
����������
�������

Citation: Li, Y.; Li, H.; Chen, Z.; Zhu,

Y. An Improved Hidden Markov

Model for Monitoring the Process

with Autocorrelated Observations.

Energies 2022, 15, 1685. https://

doi.org/10.3390/en15051685

Academic Editor: Abu-Siada

Ahmed

Received: 17 January 2022

Accepted: 16 February 2022

Published: 24 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

An Improved Hidden Markov Model for Monitoring the
Process with Autocorrelated Observations
Yaping Li 1,*, Haiyan Li 1, Zhen Chen 2 and Ying Zhu 2

1 College of Economics and Management, Nanjing Forestry University, Nanjing 210037, China;
lihaiyan117@njfu.edu.cn

2 Department of Industrial Engineering & Management, Shanghai Jiao Tong University,
Shanghai 200240, China; chenzhendr@sjtu.edu.cn (Z.C.); zhuyingme@sjtu.edu.cn (Y.Z.)

* Correspondence: yapingli@njfu.edu.cn

Abstract: With the development of intelligent manufacturing, automated data acquisition techniques
are widely used. The autocorrelations between data that are collected from production processes have
become more common. Residual charts are a good approach to monitoring the process with data
autocorrelation. An improved hidden Markov model (IHMM) for the prediction of autocorrelated
observations and a new expectation maximization (EM) algorithm is proposed. A residual chart
based on IHMM is employed to monitor the autocorrelated process. The numerical experiment
shows that, in general, IHMMs outperform both conventional hidden Markov models (HMMs)
and autoregressive (AR) models in quality shift diagnosis, decreasing the cost of missing alarms.
Moreover, the times taken by IHMMs for training and prediction are found to be much less than
those of HMMs.

Keywords: hidden Markov model (HMM); autocorrelation; residual chart

1. Introduction

Process monitoring plays an essential role in intelligent manufacturing [1,2]. Statis-
tical process control (SPC) is a quality control technique that uses statistical methods to
monitor and control processes. The aim of SPC is to ensure that the process runs efficiently,
producing more products that meet specifications, while reducing waste at the same time.
Shewhart control charts are a key SPC tool used to determine whether a process is in
control. If the observation value is within the upper and lower control limits, the process
is in control; otherwise, the process is out of control. Shewhart charts often assume that
the data collected from the process are independent. However, this assumption is not
true in a variety of processes. For example, consecutive measurements on chemical and
pharmaceutical processes or product characteristics are often highly autocorrelated, or the
chronological measurements of every characteristic on every unit in automated test and
inspection procedures are often autocorrelated. It has been shown in numerous studies
that conventional charts do not work well, in the form of giving too many false alarms if
the observations exhibit even a small amount of autocorrelation over time [3–9]. Clearly,
better approaches are needed. In the following paragraphs, three common ways to solve
the problems related to autocorrelation are introduced.

The first approach to solving an autocorrelation problem is simply to sample from
the observation data stream at a lower frequency [10]. This seems to be an easy solution,
although it has some shortcomings. Concretely speaking, it makes inefficient use of the
available data. For example, if every tenth observation is sampled, approximately 90%
of the information is discarded. In addition, since only every tenth datum is used, this
approach may delay the discovery of a process shift.

The second approach is to re-estimate the real process variance, aiming to revise the
upper and lower control limits. See, for example, [9,11–19].
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The third approach is to use residual charts. The statistics in these charts are resid-
uals; values are calculated by subtracting predicted values from observed values. In the
implementation of residual charts, the key step is choosing a reasonable prediction model
to obtain predicted values. Autoregressive integrated moving average (ARIMA) models
are mostly used to model autocorrelated data. See, for example, [3,8,20–26]. In addition,
multistage or multivariate autocorrelated processes are mostly studied by using Hotelling
T2 control charts, such as in [27–30]. Some exceptions include Pan et al., who proposed an
overall run length (ORL) to replace T2 charts [31], and S. Yang and C. Yang, who used a
residual chart and cause-selecting control chart [32].

