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Abstract: One of the main trends in the development of modern engine building is the use of biodiesel
fuel, which can lead to a decrease in the reliability of engines that are not adapted to it. However,
at present there is no general method for determining the reliability of fuel systems of internal
combustion engines. In this paper, a reliability model of engine fuel systems when operating on
biofuel has been developed. Comprehensive indicators for assessing the reliability of diesel engine
fuel systems are the coefficient of readiness and technical use. The availability factor of the fuel
system when operating on biodiesel fuel without the replacement of structural materials was 0.66,
while with the replacement it was 0.71, and the coefficient of technical utilization without replacement
of materials was 0.36, and with the replacement of 0.4. Recommendations are given to improve the
reliability of the engine fuel system components. The resulting model allows for complex comparisons
of the effectiveness of various ways to improve the reliability of engines running on biodiesel fuel.

Keywords: biodiesel; reliability modeling; fuel system; state graph

1. Introduction

The efficiency of agricultural production largely depends on the performance of
agricultural machinery in various operating conditions. Modern agricultural machinery
is a complex energy-saturated complexes, the performance of which, among other things,
depends on the reliability of the engine fuel system [1,2]. One of the main trends in
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the development of modern agricultural machinery is the search for alternative energy
sources [3,4].

Non-fossil fuels are becoming increasingly important due to their positive impact
on reducing exhaust emissions. Studies examining a wide range of biofuels, synthetic
fuels, and regenerative fuels have shown that the reduction in carbon dioxide emissions
is possible without major changes in the existing infrastructure of internal combustion
engines of agricultural machinery [5,6].

Adaptation of modern fuel systems to new fuel types of plant or animal origin is an
indispensable condition for ensuring the reliability of complex agricultural machinery [7,8].
This is the essence of the international problem at the stage of the struggle for the energy
independence of the country [9,10]. Among the advantages of biodiesel compared to other
energy sources, the following should be noted that biodiesel is obtained from renewable
sources, its chemical properties are very close to oil [11]. The fuel has good lubricating
properties and is quickly decomposed by bacteria when it enters the soil. The use of
biodiesel significantly reduces the emissions of greenhouse gases, hydrocarbons, carbon
monoxide, soot, and carcinogens; as a result, exhaust fumes are reduced [12,13]. These
indicators can positively affect the service life of a diesel engine [14].

The analysis of different types of alternative fuels [15] has shown that fatty acid methyl
esters attract more attention than other alternative fuels due to their biological properties
and chemical structure. For central Europe as well as countries with similar climatic
conditions, the most promising is the use of biofuels based on rapeseed oil, particularly
rapeseed oil methyl ester [16,17]. These fuels have a liquid or gaseous state and are
produced from green mass or plant seeds [18,19].

However, such fuels differ significantly from traditional liquid hydrocarbon fuels in
their physical and chemical properties [20], which affect both the reliability of machine-
tractor units and the organization of the working process of an internal combustion engine
and the final technical, economic, and environmental indicators of thermal engine [21,22].
Therefore, modern scientific publications indicate that the use of biological fuel is one
of the problems of modern society [23,24]. The essence of this problem lies in the fact
that the fuel systems of agricultural machinery are designed to operate on diesel oil fuel,
which provides a normalized resource. However, the use of biofuel increases the chemical
wear of the materials of diesel engine parts, since it is more aggressive than conventional
diesel fuel [25,26]. This leads to a decrease in the diesel engine resource, which was
considered in [27–29]. However, the authors of these works did not provide the degree of
quantitative assessment in the reduction in engine life, which was most significantly (up to
50%) influenced by the fuel system. That is, there is no general methodology for assessing
the reliability of fuel systems.

Hönig, V. (2018) [30] proposed an improvement in the reliability of fuel systems by
using light metals such as aluminum alloy for the manufacture of engine cylinder-piston
group parts. However, in this case, a problem arises, which lies in the poor tribological
properties of these light metals as well as in the lower strength compared to the cast
iron construction. A similar approach was taken by Mosarof et al. (2016) [31] and Nag
et al. (2019) [32], who proposed improving the tribological properties of cylinder liners
and increased the mechanical efficiency of the engine when using biodiesel fuel through a
thermal spray process and high-velocity oxyfuel coatings, the use of various nano-additives,
and the addition of bioethanol to diesel–biodiesel mixtures. However, in all such works,
there was no methodology for a comprehensive assessment of the reliability of fuel systems,
thanks to which it is possible to compare the effectiveness of increasing the resource of
internal combustion engines.

