving in dwellings and creating a healthy indoor envi-
ronment is required. Energy efficiency standards have been implemented worldwide and
satisfying them is regarded as the minimum requirement. Various laws, directives, and
standards have been established, such as the Energy Performance of Buildings Directive
(EPBD) [9,10]. The main goal of this directive is to increase the renovation rate and to make
less energy-efficient buildings more sustainable. However, issues have been identified in
existing buildings, including cost-effective methodology, evaluator-independent consis-
tency, and appropriate evaluation methods [11]. Currently, energy efficiency policies and
regulations have been created and enforced in countries with various climates, such as
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Arab countries [12], the Gulf Cooperation Council [13], Morocco [14], and South-Asian
countries [15].

Energy efficiency standards for residential buildings (hereafter: energy efficiency stan-
dards) were first enacted in Japan in 1980 as one of the main countermeasures against the
1973 oil crisis. Building performance was regulated with a specific focus on thermal insula-
tion, airtightness, and solar control. The standard was improved under the “New energy
efficiency standards” in 1992 and further strengthened under the “Next generation energy
efficiency standards” (hereafter: next-generation standards) in 1999 [16] in response to the
Kyoto Protocol. The annual maximum allowable space conditioning (heating-cooling) loads
for houses claimed in each standard are listed in Table 1. These values are for moderate
climate regions, including Kyoto City, where heating degree-days based on 18 ◦C are in the
range of 1500–2500. Even now, almost the same level of building insulation performance
has been adopted as the next-generation standard. The total energy consumed in a building
depends not only on its thermal performance, but also on the energy used for utilities, such
as heating, cooling, lighting, and supplying hot water and the energy produced by solar
panels. Therefore, appropriate energy savings are possible by considering the building as a
whole system. Based on this, an integrated energy-saving concept was introduced in 2013,
in which the evaluation of energy-saving performances was changed based on primary
energy consumption [17]. Furthermore, in response to the Paris Agreement (2015), the “Act
on Improvement of Energy Consumption Performance of Buildings” was amended in 2019.

Table 1. Annual maximum allowable space conditioning (heating-cooling) loads for houses in
moderate climate regions in Japan.

Standard 1980 Standard 1992 Standard 1999 Standard

Heating-cooling load 1030 800 460

Unit: MJ/m2/year.

As Japan has four seasons, summer cooling and winter heating are generally required.
Thus, energy-saving measures and building design must consider these seasonal require-
ments, which differ from those in other countries. Climographs of the major cities of several
countries are shown in Figure 1 [18]. High relative humidity throughout the year is a
notable feature of Kyoto, which causes a muggy environment in summer.
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Figure 1. Comparison of climatic conditions in Japan and other countries [18].

As the western parts of Japan have extreme summers and mild winters, the people
there historically emphasized measures to withstand the summer heat while neglecting the
winter cold. Consequently, it has become common sense that residential buildings should
be designed to be open, and the openings should be kept open to ensure sufficient natural
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ventilation. This seems to have become permanent in the lifestyle of Japanese people,
cemented by the fact that most Japanese residential buildings are made of wood with poor
airtightness. This not only influences energy consumption, but also residents’ health.

The target of our project is Kyo-machiya, which is a wooden detached house or a
townhouse-type residential building built before 1950 by “traditional wooden post and
beam construction” or “traditional construction”. It was defined by the ordinance of
Kyoto City in 2017 [19] and has all or several of the following features (Figure 2): Tori-
niwa (a thin and long earth floor running from the entrance, which faces the road, to the
courtyard), Tsubo-niwa or Oku-niwa (a small courtyard), Tori-bisashi (eaves installed along
the roadside), and Koshi (types of windows, such as Mushiko-mado or Kyo-goushi). The
upper part of the Tori-niwa is an atrium called the Hibukuro, whose original purpose was
to discharge smoke and soot generated by the burning of wood during cooking.
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There are numerous difficulties in applying the usual energy-saving strategies, includ-
ing insulation and airtightness, to a Kyo-machiya. Similar problems have been discussed in
several previous studies. Caro et al. [20,21] described the difficulty of improving building
elements and the complexity of applying current energy efficiency standards to heritage
buildings. With respect to the facade of Kyo-machiya, external insulation cannot be applied
without changing the traditional external appearance (a white plaster wall), and there
are limited fire-preventative materials that can be used for external finishing. Similarly,
regarding the inner surfaces of the soil walls, inner insulation cannot be applied while
maintaining traditional elements, particularly since the residents place great importance
on the feeling of the soil wall. Internal insulation is generally adopted in historical ma-
sonry buildings in Europe to preserve their appearance. Particularly in cold regions, it
may increase the risk of condensation inside the outer wall, mold growth, and frost dam-
age, among other factors. Therefore, such risks have been assessed by experiments and
computational simulations [22–24]. Furthermore, it is concerning that heat can easily be
transported through humid walls, leading to increased energy consumption [25]. When
applying internal insulation to Kyo-machiya, these issues should be examined beforehand.