With the rapid development of artificial intelligence, machine-learning methods are
becoming more and more popular in SPC in the case of observation autocorrelation [33–38].
Most of the related literature focuses on neural networks methods [39–42]. Some successful
applications have also been introduced, for example, the failure diagnosis of wind tur-
bine [43], and the prediction of the remaining useful life (RUL) of bearings [44]. Another
machine-learning approach proposed in SPC is the hidden Markov model (HMM). Lee
et al. proposed a modified HMM, combined with a Hotelling multivariate control chart
to perform adaptive fault diagnosis [45]. The HMMs, whose training sets contain autocor-
related data, were employed to forecast observation values for residual charts in process
monitoring [46]. However, although HMMs are supposed to deal with the autocorrelated
processes, the essence of the model itself is inconsistent with the case of autocorrelations.
This is because one key assumption in conventional HMMs is that the observations are
independent of each other. Therefore, it is worth developing a modified HMM, by account-
ing for observation autocorrelations in models themselves, and observing whether it is
better than a traditional HMM.

Therefore, to realize the goal of monitoring the autocorrelated process well, the residual
chart based on an improved hidden Markov model (IHMM) with autocorrelated observa-
tions considered is developed. Due to the autocorrelations, the conventional expectation
maximization (EM) algorithm for HMMs is not appropriate. A new EM algorithm is devel-
oped for the solutions. The Shewhart residual chart is employed in quality shift detection
in conjunction with the IHMM. The residual is defined as the deviation of the predicted
value by the IHMM and the current real observation value. Through the residual chart,
we are able to see whether the process is in control. If the chart initiates an alarm, one
running length is obtained. Thus, the average running lengths (ARLs) can be calculated
with sufficient samples. The ARL is set as the comparison index for different models,
including IHMM, HMM and AR.

The rest of this paper is organized as follows: Section 2 introduces the development
of the IHMM model and its algorithm. In addition, the comparison of the prediction
performances of different approaches is presented in Section 2. In Section 3, residual charts
are introduced. In Section 4, numerical examples and interesting results are presented. The
conclusions and possible areas for future research are given in Section 5.

2. Model Development
2.1. Hidden Markov Models

Denote a Markov chain with a finite state set {s1, s2, · · · , sN} by {Sn, n = 1, 2, · · ·}.
Let aij be the probabilities that the Markov chain enters state sj from state si (1 ≤ i, j ≤ N)
and πi = P{S1 = si}, i = 1, 2, · · · , N be the initial state probabilities. Denote a finite set of
signals by ζ, and suppose a signal from ζ is sent each time the Markov chain enters a state.
Suppose that when the Markov chain enters state sj independently of previous states and
signals, the signal sent is or with probability p

(
or
∣∣sj
)

that meets ∑or∈ζ p
(
or
∣∣sj
)
= 1. That is,

if On represents the nth signal, then it can be written by

P
{

O1 = or
∣∣S1 = sj

}
= p

(
or
∣∣sj
)
, (1)

P
{

On = or
∣∣S1, O1, · · · , Sn−1, On−1, Sn = sj

}
= p

(
or
∣∣sj
)
. (2)
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Such a model, in which the signal sequence O1, O2, · · · can be observed while the
underlying Markov chain state sequence S1, S2, · · · cannot be observed, is called a hidden
Markov model [47].

Normally, an HMM contains the following elements [48]:

• A finite hidden state set s = {s1, s2, · · · , sN}, where N is the hidden state number.
• A set of possible observation values (signals) q = {q1, · · · , qK}, where K is the num-

ber of possible observation values. Note that if the values of the observations are
continuous, K should be infinite.

• An observation sequence, o = (o1, · · · , oT), where T is the number of observations,
ot ∈ q, 1 ≤ t ≤ T.

• A distribution of state transition probabilities, A =
{

aij
}

, where

aij = P
{

St+1 = sj
∣∣St = si

}
, 1 ≤ i, j ≤ N, ∑

j
aij = 1. (3)

• A distribution of initial state probabilities, π = {πi}, where

πi = P{S1 = si}, i = 1, 2, · · · , N, ∑
i

πi = 1. (4)

• A conditional probability distribution of the observations, given St = si, B = {bi(qk)},
where

bi(qk) = P{ot = qk|St = si}, 1 ≤ i ≤ N, 1 ≤ t ≤ T, ∑
qk

bi(qk) = 1. (5)

In general, an HMM contains three elements, denoted by λ = {A, B, π}.

2.2. The Improved HMM with Autocorrelated Observations
2.2.1. The Selection for the Order of Autocorrelation

Different from the traditional HMMs, in which current observations are assumed
to be independent of previous states and observations, autocorrelated observations are
considered. The observations are assumed to follow a Gaussian distribution, and the
current observations are required to be dependent, not only on the current hidden state,
but also on the previous observations.

The autocorrelated data from production may be multi-order, and it seems not cost-
effective for judging this detailed order by using engineering experience and professional
knowledge. Therefore, it is hoped to find a suitable order that will keep the implementation
of the IHMM feasible, efficient and cost-effective.