Similar approaches to improving reliability are described in [33] such as improving the
tribological characteristics of biodiesel, [34] improved the quality indicators of mixtures of
vegetable oils and biodiesel mixtures for diesel engine wear, and [35] increased the viscosity
characteristics of engine oil. However, even in these works, there was no comprehensive
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methodology for determining reliability, which does not take into account the simplicity of
the technique, which led to an overestimation of resources.

Similar shortcomings can be traced in [36] of automated control of the temperature
characteristics of systems, and [37] improved the quality of the operating parameters of the
environmental performance of engines. However, such approaches complicated the design
and increase the cost of equipment operation.

Another important aspect of the use of biofuels is the impact on the environment.
Considering the environmental aspects of using biological fuel, researchers have come
to the conclusion that such a fuel is more environmentally friendly than diesel fuel [28].
However, the presence of a large amount of methanol in it leads to the decomposition of
the materials of the fuel system elements, which reduces the service life of the equipment.
To solve this problem, various options are offered:

• the use of additives that reduce the activity of fuel methanols [38];
• reduced wear of precision pairs of the fuel system [39]; and
• periodic flushing of the fuel system [40,41].

However, the proposed options only solved the problem partially, that is, for special
cases, without considering it as a whole, for example, only the durability of the engine [42],
friction and wear for a diesel engine running on soybean oil [43], and fuel thermodynam-
ics [44].

As a result of the analysis of possible theoretical and experimental ways to study
the increase in the reliability of diesel engines when operating on bio-diesel fuel, two
main methodological directions have been established. The first includes design and tech-
nological methods that require changes in the design parameters of precision joints and
improvement in the manufacturing technology of individual parts [45,46]. The second
is operational and technological methods associated with ensuring favorable operating
conditions for rubbing parts by improving the existing repair and maintenance technol-
ogy [47,48]. Moreover, the choice of a rational way to increase the resource of diesel engines
should be based on data on the wear nature and operating conditions of parts of the as-
semblies and assemblies. At the heart of both ways to improve the reliability of biodiesel
engines of agricultural machinery is the need for its correct assessment. However, the above
analysis of the studies carried out in this area showed the least study of issues related to
determining the reliability of diesel engine fuel systems operating on various types of fuel.
Thus, the purpose of this article was to develop a complex analytical model to determine
the reliability of engine fuel systems when operating on biofuels.

To achieve this goal (development of a fuel system reliability model), it is necessary to:

• conduct analytical studies by developing a system of equations to determine the
degree of influence of biodiesel fuel on the reliability of the diesel engine fuel system;

• determine complex indicators that will allow to assess the reliability of diesel engines
running on biodiesel fuel; and

• conduct experimental studies of the effect of biodiesel fuels on the fuel system of diesel
engines, according to the developed model.

• The fulfillment of the tasks set will make it possible to develop a methodology to
predict the resource of fuel systems of diesel engines when operating on biodiesel fuel.

2. Materials and Methods

To conduct analytical studies to determine whether the fuel system is in working or
non-working condition with the appropriate probability, the Kolmogorov system method
was used. Kolmogorov’s differential equations are used to describe the variability of the
state probabilities of a multi-element system with failures and restorations. In this case, it
is assumed that the system operates in continuous time, and its elements change their state
under the influence of discrete flows of failures and restorations with intensities λk and µk,
respectively; here, k = 1 m, where m is the number of system elements. With the simplest
flow of these events (i.e., with an ordinary flow and no after-effect), a Markov process of
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system transitions from one state to another arises, which can be described by a system of
differential equations.

Experimental studies were carried out in accordance with the plan, which provided for
the use of agricultural units during work in the field with a sufficient degree of reliability.
The most common MTZ-80 tractors of traction class (1.4) were used as agricultural units.
Their number was chosen from the condition of obtaining the required confidence level
for this type of agricultural machinery—0.8–0.9, which corresponds to 12 tractors. In
accordance with the statistics, the average annual operating time of the MTZ-80 tractors
was 1200 moto-hours of operation, and the total resource to failure was 16,000 h of operation.
The research was carried out both on new tractors and on tractors with different resources.
However, for all 12 tractors, the initial resource of the engine fuel systems was the same.
Thus, at the time of the start of the tests, all fuel systems of the studied tractors were in the
same conditions.