The poor airtightness of the soil wall is a serious issue because cracking between
the soil and wood columns/beams, caused by shrinkage of the soil in the long term,
is unavoidable with conventional construction methods. Because the original style of
the inner spaces is an open design, there is poor airtightness between the inside and
outside (openings, veranda, corridor, passage to toilet, etc.). Thus, specially designed
and constructed fittings are required to make wooden structures airtight. However, when
improving airtightness, it is necessary to consider alternative methods for maintaining
good indoor air quality, such as the installation of ventilation equipment [26].
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There are several issues concerning Kyo-machiya, especially as traditional residences
are demolished and replaced with high-rise flats. For example, the preservation and inheri-
tance of Kyo-machiya has become important because of their relevance as homes, cultural
heritage, and tourist attractions. Additionally, the conservation of forests surrounding
Kyoto City is also an area of concern. To address these issues, Kyoto City held a civic
meeting in 2008: “Kyoto, a city taking care of wood culture.” The civic meeting adopted
“Heisei-no-Kyo-machiya” as one of the main themes to be discussed. “Heisei-no-Kyo-
machiya” is a new residence model, designed based on tradition and associated knowledge
of the Kyo-machiya, while also integrating the most advanced environmental technology.
Figure 3 shows the concept of a “Heisei-no-Kyo-machiya”, whose cross-sectional features
are almost the same as those of a conventional Kyo-machiya: effective wind trail, partial
use of earthen floor, and small attached courtyards. The largest difference between them
is the thermal insulation performance and airtightness. Based on the report of the civic
meeting released in 2010, Kyoto City has taken measures [27] to advance the construction
of “Heisei-no-Kyo-machiya”.
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Figure 3. Concept of the “Heisei-no-Kyo-machiya” (depicted by authors based on a website [27]).

In a “Kyo-machiya”, the relationship between the inside and outside is crucial to
maintain which of the connecting spaces, including the “Tori-niwa” and “Engawa” (ve-
randa), are adjusted in the indoor environment. Through this relationship, a fruitful living
culture is cultivated depending on the season. The “Heisei-no-Kyo-machiya” concept aims
to improve the design of this intermediate region that connects the inside and outside,
creating an “environment adjustment (buffer) space” (Figure 4). In this way, “Heisei-no-
Kyo-machiya” retains the relationship between an individual and his/her environment,
and that between a residence and the surrounding area, with an “environment adjusting
space” intervening between them.
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As presented in the “Heisei-no-Kyo-machiya” concept, heating and cooling energy
savings in residential buildings are primarily achieved through passive techniques, such as
thermal insulation and airtightness. Although solar radiation (heat) should be avoided in
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summer, it is beneficial and should be used indoors in winter. Similarly, natural ventilation
is generally an effective cooling technique in summer that does not consume energy, but
suitable means of avoiding cold drafts and air leakage are required in winter. To achieve
energy savings, various passive (sometimes combined with active) methods have been
proposed and investigated under different climatic conditions worldwide.

Although the German passive house standard has been adopted in other countries, in
anticipation of the risk of overheating caused by climate change in the future [28], glazing
ratios and external shading devices [29], and additional cooling by natural ventilation [30],
have been focused on. The effects of individual passive technologies on summer heat,
including roof insulation in tropical regions [31], the use of building thermal inertia [32],
and a combination of building heat capacity and night ventilation [33,34], have been
evaluated. One study showed that indoor thermal comfort can be improved by the intake
of outdoor air at appropriate times [35], and another study showed that hybrid ventilation
that combines mechanical and natural ventilation leads to better energy efficiency and
indoor air quality (IAQ) than the window-opening behavior of residents [36]. On the other
hand, an atrium space, which is strongly desired in many newly built residential buildings,
is effective in promoting natural ventilation, resulting in unpleasant cold drafts in winter in
residences without sufficient insulation of the external walls [37].

When using passive natural ventilation, it is also necessary to understand the residents’
window-opening behaviors. Using a multi-level logistic regression model, Shi et al. [38]
explained the relationship between the probability of opening a window and environmental
factors. Jiang et al. [39] showed that even during the winter heating period, there was
a tendency to open windows for fresh air, and Verbruggen et al. [40] revealed that the
behavior was also affected by daily habits.