The numerical experiment on the order selection for autocorrelated data in SPC
application is designed as follows:

Step 1. Generate stationary autocorrelated data by a dth-order autoregressive model,
AR(d), d ≥ 2;

Step 2. Use AR(p), p = d, d− 1, . . . , 1 models to fit the data, respectively, and obtain
the parameters that need to be estimated by least-squares estimation;

Step 3. Generate 2000 stationary data sequences with a same length of 2000 under the
processes with a mean shift magnitude of δ;

Step 4. Predict each sequence by using AR(p), p = d, d− 1, . . . , 1 models, respectively,
and calculate their residuals;

Step 5. Determine the central lines (CLs), upper control limits (UCLs) and lower
control limits (LCLs) of p residual charts;

Step 6. Generate stationary autocorrelated data by a dth-order autoregressive model;
Step 7. Calculate the average running lengths (ARLs) of p residual charts.
In this study, twelve AR(2) and eight AR(3) models are used to generate data. The

control limit coefficients of residual charts are 3. The shift magnitudes of the mean are set
by 0, 1.5 and 3, respectively.
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When data are generated by AR(2) models for an in-control process, the ARL of the
residual charts is 371.3803 if the data are fitted by AR(2) models, and the ARL is 361.1688 if
the data are fitted by AR(1) models. Thus, the probability of the type I error is increased by
2.83%. Similarly, when data are generated by AR(3) models, the ARL of the residual charts
is 371.8250 if the data are fitted by AR(3) models, the ARL is 358.5401 if the data are fitted
by AR(2) models, and the ARL is 345.8113 if the data are fitted by AR(1) models. Thus,
the probabilities of the type I error are increased by 3.7% and 7.51%, respectively.

The ARLs of different situations are shown in Figure 1, in which the numbers on the
x-axis represent the combinations of autocorrelation coefficients.
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Figure 1. The ARL results of the order selection experiment.

From Figure 1, it is seen that generally, AR(1) models outperformed other AR(d),
d ≥ 2 models in shift detection regardless of the autocorrelation order. Although AR(1)
models lead to a slight increase in type I error, it seems to be insignificant compared
with their good performances in detecting quality shifts. Therefore, only the first-order
autocorrelation is considered in this study. As a result, there is no need to judge what order
the autocorrelation is so that the modeling cost can be saved.



Energies 2022, 15, 1685 5 of 13

2.2.2. The Development of the IHMM

According to the analysis in Section 2.2.1, the construction of the IHMM, in which the
current observation is related to its previous observation, is shown in Figure 2.

Energies 2022, 15, x FOR PEER REVIEW 5 of 13 
 

 

models lead to a slight increase in type I error, it seems to be insignificant compared with 
their good performances in detecting quality shifts. Therefore, only the first-order auto-
correlation is considered in this study. As a result, there is no need to judge what order 
the autocorrelation is so that the modeling cost can be saved. 

2.2.2. The Development of the IHMM 
According to the analysis in Section 2.2.1, the construction of the IHMM, in which 

the current observation is related to its previous observation, is shown in Figure 2. 

ST-1States STS1 S2
...

o1 o2 oT-1 oT...Obervations
 

Figure 2. The construction of the IHMM. 

In Figure 2, arrows pointing to the right indicate the correlation between neighbor-
ing states or observations. It is intuitive that the IHMM will become a traditional HMM if 
there is no correlation between neighboring observations. 

Let 𝑜 (𝑡) be the observation value at time 𝑡 given state 𝑠 ; 𝑜 (𝑡) can be fitted with 
the following function:  𝑜 (𝑡) = 𝜍 + 𝑐 𝑜 + 𝜀 , 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇, (6)

where 𝑐  is the first-order autocorrelation coefficient, 𝜍  is the constant term and 𝜀  is 
white noise, following a normal distribution with mean zero and variance 𝜎 . 

Let 𝜇 (𝑡) be the mean of 𝑜 (𝑡) given state 𝑠 , 𝒙 = (1, 𝑜 )′, then Equation (6) can 
be written as: 𝜇 (𝑡) = 𝑪 𝒙 , (7)

where 𝑪  is a 1 × 2 matrix consisting of {𝜍 } and {𝑐 }. 
Hence, we conclude that the states are a Markov process, and that the conditional 

observations given state 𝑠  follows a Gaussian distribution with mean 𝑪 𝒙  and vari-
ance 𝜎 , i.e., 𝑃{𝑆 |𝑆 , ⋯ , 𝑆 , 𝑜 , ⋯ , 𝑜 } =  𝑝(𝑆 |𝑆 ), (8)

𝑏 (𝑜 |𝑜 ) = 𝑃(𝑜 |𝑜 , 𝑆 = 𝑠 ) = 1√2𝜋𝜎 exp − (𝒐 − 𝑪 𝒙 )2𝜎 . (9)

If the current observation is not related to its previous observations, 𝜇 (𝑡) is the 
constant 𝜍 . Thus, the IHMM becomes a traditional HMM.  