Operational studies were conducted on biodiesel fuel B-70, which is based on 70%
mineral fuel and 30% methyl esters of rapeseed oil. The machines that reached the limiting
state were removed from further observation, and the resulting operational failures were
eliminated without removing the machines from observation. The obtained information
was processed in the following sequence: a statistical series was built and the values of
the displacement of the beginning of scattering were determined; the average value and
root-mean-square deviation of reliability indicators were determined; the state graph for the
nodes of the fuel system of diesel engines was built; the Kolmogorov differential equations
were made up and the availability and technical utilization factors were determined; the
dependences of the failure probabilities were built, that is, of the transition of the state of
the fuel system nodes from one to another, both with the replacement of structural materials
and without replacement.

For the integral assessment, complex indicators of the reliability of agricultural ma-
chines were used: the coefficients of readiness (Ka) and technical use (Ktu). The readiness
factor is the ratio of the operating time of the machine (assembly unit) for the pre-repair or
overhaul period to the sum of this time and downtime to eliminate operational failures for
the same period of operation. The coefficient of technical use allows one to estimate the
percentage or fraction of the total downtime duration of the machine during its operation.
For tractors, agricultural machines, and their assembly units, this ranged from 0.6 to 0.8,
which indicates a low level of maintainability of these machines.

3. Results
3.1. Results of Analytical Studies on the Development of a Fuel System Reliability Model

The fuel system can be represented as several subsystems. Such subsystems that
perform independent functions include a fuel tank, a booster pump, a filter, a high-pressure
fuel pump, injectors, pipelines, a valve, and seals.

The reliability of the unit depends on the reliability of each of the subsystems as well
as on the use of various types of fuel (finely dispersed [36–38]), in particular, biofuel and
the adaptation of the fuel system to it. These subsystems can be both in good and faulty
condition. Quantitatively, this can be established by the corresponding probability. For
the convenience of the mathematical description of the process, it can be represented as
a state graph. Event streams characterizing transitions from one state to another have
intensities λij and µ1.0, and hence the fuel system can have a limited number of discrete
states. Therefore, all transitions of the system from the state Si to the state Sj occur under
the influence of the simplest flows of events with intensity λij (i, j = 0, 1, 2, 3 . . . ). The
transition of the system from state S0 (fuel system is in good working order) to S2 (fuel
system is out of order and not working) will occur under the action of the failure flow of
the first node, and the reverse transition from state S2 to S0 will occur under the action of
the end of repair flow.

In our case, the fuel system has eleven possible states. The system under consideration
has eleven possible states: S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, and S10.
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The random process of transition from one state to another can be carried out on the
basis of determining the probabilities of the state, which are functions of time P0(t), P1(t)
. . . P10(t).

Or P1(t) = Р{S(t) = Si}, where P1(t) is the probability that at time t, the system S is in
the state Si.

A schematic graph of the state for the fuel system of a diesel engine is shown in
Figure 1.
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Figure 1. Graph of states of the diesel engine fuel system (FS). S0—serviceable and working FS;
S1—serviceable but not working (downtime) FS; S2—faulty and not work (the failure is diagnosed)
FS; S3—faulty due to fuel tank failure FS; S4—faulty due to the failure of the booster pump FS;
S5—defective due to filter failure FS; S6—defective due to failure high pressure fuel pump (HPFP) FS;
S7—faulty due to injector failure FS; S8—faulty due to pipeline failure FS; S9—faulty due to valve
failure FS; S10—defective due to seal failure FS.

We obtained a system of Kolmogorov differential equations for the probabilities of
states. The right side of the equations is the sum of the products of the probabilities of all
possible states of subsystems, taking into account the intensity of the corresponding flows
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of events that bring the system out of an idle state and multiplied by the probability of this
state. 

dP0(t)
dt = µ1µ0(t) + λ3.0P3(t) + λ4.0P4(t) + λ5.0P5(t) + λ6.0P6(t)+

λ7.0P7(t) + λ8.0P8(t)λ9.0P9(t) + λ10.0P10(t)− λ0.1P(t)− λ0.2P0(t)
dP1(t)

dt = λ01P0(t)− µ1.0P1(t)
dP2(t)

dt = λ02P0(t)(λ2.3 + λ2.4 + λ2.5 + λ2.6 + λ2.7 + λ2.8 + λ2.9 + λ2.1)
dP3(t)

dt = λ2.3P2(t)− λ30P3(t)
dP4(t)

dt = λ2.4P2(t)− λ40P(t)
dP(t)

dt = λ2.5P2(t)− λ50P5(t)
dP6(t)

dt = λ2.6P(t)− λ60P(t)
dP(t)

dt = λ2.7P(t)− λ70P7(t)
dP8(t)

dt = λ2.8P2(t)− λ80P(t)
dP9(t)

dt = λ2.9P(t)− λ90P9(t)
dP10(t)

dt = λ2.1P(t)− λ100P10(t)