The behavior of residents regarding energy consumption in their houses is garnering
attention [41], and efforts are being made to consider them while developing future energy
conservation plans [42–44]. Krarti [45] demonstrated that energy can be saved by changing
the set temperature of air conditioning according to the usage pattern of the given room in
the house. Ascione et al. [46] showed that the wrong behavior of residents can significantly
increase the energy demand. Although national and international indoor environmental
quality standards specify indoor environmental conditions that are considered acceptable to
most residents [47], there are large differences in thermal comfort and resident preferences
among individuals [48]. Establishing energy-saving methods without considering the
preference of occupants also leads to a decrease in the satisfaction of residents [49,50].
Different age groups, such as the elderly and non-elderly [51], have also been identified to
have different preferences and behaviors, leading to different environmental requirements
for acting or sleeping [52,53]. Furthermore, it is well known that occupants’ thermal
sensation changes according to the climate of the residential area [54,55] and the house
structure [56].

Regarding the improvement of thermal environment in traditional houses, several
studies have been conducted on unique dwellings in each country and region. Traditional
homes in the Duyarbakir region of Turkey provided protection to the residents from the
sun and the hot dusty winds with compact, low-rise structures and small courtyards [57].
Ryu et al. [58] quantitatively analyzed the characteristics of the wind flowing through a
semi-open space with a wooden floor located between the front and back yards of tra-
ditional Korean residences. In Nepal, creating a sun space at the entrance of traditional
Humla homes was recommended as a means of reducing the use of firewood in winter
and improving thermal comfort [59]. In Pol House, a traditional residence in the Indian
city of Ahmedabad, some techniques such as improving the thermal insulation of walls
and roofs, seasonal shades for windows and courtyards, and using mechanical fans were
examined from the perspective of energy saving and thermal comfort [60]. In Lhasa, Tibet,
the mechanism for creating an indoor thermal environment for traditional homes was
investigated [61]. In Japan, there have been many studies on the historical value and
transition of Kyo-machiya, including the relationship between townhouses and streets in
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the city [62], and the changes in vegetation cover of gardens at Kyo-machiya [63]. In addi-
tion, multifaceted investigations, such as seismic reinforcement experiments on traditional
houses [64], or sliding fire-prevention shutters that match the exterior design [65], have
been carried out. In 1990, Ishida et al. [66] measured the indoor temperature and humidity
and the pressure difference between rooms in a Kyo-machiya and analyzed the mechanisms
of the thermal environment in the summer. They reported that the cool condition was
maintained on the first floor because of the air being cooled by the evaporation of water in
a small courtyard and the heat being effectively exhausted through the atrium (Hibukuro),
even if the house had no insulation. In 1991, based on the survey results on the trend of
the floor plan change of Kyo-machiya, Matsubara et al. [67] reported that the number of
mechanical appliances had increased in the renovated houses to improve residents’ thermal
comfort in summer, which led to more energy consumption and temperature rises in urban
areas. Ooka [68] investigated the thermal environment of traditional houses with soil walls,
earthen floors, and thatched roofs in a colder region of Japan and revealed that the residents
withstood the winter cold directly with a brazier or fire pit.

The authors have examined the possibility of heating and cooling with a heat pump
that uses water from a well that normally exists in Kyo-machiya as a heat source [69,70].
However, few studies have been done on the thermal environment improvement of Kyo-
machiya, which mainly uses passive techniques, and its effect on the saving energy.

Considering these previous studies, the aims of this paper with respect to the tradi-
tional dwelling Kyo-machiya are as follows: (1) to examine how much the heating-cooling
load can be reduced considering the residents’ lifestyle, (2) to suggest a technique to pre-
vent cold draft in the atrium space in winter, (3) to estimate the cooling effect of night
ventilation in summer by utilizing the heat capacity of the soil wall, and (4) to investigate
the effective methods of natural ventilation for summer cooling by opening/closing the
indoor partition doors. Based on these results, the potential to reduce energy consumption
while maintaining comfort in traditional dwellings is discussed.

2. Methods
2.1. Model Residence

The “Heisei-no-Kyo-machiya” model residence was used for this investigation. Its
appearance and plan are shown in Figure 5. The specifications of the building envelope
are listed in Table 2. In this residence, all the external walls were 50 mm thick and made of
soil. External 40 mm wooden insulation was applied to the east/west walls (no windows)
and the roofs on a trial basis. Note that the insulation performance does not meet next-
generation energy efficiency standards. Although traditional “Kyo-machiya” are generally
terraced houses, this model residence is a stand-alone type built in an open space around
the center of Kyoto City.
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Table 2. Specifications of the building envelope.