2.3. Parameter Estimation 
The aim of using an IHMM is to forecast observation values. Firstly, we estimate the 

parameters to obtain an optimal 𝜆 by maximizing the probability 𝑃(𝒐|𝜆). 
The EM algorithm is a popular method to estimate the parameters for HMMs. 

However, since autocorrelation between observations is considered, the traditional algo-
rithm could not be used directly. We redefine the parameters as 𝜆 = {𝑨, 𝑪, 𝛔 , 𝝅} where 𝑪 = {𝑪 }, 𝛔 = {𝜎 }, and the definitions of 𝑪  and 𝜎  are provided in Section 2.2.2. The 
flowchart demonstrating how to estimate the parameters in IHMM with an improved 
EM algorithm is shown in Figure 3. 
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In Figure 2, arrows pointing to the right indicate the correlation between neighboring
states or observations. It is intuitive that the IHMM will become a traditional HMM if there
is no correlation between neighboring observations.

Let oi(t) be the observation value at time t given state si; oi(t) can be fitted with the
following function:

oi(t) = ςi + ciot−1 + εi, 1 ≤ i ≤ N, 1 ≤ t ≤ T, (6)

where ci is the first-order autocorrelation coefficient, ςi is the constant term and εi is white
noise, following a normal distribution with mean zero and variance σ2

i .
Let µi(t) be the mean of oi(t) given state si, xt = (1, ot−1)

′, then Equation (6) can be
written as:

µi(t) = Cixt, (7)

where Ci is a 1× 2 matrix consisting of {ςi} and {ci}.
Hence, we conclude that the states are a Markov process, and that the conditional

observations given state si follows a Gaussian distribution with mean Cixt and variance
σ2

i , i.e.,
P{St+1|S1, · · · , St, o1, · · · , ot} = p(St+1|St), (8)

bi(ot|ot−1) = P(ot|ot−1, St = si) =
1√

2πσi
exp

(
− (ot − Cixt)

2

2σ2
i

)
. (9)

If the current observation is not related to its previous observations, µi(t) is the
constant ςi. Thus, the IHMM becomes a traditional HMM.

2.3. Parameter Estimation

The aim of using an IHMM is to forecast observation values. Firstly, we estimate the
parameters to obtain an optimal λ̂ by maximizing the probability P(o|λ ).

The EM algorithm is a popular method to estimate the parameters for HMMs. How-
ever, since autocorrelation between observations is considered, the traditional algorithm
could not be used directly. We redefine the parameters as λ =

{
A, C, σ2, π

}
where

C = {Ci}, σ2 =
{

σ2
i
}

, and the definitions of Ci and σ2
i are provided in Section 2.2.2.

The flowchart demonstrating how to estimate the parameters in IHMM with an improved
EM algorithm is shown in Figure 3.
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Firstly, we introduce two types of probabilities: forward probability, Ft(i), and back-
ward probability, Bt(i), defined as:

Ft(i) = P(o1, · · · , ot, St = si|λ ), (10)

Bt(i) = P(ot+1, · · · , oT |St = si, λ ). (11)

The calculation of the two probabilities here is similar to that of traditional HMMs.
Slightly different from traditional HMMs, the initial values are defined by Fd+1(i) =
πibi(od+1|o1, · · · , od ) and BT(i) = 1, respectively.

Based on the forward and backward probabilities, some intermediate probabilities
are computed. Given λ and o, denote the probability that the process is in state si at time
t by γt(i) and the probability that the process is in state si at time t and in state sj at time
t + 1 by ξt(i, j). γt(i) and ξt(i, j) can be written as Equations (12) and (13). Please refer to
reference [48] for the details of the derivations.

γt(i) =
Ft(i)Bt(i)

∑j Ft(i)Bt(i)
, (12)

ξt(i, j) =
Ft(i)aijbj(ot+1)Bt+1(j)

∑N
i=1 ∑N

j=1 Ft(i)aijbj(ot+1)Bt+1(j)
. (13)
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Next, we develop an improved EM algorithm for the IHMM, step by step.
Step 1. Determine the log-likelihood function for complete data.
The complete data are (o, S) = (o1, · · · , oT , s1, · · · , sT), and its log-likelihood function

is log P(o, s|λ ).
Step 2. E-step: determine Q functions.