(1)

Obviously, for any moment of t, the sum of the probabilities of all states is equal to one:

i=10

∑
i=0

Pi(t) = 1 (2)

To solve the system of equations, let us set the initial conditions. In this case, the
system is in state S0 with probability P1(0) = 1. Then, according to the normalization
condition, the remaining probabilities of states are equal:

P1(0) = P2(0) = P3(0) = P4(0) = P5(0) = P6(0) = P7(0) = P8(0) = P9(0) = P10(0) = 0

Using the Kolmogorov equations, it is possible to find the probabilities of states as
a function of time. In this case, of interest are the probabilities of the system Pi(t) in the
limiting stationary mode (t→∞):

Pi = lim
i→∞

Pi(t) (3)

For stationary operation, this is typical. In this mode, the fuel system goes from one
state to another, but the probabilities of being in them remain constant. Since the limiting
probabilities are constant,

dPi
dt

= 0 (4)

then, replacing their derivatives in the Kolmogorov equations by zero values, we obtain a
system of algebraic equations:

(λ01 + λ02)P0 = µ10P1 + λ30P3 + λ40P4 + λ50P5 + λ60P6+
λ70P7 + λ80P8 + λ90P9 + λ100P10
µ10P1 = λ01P0
(λ2.3 + λ2.4 + λ2.5 + λ2.6 + λ2.7 + λ2.8 + λ2.9 + λ2.1)P2 = λ02P0
λ30P3 = λ2.3P2
λ40P4 = λ2.4P2
λ50P5 = λ2.5P2
λ60P6 = λ2.6P2
λ70P7 = λ2.7P2
λ80P8 = λ2.8P2
λ90 P9 = λ2.9P2
λ100P10 = λ2.1P2

(5)
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Thus, a system of algebraic equations was obtained in which there are eleven un-
knowns P0–P10.

We supplemented these equations with the condition (2) and obtained from the second
equation of the system:

P0 = P2

(
λ2.3 + λ2.4 + λ2.5 + λ2.6 + λ2.7 + λ2.8 + λ2.9 + λ2.1

λ02

)
. (6)

Furthermore,

P3 = P2

(
λ2.3

λ30

)
. (7)

P4 = P2

(
λ2.4

λ40

)
. (8)

P5 = P2

(
λ2.5

λ50

)
. (9)

P6 = P2

(
λ2.6

λ60

)
. (10)

P7 = P2

(
λ2.7

λ70

)
. (11)

P8 = P2

(
λ2.8

λ80

)
. (12)

P9 = P2

(
λ2.9

λ90

)
. (13)

P10 = P2

(
λ2.1

λ100

)
. (14)

We solved the system by substituting all probabilities in the normalization condition,
expressed in terms of P2:

P2
(λ2.3+λ2.4+λ2.5+λ2.6+λ2.7+λ2.8+λ2.9+λ2.1)

λ02
+ λ01

µ10
· (λ2.3+λ2.4+λ2.5+λ2.6+λ2.7+λ2.8+λ2.9+λ2.1)

λ02
+

+P2 + P2

(
λ2.3
λ30

)
+ P2

(
λ2.4
λ40

)
+ P2

(
λ2.5
λ50

)
+ P2

(
λ2.6
λ60

)
+ P2

(
λ2.7
λ70

)
+ P2

(
λ2.8
λ80

)
+ P2

(
λ2.9
λ90

)
+ P2

(
λ2.1
λ100

)
= 1.

(15)

Hence

P2
(λ2.3+λ2.4+λ2.5+λ2.6+λ2.7+λ2.8+λ2.9+λ2.1)

λ02
.
(

1 + λ01
µ10

)
+ P2 +

(
λ2.4
λ40

)
+ P2

(
λ2.5
λ50

)
+

+P2

(
λ2.6
λ60

)
+ P2

(
λ2.7
λ70

)
+ P2

(
λ2.8
λ80

)
+ P2

(
λ2.9
λ90

)
+ P2

(
λ2.1
λ100

)
= 1.