Part Specification

North, south external wall Soil wall 50 mm

East, west external wall Soil wall 50 mm + Wooden insulation 1 40 mm + Cedar
board 10 mm

Partition wall Soil wall 50 mm

Roof Roof tile 20 mm + Wooden insulation 1 40 mm + Cedar
board 30 mm

Floor (first floor) Tatami 55 mm + Wooden insulation 1 20 mm + Cedar
board 30 mm

Windows Single glass
Foundation wall Cedar board 10 mm

Earthen floor Sandy soil
1 Thermal conductivity of wooden insulation was 0.038 [W/mK].

2.2. Investigated Issues

Calculations and/or experiments were conducted on the model residence from four
perspectives: reduction in energy consumption throughout the year, cold draft preven-
tion in winter, utilization of heat capacity in summer, and effective natural ventilation
in summer.

2.2.1. Estimated Energy Consumption and Countermeasures

We examined whether energy consumption could be reduced depending on the
manner of living, even in a house whose insulation performance did not meet the energy
efficiency standard. The model residence was simplified as the calculation model shown in
Figure 6. An unsteady heat conduction calculation of the building envelopes was performed
and the room air temperature was estimated by considering the heat transfer from the
surrounding walls/floors/roofs and ventilation. The calculation program was written
using Fortran 90 and the solution was confirmed not to be divergent.

Energies 2022, 15, x FOR PEER REVIEW 7 of 19 
 

 

Table 2. Specifications of the building envelope. 

Part Specification 
North, south external wall Soil wall 50 mm 

East, west external wall Soil wall 50 mm + Wooden insulation1 40 mm + Cedar 
board 10 mm 

Partition wall Soil wall 50 mm 

Roof Roof tile 20 mm + Wooden insulation1 40 mm + Cedar 
board 30 mm 

Floor (first floor) 
Tatami 55 mm + Wooden insulation1 20 mm + Cedar board 

30 mm 
Windows Single glass 

Foundation wall Cedar board 10 mm 
Earthen floor Sandy soil 

1 Thermal conductivity of wooden insulation was 0.038 [W/mK]. 

2.2. Investigated Issues 
Calculations and/or experiments were conducted on the model residence from four 

perspectives: reduction in energy consumption throughout the year, cold draft prevention 
in winter, utilization of heat capacity in summer, and effective natural ventilation in sum-
mer. 

2.2.1. Estimated Energy Consumption and Countermeasures 
We examined whether energy consumption could be reduced depending on the 

manner of living, even in a house whose insulation performance did not meet the energy 
efficiency standard. The model residence was simplified as the calculation model shown 
in Figure 6. An unsteady heat conduction calculation of the building envelopes was per-
formed and the room air temperature was estimated by considering the heat transfer from 
the surrounding walls/floors/roofs and ventilation. The calculation program was written 
using Fortran 90 and the solution was confirmed not to be divergent. 

 
Figure 6. Analyzed Kyo-machiya model. 

The outdoor temperature and amount of solar radiation in a standard year in Kyoto 
determined from the Expanded Automated Meteorological Data Acquisition System 
(AMeDAS) Weather Data [71] were used as inputs. Based on next-generation standards 
(in 1999), when the daily mean outdoor temperature was lower than 15 °C, the rooms 
were heated at a setpoint temperature of 18 °C, and otherwise cooled at a setpoint of 27 
°C. During the daytime (6:00–18:00) in the cooling period, natural ventilation was per-
formed if the outdoor temperature was lower than the indoor temperature. 

The air exchange rate was set to 10 [1/h] during naturally ventilation and 0.5 [1/h] 
during no ventilation. It is assumed that the residents principally inhabit the first floor, 
whereas the second floor comprises a storage space and a space used only to lodge tem-
porary visitors for a few days. 

2nd Floor (72 m2)

Crawl space

12,000 mm

500 mm

2500 mm

Attic space

2500 mm

10 
4

1st Floor (72 m2)

Figure 6. Analyzed Kyo-machiya model.

The outdoor temperature and amount of solar radiation in a standard year in Ky-
oto determined from the Expanded Automated Meteorological Data Acquisition System
(AMeDAS) Weather Data [71] were used as inputs. Based on next-generation standards (in
1999), when the daily mean outdoor temperature was lower than 15 ◦C, the rooms were
heated at a setpoint temperature of 18 ◦C, and otherwise cooled at a setpoint of 27 ◦C.
During the daytime (6:00–18:00) in the cooling period, natural ventilation was performed if
the outdoor temperature was lower than the indoor temperature.

The air exchange rate was set to 10 [1/h] during naturally ventilation and 0.5 [1/h]
during no ventilation. It is assumed that the residents principally inhabit the first floor,
whereas the second floor comprises a storage space and a space used only to lodge tempo-
rary visitors for a few days.

First, to specify the thermal performance of the model house compared to the con-
ventional Kyomachiya, annual heating-cooling load when there is no insulation on the
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east/west walls and roof was calculated. Next, the following parameters were changed,
assuming the resident’s way of living: (1) heated/cooled spaces, (2) heating hours, and
(3) heating/cooling setpoints. Note that per the current energy efficiency standards, pro-
cesses including air conditioning, lighting, and energy consumption by home appliances
are evaluated by primary energy consumption considering equipment efficiency. Here, only
the heating-cooling load is discussed, referring to the standard value of the next-generation
standard (1999), in which the insulation performance does not change. This is because the
influence of the residents’ way of living on the heating-cooling load is the focus, regardless
of the type of air-conditioning appliance.

2.2.2. Cold and Draft in Winter: Issues Related to the Atrium

The temperature and airflow distributions in the staircase of a model residence (Figure 7)
were measured in winter to analyze the characteristics of cold draft occurring in the
atrium. When the Zashiki on the first floor was air-conditioned at 25 ◦C, the door (Fusuma)
connected to the staircase was kept open. The effect of opening or closing the door on the
second floor was also examined.

The temperature was measured using small thermo-hygrometers (T&D Corp., RTR-
503) at 1 min intervals. The wind speed and direction were checked intermittently using
an omnidirectional hot-wire anemometer (KANOMAX Model 6543-21) and small stream-
ers, respectively.
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2.2.3. Thermal (Cooling) Storage of the Building Structure by Natural Night Ventilation

The cooling effect of the thermal storage of the building structure was examined to
analyze the natural night ventilation in summer. The measurements were performed in the
same model residence. On the first day, the doors were opened during the day and closed
during the night (normal operation), whereas the opposite was done on the second day
(night ventilation operation). Figure 8 shows the measurement procedure, including the
durations of keeping the doors opened and closed. For measurement, a thermo-hygrometer
(T&D Corp., RTR-503) was set at the center of each floor, recording at 10 min intervals.
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To investigate the effect of ventilation cooling in more detail and more effective uses
of thermal storage of soil wall, simple calculations were conducted. The calculation model
was almost the same as that described in Section 2.2.1 (Figure 6). The examination period
was 3 days from September 8, 2014, which is the same as the measurement, and the run-up
calculation was performed from 1 month before that. The outside air temperature and solar
radiation measured in the back court of the model residence was used as input data. The
calculation cases are listed in Table 3. Case 1 is the same condition as the measurement in
which the doors were opened during the day and closed during the night on the first day,
and the opposite was done on the second day. Case 2 is when the night ventilation is not
conducted on the second day (same operation as on the first day), and Case 3 is when the
thickness of the insulation attached to the east and west walls is increased from 40 mm to
100 mm, in addition to Case 1, aiming to evaluate the influence of insulation. Note that
there was the possibility of increasing the insulation thickness on the east/west walls with
exterior materials (cedar board), without any change in appearance.

Table 3. Calculation conditions: Insulation.

Night Ventilation Insulation: East and West

Case 1 Same condition as the
measurement

Yes
From 18:50 on September 9

To 6:45 on September 10

Wooden insulation
40 mm

Case 2 No night ventilation
No

Windows closed
during night

Wooden insulation
40 mm

Case 3 Increased Insulation of
side walls

Yes
From 18:50 on September 9

To 6:45 on September 10

Wooden insulation
100 mm

2.2.4. Influence of Partition Doors on Ventilation Cooling

Because the position and closure of the partition doors affect the indoor air flow, they
also strongly influence the effectiveness of natural ventilation cooling during daytime in
late summer and autumn. Although the usual strategy is to open all doors, the air may
flow into an unoccupied space, thereby wasting natural energy. Therefore, their influence
was examined using computational fluid dynamics (CFD) analysis as described below.