(16)

After conversion, we have:

P2

[
λ2.3 + . . . + λ2.9 + λ2.1

λ02

(
1 +

λ01

µ10

)
+ 1 +

(
λ2.3

λ30
+ . . . +

λ2.9

λ90
+

λ2.1

λ100

)]
= 1 (17)

From here, Р2 is

P2 =
1[[

λ2.3+...+λ2.9+λ2.1
λ02

(
1 + λ01

µ10

)
+ 1 +

(
λ2.3
λ30

+ . . . + λ2.9
λ90

+ λ2.1
λ100

)]] (18)

P2 =

[
λ2.3 + . . . + λ2.9 + λ2.1

λ02

(
1 +

λ01

µ10

)
+ 1 +

(
λ2.3

λ30
+ . . . +

λ2.9

λ90
+

λ2.1

λ100

)]−1
(19)

Having P2, we can define Р0, Р3, Р4, Р5, Р6, Р7, Р8, Р9, and Р10.
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The probability Р1 is found from the normalization condition as the difference:

P1 = 1− (P0 + P3 + P4 + P5 + P6 + P7 + P8 + P9 + P10) (20)

The obtained probabilities of states can be used as the basis for determining the
integrated reliability indicators of the diesel engine fuel system. Therefore, the availability
coefficient Ka is the sum of the probabilities of working states, with a serviceable and
working fuel system as well as with a serviceable but not working fuel system (idle), for
some reason, of a non-technical nature:

Ka = P0 + P1 (21)

We entered the value of probabilities into the formula and obtained:

Ka = P0 + [1− (P0 + P3 + P4 + P5 + P6 + P7 + P8 + P9 + P10)] (22)

Converting the expression, we obtained:

Ka = 1− P2 − P3 − P4 − P5 − P6 − P7 − P8 − P9 − P10 (23)

Expressing the probabilities in terms of P2, we have:

Ka = 1− P2

(
1− λ2.3

λ30
+

λ2.4

λ40
+

λ2.5

λ50
+

λ2.6

λ60
+

λ2.7

λ70
+

λ2.8

λ80
+

λ2.9

λ90
+

λ2.1

λ100

)
(24)

Substituting into the equation the values of P2 expressed in terms of intensities, we
have the final formula:

Ka =
λ2.3 + λ2.4 + λ2.5 + λ2.6 + λ2.7 + λ2.8 + λ2.9 + λ2.1

λ2.3 + . . . + λ2.9 + λ2.1 +
λ02(

1+ λ01
µ10

) ·(1 + λ2.3
λ30

+ . . . + λ2.9
λ90

+ λ2.1
λ100

) (25)

Considering the issues of the reliability of fuel systems, attention should be paid to
another comprehensive indicator of reliability—the coefficient of technical use (Ktu). Based
on the theory of reliability, the coefficient of technical utilization represents the probability
that at any arbitrary moment the fuel system is in use and not idle for repair or diagnostics.

Ktu = Ka − (P2 + P3 + P4 + P5 + P6 + P7 + P8 + P9 + P10) (26)

We substituted the availability factor into the equation:

Ktu = 1− 2(P2 + P3 + P4 + P5 + P6 + P7 + P8 + P9 + P10) (27)

Hence:

Ktu = 1− 2P2 · (+
λ2.3

λ30
+

λ2.4

λ40
+

λ2.5

λ50
+

λ2.6

λ60
+

λ2.7

λ70
+

λ2.8

λ80
+

λ2.9

λ90
+

λ2.1

λ100
) (28)

Replacing the probability P2 in terms of intensities, we obtained:

Ktu = 1−
2·
(

1 + λ2.3
λ30

+ λ2.4
λ40

+ λ2.5
λ50

+ λ2.6
λ60

+ λ2.7
λ70

+ λ2.8
λ80

+ λ2.9
λ90

+ λ2.1
λ100

)
λ2.3+...+λ2.9+λ2.1

λ02
·
(

1 + λ01
µ10

)
+ 1 +

(
λ2.3
λ30

+ . . . + λ2.9
λ90

+ λ2.1
λ100

) (29)

To determine the intensities of transitions λi and µ10 of the observed fuel system from
one state to another, we used the following correlation:

λi = (Ti)
−1 (30)
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µ10 = T−1
10 (31)

where Ti is the average time of the i-th operation, h.
Thus, the developed system of equations describing the reliability model makes it

possible to give a probabilistic assessment of the presence of fuel system subsystems in two
fixed positions: working or non-working, due to a failure in waiting or a repair state.