Simulations were performed for the model residence. The software Flow Designer
12 [72] was used for the calculations. The computational domain was 100 m (x) × 100 m (y) ×
30 m (z), as shown in Figure 9a, and the number of grids was 90 (x) × 134 (y) × 68 (z). The size
of the target residence is shown in Figure 9b. The outdoor wind velocity and direction were
set at 2.14 m/s and north-northwest, respectively, which are frequently observed in Kyoto
in late summer. In this calculation, the temperature is assumed to be constant at 20 ◦C.
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Figure 9. (a) Computational domain and (b) the wire frame model of the target residence.

Here, the effects of opening/closing the Fusuma (Japanese-style partition door) were
examined according to Patterns 1–3 (Figure 10). In Pattern 3, the cases with stronger outside
wind (3.0 m/s, 3.5 m/s) were also examined.
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3. Results
3.1. Estimated Energy Consumption and Countermeasures

Based on the evaluation procedure of the next-generation energy efficiency standards,
heating-cooling loads in the case of the current model residence and of no insulation
were calculated. The results are shown in Figure 11a. Because it was assumed that the
whole house was heated/cooled as required, the annual heating-cooling load was obtained
per total floor area (first and second floors). The current model houses do not meet
the standard value (460 MJ/m2), to say nothing of the case of no heat insulation. Next,
assuming the actual lifestyle as described in Section 2.2.1, we focused on the following
points: (1) heated/cooled spaces, (2) heating hours, and (3) heating/cooling setpoints. Note
that the calculation conditions are different from those of the energy efficiency standard
used to examine the potential for energy saving.

Figure 11b shows the calculation results of the annual heating and cooling loads for the
different heated/cooled areas in the residence. In this figure, right bar presents the annual
heating-cooling load divided by only the first floor area (72 m2) because only the first floor
was assumed to be a living space, whereas the left bar shows the load divided by the total
floor area (144 m2). Although the heating/cooling load seems to have increased when the
heated/cooled spaces were limited from both the first and second floors (specified by the
standard) to only the first floor, the load for whole residence was reduced by 38%, from
77,616 MJ to 48,024 M. Figure 11c shows the results for different heating hours. By changing
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the heating hours from 24 h (following the standard) to 6:00–24:00 (waking hours) or to
6:00–12:00 and 18:00–24:00, the heating/cooling load decreased by 18 and 26%, respectively.
The effect of no heating during the night was substantial when the outdoor tempera-
ture was low. Figure 11d shows the results for the heating/cooling setpoint tempera-
tures. By changing the setpoint temperature from heating 18 ◦C/cooling 27 ◦C to heating
17 ◦C/cooling 28 ◦C, the annual load decreased by 17%, and the annual heating/cooling
load was 438 MJ/m2, which satisfied the standards.
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Figure 11. Calculated results of annual heating/cooling load.

3.2. Cold Draft in Winter: Issues Related to the Atrium

Using a simple streamer, it was found that hot air flowed into the staircase through
the door, rose to the second floor, and then flowed down along the staircase as cold air. The
measurement results are shown in Figure 12.

When the door on the second floor was open, the 29 ◦C hot air flowed out from the
Zashiki on the first floor at 0.3–0.4 m/s through the upper part of the door, and rose to the
second floor at a flowrate of 0.5 m/s. From the second floor, 19 ◦C cool air flowed down
the stairs at 0.2–0.35 m/s, and then returned to the Zashiki at 21 ◦C through the lower part
of the door on the first floor.
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Figure 12. Air velocity and temperature in the staircase; (a) opened and (b) closed cases.

In contrast, when the door on the second floor was closed, the downward air velocity
decreased, returning to the Zashiki at 0.3–0.33 m/s and 23.5 ◦C, and the draft in the Zashiki
was weakened.

3.3. Thermal (Cooling) Storage of the Building Structure by Natural Night Ventilation

The room temperature at the center of the first floor during the measurement is shown
in Figure 13, along with the outdoor temperature and solar radiation. With night ventilation
operation, the room temperature during the night decreased by 2.5 ◦C compared to that
with normal operation because of the night ventilation, and as a result, the increase in the
room temperature on the following day was suppressed by 1.7 ◦C.
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Figure 13. Measured results of the night natural ventilation experiment.

Figure 14a shows the calculated room temperature on the first floor in Case 1 along
with the measured results. Although the calculated temperature drop during night is
slightly less and slower than the measured results, the temperature rise during the day
is in good agreement with the measured value. Figure 14b shows the calculated room
temperature of each case. When no night ventilation was conducted (Case 2), the room
temperature decreased by only 2 ◦C because of heat emission from the soil walls that had
stored heat during the day, in contrast to Case 1 in which the temperature dropped by
about 5 ◦C. The amount of night cooling of the soil wall was considerably small, and the
high room temperature was maintained during the day. In Case 3 with thicker insulation,
the room temperature changed almost same as in Case 1.
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Figure 14. (a) Measured and calculated (Case 1) indoor temperature on the first floor, and (b) calcu-
lated indoor temperature in each case.