3.2. Results of Experimental Studies

Experimental studies enabled determining the time for technological maintenance
and repair of individual units of the fuel equipment as well as the availability factor of
the entire mechanism as a whole. For this, the results of operational studies were used as
well as expert assessments of specialists in the repair and maintenance of fuel equipment
(Tables 1 and 2).

Table 1. The average values of the time for performing technological operations on the diagnostics of
fuel equipment.

Name of Operations

The Nature of the Use of Fuel Biodiesel Systems

No Replacement of Materials With the Replacement of Materials

Average
Operation Time

Ti [h]

Intensity
Transition from One

State to
Another λij

Average Operation
Time Ti [h]

Intensity
Transition from One

State to
Another λij

1. Diagnosing malfunction and
preparing for the
repair of the fuel tank

Т2.3 = 40 0.025 Т2.3 = 30 0.033

2. Diagnosing malfunction and
preparation for repair of the
booster pump

Т2.4 = 50 0.02 Т2.4 = 40 0.025

3. Diagnosing fault and
preparation for filter repair Т2.5 = 20 0.05 Т2.5 = 15 0.067

4. Diagnosing malfunction and
preparation for
repair of the high pressure
fuel pump

Т2.6 = 80 0.0125 Т2.6 = 65 0.0153

5. Diagnosing fault and
preparation for repair of
injectors

Т2.7 = 70 0.0143 Т2.7 = 50 0.02

6. Diagnosing fault and
preparation for pipeline
repair

Т2.8 = 16 0.063 Т2.8 = 10 0.1

7. Diagnosing fault and
preparation for valve repair Т2.9 = 20 0.05 Т2.9 = 18 0.056

8. Diagnosing fault and
preparation for repair of seals Т2.1 = 55 0.018 Т2.1 = 65 0.015

Next, we calculated the probabilities of transitions of the fuel system from one state to
another on biofuel, without replacing the structural materials using Equation (19):

P2 =

[ (
0.025+0.02+0.05+0.0125+0.0143+0.063+0.05+0.018

0,01

)(
1 + 0.19

1

)
+

+1 + 0.025
0.0185 + 0.02

0.0084 + 0.05
0.067 + 0.0125

0.0042 + 0.0143
0.0084 + 0.063

0.2 + 0.05
0.034 + 0.018

0.0084

]−1

= 0.022
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Table 2. Average values of time for performing technological operations for the repair of fuel
equipment.

Name of Operations

The Nature of the Use of Fuel Biodiesel Systems

Without Replacement of Materials With the Replacement of Materials

Average Operation
Time Ti [h]

Intensity
Transition from One

State to
Another λij

Average Operation
Time Ti [h]

Intensity
Transition from One

State to
Another λij

1. Fuel tank repair Т30 = 80 0.0125 Т30 = 80 0.0125
2. Booster pump repair Т40 = 120 0.0084 Т40 = 120 0.0084
3. Filter repair Т50 = 15 0.067 Т50 = 15 0.067
4. HPFP repair Т60 = 240 0.0042 Т60 = 240 0.0042
5. Injector repair Т70 = 120 0.0084 Т70 = 120 0.0084
6. Pipeline repair Т80 = 5 0.2 Т80 = 5 0.2
7. Valve repair Т90 = 30 0.034 Т90 = 30 0.034
8. Seals repair Т100 = 120 0.0084 Т100 = 1 0.0084
9. Preparation for the
diagnosis of repair
work

Т02 = 100 0.01 Т02 = 90 0.011

From here, according to Equations (7)–(14), we calculated the probabilities:
P3 = 0.044; P4 = 0.052; P5 = 0.0165; P6 = 0.066; P7 = 0.0374; P8 = 0.00693; P9 = 0.032;

P10 = 0.047.
Through Equation (6), we find that P0 = 0.022 · 25.3 = 0.56.
P1, according to Equation (20), is equal to P1 = 1 − 0.9 = 0.1.
Hence, the availability factor for the fuel system, using biofuel, without replacing

structural materials, is calculated according to Equation (21), and the technical utilization
coefficient according to Equation (26)

Ka = 0.056 + 0.1 = 0.66

Ktu = 0.66− 0.30 = 0.36

Figures 2 and 3 show the probability diagrams of transitions from one state to an-
other of the fuel equipment subsystems without replacement and with replacement of the
structural materials.

We calculated the probabilities of transitions of the fuel system from one state to
another when operating on biofuel and replacing structural materials with a biodiesel fuel
inert to an aggressive environment using Equation (19):

P2 =

[ (
0.033+0.025+0.067+0.0153+0.02+0.1+0.056+0.025

0,011

)(
1 + 0.19

1

)
+ 1+

+ 0.033
0.0185 + 0.025

0.0084 + 0.067
0.067 + 0.0153

0.0042 + 0.02
0.0084 + 0.01

0.2 + 0.056
0.034 + 0.015

0.0084

]−1

= 0.011

From here, according to Equations (7)–(14), we calculated the probabilities:
P3 = 0.045; P4 = 0.05; P5 = 0.017; P6 = 0.062; P7 = 0.04; P8 = 0.0025; P9 = 0.028; P10 = 0.02.
Using Equation (6), we found that P0 is

P0 = 0.011× 34.13 = 0.38

P1, according to Equation (20), is equal to P1 = 1 − 0.825 = 0.175.
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structural materials: P3—the probability of a fuel tank failure; P4—the probability of a booster pump
failure; P5—probability of filter failure; P6—the probability of failure of the high pressure fuel pump;
P7—probability of injector failure; P8—the probability of pipeline failure; P9—the probability of valve
failure; P10—the probability of failure of the seals.

Hence, the availability factor for the fuel system on biofuel, with the replacement
of structural materials, can be calculated according to Equation (21) and the technical
utilization coefficient according to Equation (26):

Ka = 0.53 + 0.175 = 0.71,

Ktu = 0.71− 0.31 = 0.40.
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The analysis of the influence of individual subsystems on the overall performance
and reliability of the fuel system showed that the highest probability of being in a state of
repair before replacing materials occurred due to the failure of the high pressure fuel pump
and seals, and the failure probabilities were P6 = 0.066 and P10 = 0.047, respectively. The
probability of resource decline was due to the low resistance to methanol of the biodiesel
fuel materials of plunger pairs of fuel pumps and seals. Furthermore, the booster pump
P4 = 0.052, injectors P7 = 0.0374, and valves P9 = 0.032 had high failure rates.

After the replacement of structural materials, the probability of failure decreases,
respectively: high-pressure fuel pump P6 = 0.062, seals P10 = 0.02, booster pump P4 = 0.05,
injector P7 = 0.04, and valve P9 = 0.028. The probability of failures of the fuel system as a
whole decreased by more than 32%.

The analysis of the diagram showed that increasing the service life of the fuel system
in working mode is possible by reducing the downtime of machine-tractor units.

It is obvious that the replacement of some construction materials does not completely
solve the problem of ensuring the reliability of the fuel system when operating on biodiesel.
To increase the reliability, namely, the coefficient of readiness and the coefficient of technical
use as complex indicators, it is necessary to carry out additional measures, both technical,
operational, and structural. Among the factors that cause a decrease in reliability, the most
significant are working conditions (15–20%), operating modes (50–60%), and the physical
and chemical properties of structural materials used to manufacture individual elements
(25–30%).

4. Discussion

The main function of any system (including diesel engine fuel system) is to operate
without fail during the specified service life while maintaining the parameters within the
established norms. A more important property of reliability is non-failure operation, that
is, the possibility of non-failure operation [10]. Considering the fuel systems of tractors
as complex technical systems prone to various types of failures, we proposed a reliability
model that allows, according to the statistical characteristics of the time between failures
of their elements, to obtain averaged time values normalized in the technical conditions
for performing technological operations for the maintenance and repair of fuel equipment
[fourteen], which were evaluated by Ka and Ktu.

Availability factor (Ka) characterizes the probability that the tractor will be in working
condition at any time when it should be working. This coefficient characterizes unscheduled
repairs—the elimination of failures—and its value is determined by two indicators, only
reliability and maintainability, therefore, depends on the number and complexity of failures
and the fuel system’s ability to eliminate them. This coefficient reflects the negative fact
that the preventive maintenance and repair system does not adequately fulfill its purpose—
complete prevention and elimination of failures between maintenance.

The technical utilization coefficient (Ktu) is similar to the availability coefficient, but
unlike it, it additionally characterizes the reduction in the duration of work by the amount
of time spent on scheduled maintenance of the tractor.