3.4. Influence of Partition Doors on Ventilation Cooling

The wind speed distributions corresponding to Patterns 0–3 are shown in Figure 15.
In Patterns 0 and 1, the outdoor air flowing through the north windows diffused into the
Japanese-style rooms and weakened, making it ineffective for ventilation cooling in these
rooms. By closing two partition doors along the corridor in Patterns 2 and 3, the airflow
route can be clearly specified, and sufficient air velocity can be obtained in the Washitsu
(Japanese-style rooms). The contours of wind velocity for cases with different outdoor
wind velocities in Pattern 3 are shown in Figure 16. The air velocity in the corridor did not
change significantly even when the outdoor wind velocity increased.
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Figure 16. Simulated results of airflow velocities under different outdoor wind velocities.
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4. Discussion
4.1. Energy Efficiency Standards

The simulation conditions described in Section 2.1 do not satisfy the specifications
of the energy efficiency standards. However, because of the present situation (an aging
society), the lack of use of the second floor may be regarded as an energy-saving strategy in
line with the reality of the present “Kyo-machiya” lifestyle. The changed heating/cooling
hours and setpoints are common to all areas in Japan, except for the northern parts, and
seem reasonable. Adaptation to the living environment may be involved.

The rationale for the specific cooling hours and setpoint temperatures in summer is
partly discussed in Sections 3.2 and 3.3 from the viewpoint of natural night ventilation
(purge) and ventilation cooling (lowering of the perceived temperature by increased in-
door air velocity). As discussed in Section 3.1, the perceived temperature and insulation
performance were increased in winter by reducing cold drafts and infiltration.

Although the reduction in the heating load has a large influence on satisfying the stan-
dards, as shown in Section 2, possible measures to do so are very limited in “Kyo-machiya”.
However, in a terrace-type “Kyo-machiya”, the boundary walls with neighboring houses
can be ideally regarded as adiabatic if symmetry can be assumed, resulting in no heat loss.
The situation of the model house with insulation on both side walls is quite similar to
this situation. In addition, the Engawa (a veranda connected to the courtyard), a thermal
buffering zone, can play an important role as an insulation layer by controlling the open-
ing/closing of the doors on both sides of it, although this measure is not basically allowed
to evaluate the heat load under the present standards.

Despite facing some problems, such as lower indoor temperatures and contact with
the cold floors caused by decreased heating hours and setpoints, many people who live in
Kyo-machiya are likely to accept this situation. As previous surveys [73,74] have shown,
this is because they currently live in such environments.

4.2. Control of Draft in Winter

Historically, heaters, such as the Kotatsu (a low-table frame with an internal heater
covered by a heavy blanket) or Hibachi (a container made of ceramics, metal, wood,
etc., in which charcoal burns on ash), have been used against the cold during winter.
However, these local heaters can only warm the human body and cannot maintain high
temperatures across the entire house, which is preferable from a health perspective. If only
local heaters are used and low room temperature prevails, cold draft can create a colder
thermal sensation. This influence is significant in modern housing with an atrium. Because
a colder thermal sensation encourages an increase in heat energy, reducing cold drafts is
also important from an energy-saving point of view.

From the measurements in Section 3.2, it can be understood that the atrium and stair-
case influence the temperature and airflow in other rooms, and the results are significantly
affected by opening or closing the door on the second floor. Thus, the separation of the
atrium from the neighboring spaces is important, although the insulation of the external
walls is more important.

Figure 17 shows examples of movable doors and windows installed in the staircase
and atrium to prevent cold draft considering the results in Section 3.2. The measured values
(not shown here) of temperature and air flow showed that the draft could be suppressed by
suitably closing the sliding doors and windows.

There is no window connected to the room on the second floor on the upper part
of the Hibukuro in the Tori-niwa (Figure 2) and considering the role of the Hibukuro in
discharging smoke, it is beneficial for suppressing the draft in winter. Furthermore, the
Hibukuro and Tori-niwa can be isolated by closing the doors connected to the Zashiki on
the first floor. Although there is a staircase in the Naka-no-ma (refer to Figure 2) connected
to the second floor, it also has a door that can be closed, allowing airflow to be controlled.
Thus, the Hibukuro can be completely isolated from the neighboring spaces.
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Reducing the cold draft leads to an improvement of thermal sensation of residents,
which may decrease the heating set temperature. As presented in Figure 11d, lowering the
heating set temperature by 0.5 ◦C reduces the heating load by about 7%, and lowering it by
1 ◦C, reduces the load by more than 13%.