The coefficient of technical use depends on three indicators of reliability: reliability,
maintainability, and durability. It increases with a clearer organization of repair and
maintenance, with an aggregate method of repair, when carrying out maintenance outside
the period of field work or outside working hours, with sufficient availability of materials
and spare parts.

Thanks to this, we obtained the opportunity, using a specific example of the fuel
system of tractors when operating on biodiesel fuel, to implement one of the fundamental
principles for improving the reliability of technical systems, the essence of which is to
identify and eliminate malfunctions of subsystem elements that limit the operational
reliability of the fuel system in operation on failure and reduced time for troubleshooting.

The description of the functioning of the systems is given in the form of a state graph.
The mathematical model of the functioning of the system is a system of ordinary differential
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equations. The system of linear differential equations with constant coefficients was solved
analytically for a limited number of elements at a fixed value of failure and recovery
rates [43]. To establish the nodes limiting the reliability of the fuel system, using statistical
data, dependencies of the failure probabilities for their main elements were obtained.

As a result of the experimental studies, it was found that the use of biodiesel fuel in the
operation of mobile agricultural machinery adversely affects the reliability of its functional
systems. Biodiesel fuel is more aggressive toward fuel system construction materials than
mineral diesel fuel.

It was determined that among the possible failure probabilities of fuel system elements,
the main role belongs to the high pressure fuel pump and seals (0.047–0.066). Plunger
pairs are the limiting reliability factor in a high pressure fuel pump and are particularly
affected by the mode of operation (dynamic or static). In the static mode, the surface layer
of the metal is saturated with hydrogen, followed by its destruction. The appearance of free
hydrogen on the surface of materials, which promotes the formation of oxide films and the
penetration of hydrogen into the surface layers of the metal, leads to hydrogen wear [47].
Leveling this negative activity is possible by reducing the amount of methanol in biodiesel
and replacing some structural materials with biofuels that are inert to the environment. To
reduce the negative impact of this process, it is necessary to reduce the total downtime of
equipment.

To increase the service life of fuel systems, it is necessary to replace the sealing materials
for engine fuel systems made of natural or synthetic rubber with fluoroplastics. This will
increase the reliability of the engine as a whole by 3–4 times [44,45].

In addition, the booster pump, nozzles, and valves were distinguished by rather high
failure probabilities (0.032–0.052). To reduce the wear dynamics, it is necessary to provide
for the possibility of additional flushing of the engine with mineral fuel during its long
stops. For injectors, one way to increase reliability is to increase the diameter of the injector
nozzles.

The calculated parameters determine the complex indicators of the reliability model,
the coefficient of availability and technical use, the values of which were in the range of
0.66–0.71 and 0.36–0.4, respectively.

The experimentally obtained values of reliability indicators indicated that the use of
biodiesel fuel leads to a decrease in smoke, a decrease in oxides of solid particles, and an
increase in CO2 and NOx. At the same time, the complex of total emissions of NOx and
particulate matter for mineral fuel is higher than for biodiesel fuel [49,50].

After the replacement of structural materials, the probability of failures decreases. In
general, the probability of fuel system failures decreased by more than 32%. This increases
the resource of the fuel system, and hence the engine and the tractor as a whole.

5. Conclusions

As a result of the research carried out, for the first time, a reliability model of engine
fuel systems operating on biofuel based on the Markov process was developed. The model
takes into account the probabilistic indicators and is designed to assess the reliability
of complex mechanisms. Using the obtained dependences of the analytical model, it is
possible to reliably assess the degree of influence of biodiesel fuel on the reliability of
the diesel fuel system and the performance of the machine-tractor unit. The resulting
model allows for complex comparisons of the effectiveness of various ways to improve the
reliability of engines running on biodiesel fuel.

According to the developed model, experimental studies were carried out to determine
the complex reliability indicators. The availability factor of the fuel system when operating
on biodiesel fuel without the replacement of structural materials was 0.66, while with
the replacement of 0.71, and the coefficient of technical utilization without replacement
of materials was 0.36, and with the replacement of 0.4. At the same time, the time for
performing technological operations for the maintenance and repair of fuel equipment
decreased by 10–25%. Since the availability factor is a complex indicator in assessing the
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reliability of functional systems, it is obvious that one of the ways to improve it can be to
replace the structural materials of the diesel fuel system with a biodiesel fuel inert to the
aggressive environment, which is based on carboxylic acids.
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