4.3. Control of Natural Ventilation Cooling and Thermal Storage during the Night

It is important to evaluate not only the thermal discomfort caused by cold drafts in
winter, but also the thermal comfort by natural ventilation cooling in summer. Currently,
the cooling load fraction of all loads is small. However, considering that abnormally hot
days and sultry nights often occur because of the heat island effect and global warming,
occurrence of conditions, such as heat stroke and insomnia, have increased. Thus, it is
necessary to maintain a suitable indoor temperature during summer.

As mentioned in Section 3.2, natural night ventilation decreased the room temperature
during the night by 2.5 ◦C and the room temperature on the following day by 1.7 ◦C.
Here, thermal storage was possible because of the moderately large heat capacity of soil
and wooden building elements. The effect of night cooling was also confirmed by the
calculation. However, the increase in the insulation thickness did not affect the room
temperature under the presented conditions. This was probably because the increase of
the insulation thickness reduced both heat gain through the outer wall during the day and
heat discharge to the outdoor air during the night, leading to the offset of the effect of night
ventilation on the room temperature. Assuming a complete insulation layer exists on the
outside of the soil wall, it is expected that the room temperature will decrease less during
night and increase less during the day. Therefore, the timing of opening and closing the
doors is significantly important for effective night cooling.

Improving the airtightness of openings has a crucial effect on the Engawa (Figure 4a),
making it more effective to use. By suitably changing the degree of closure of the in-
ner and outer doors of the Engawa depending on weather conditions, solar heat can be
effectively utilized in winter (similar to a sunroom), and also function as an insulation
layer on the outside, thus effectively reducing the heating load and improving the indoor
thermal environment.

In contrast, for cooling in summer, proper closure of the doors may be sensitive to the
outdoor temperature and solar radiation. In addition, attention should be paid to fittings,
such as mosquito nets and bamboo screens (Figure 4c), which are often used in the Engawa
and weaken the airflow, requiring varying degrees of closure depending on the internal
and external conditions.

The natural night ventilation contributes to suppressing the rise in room temperature
during the day, which leads to a reduction in cooling time. The effective use of natural
ventilation can provide the resident almost same level of comfort due to air flow even if
the temperature is higher than that during cooling. By this, similar effect in cooling load
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reduction is expected as the cooling set temperature was raised in Figure 11a. Raising the
cooling set temperature by 0.5 ◦C can reduce the cooling load by around 15%, and raising
it by 1 ◦C, can reduce the load by 28%.

5. Conclusions

This study investigated the energy consumption for heating and cooling in traditional
“Kyo-machiya” residences and examined countermeasures to increase consumption effi-
ciency and reduce the impacts of climate change. Field surveys on indoor environments
were conducted in both summer and winter and the following results were obtained:

(1) The heating/cooling load in a traditional dwelling was compared with the minimum
requirements of the next-generation energy efficiency standards in Japan, and the
possibility of meeting the requirements was discussed by flexibly considering the
method of room use or the temperature setpoint to which the resident is adapted.

(2) Based on the measured and simulated results, the indoor airflow was examined
and discussed from both thermal comfort (cooling in summer) and discomfort (cold
drafts in winter) perspectives. For these purposes, the importance of building de-
sign elements, such as atriums, fittings, and sliding doors for partitioning a house,
was discussed.

In terms of air conditioning, spring and autumn are called intermediate seasons,
meaning that there is no need for cooling or heating. The duration of these conditions
can be extended by suitably controlling the gain/removal of solar heat and adjusting the
natural ventilation air volume, resulting in a reduction in heating/cooling energy use.
Further analysis is necessary on how long the intermediate season can be extended and
how much the cooling load can be reduced by calculating the indoor airflow velocity during
ventilation using CFD analysis and estimating the degree of cooling enhancement caused
by the wind velocity increase using an appropriate predictive model of thermal sensation.

Although this research evaluated a residential building, “Kyo-machiya”, unique
to Japan, it can be considered a useful case study that can contribute to energy saving,
which is a global demand, by considering the health and comfort of residents while
preserving traditional appearances and lifestyles. As a next step, possible problems, such as
condensation, IAQ, and energy consumption when applying the thermal insulation retrofit
to the Kyo-machiya, will be examined.
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