Q1

(
λ, λ(n)

)
= Es

[
log P(o, s|λ )

∣∣∣o, λ(n)
]
= ∑

s
log P(o, s|λ )P

(
o, s
∣∣∣λ(n)

)
, (14)

where λ is the parameter that will maximize the Q1 function, while λ(n) is the current
parameter value.

With P(o, s|λ ) = πs1 bs1(o1)as1s2 bs2(o2) · · · asT−1sT bsT (oT), Q1

(
λ, λ(n)

)
can be writ-

ten by
Q1

(
λ, λ(n)

)
= ∑

s
πs1 log P

(
o, s
∣∣∣λ(n)

)
+∑

s

(
T−1
∑

t=1
log astst+1

)
P
(

o, s
∣∣∣λ(n)

)
+∑

s

(
T
∑

t=1
log bst(ot)

)
P
(

o, s
∣∣∣λ(n)

)
.

(15)

For the re-estimation of bi(qk), one more auxiliary function Q2 is proposed by taking
the conditional expectation of the log-likelihood of the observation sequence:

Q2

(
λ, λ(n)

)
= ∑

s

T

∑
t=1

γt(i)

(
ln
(

1√
2π

)
+ ln

1
σi
− (ot − Cixt)

2

2σ2
i

)
. (16)

Step 3. M-step: re-estimation.
Re-estimate λ that maximizes Q1

(
λ, λ(n)

)
, that is

λ(n+1) = argmax
λ

Q1

(
λ, λ(n)

)
. (17)

The state transition probabilities are derived as:

aij
(n+1) =

∑T−1
t=1 ξt(i, j)

∑T−1
t=1 γt(i)

. (18)

The initial state probabilities are derived as:

πi
(n+1) = γ1(i). (19)

By re-estimating λ that maximizes Q2

(
λ, λ(n)

)
, ci,τ

(n+1), ςi
(n+1), σ2

i
(n+1) can be

written as:

ci
(n+1) =

∑T
t=1 γt(i)ot−1

(
ot − ∑T

t=1 γt(i)ot

∑T
t=1 γt(i)

)
∑T

t=1 γt(i)ot−1

(
ot−1 − ∑T

t=1 γt(i)ot−1

∑T
t=1 γt(i)

) , (20)

ςi
(n+1) =

∑T
t=1 γt(i)ot −∑T

t=1 γt(i)ot−1ci
(n+1)

∑T
t=1 γt(i)

, (21)

σ2
i
(n+1) =

∑T
t=1 γt(i)

(
ot − ci

(n+1)ot−1 − ςi
(n+1)

)2

∑T
t=1 γt(i)

. (22)

Repeat Step 2 and Step 3 until the log-likelihood function converges.



Energies 2022, 15, 1685 8 of 13

2.4. Prediction

Once the parameter is determined by the improved EM algorithm, the model can be
employed to forecast the expected value of the next observation.

The conditional probability distribution of the observation oT+1 can be derived as

P(oT+1|oT , · · · , o1 , λ) =
N
∑

i=1
P(oT+1|ST = si, oT , · · · , o1, λ )P(ST = si|oT , · · · , o1, λ )

=
N
∑

i=1

N
∑

j=1
P
(

oT+1

∣∣∣ST+1 = sj, oT , · · · , o1 , λ
)

P
(

ST+1 = sj|ST = si , λ
)

γT(i)

=
N
∑

i=1

N
∑

j=1
γT(i)aijbj(oT+1|oT , · · · , oT+1−d ).

(23)

Therefore, the expectation of oT+1 is computed by

ôT+1 =
∫

oT+1P(oT+1|oT , · · · , o1 , λ)doT+1. (24)

Given an observation sequence o = (o1, · · · , oT), ôt is predicted by

ôt =
∫

otP(ot|ot−1 , λ)dot =
∫

ot

N

∑
i=1

N

∑
j=1

γt−1(i)bjaij(ot|ot−1 )dot, t ≥ d. (25)

Thus, the predicted values of the observations can be denoted by ô = (o1, ô2, · · · , ôT).

2.5. Performance Comparison

The mean squared error (MSE), absolute mean error (AME) and mean absolute per-
centage error (MAPE) are common tools for measuring, fitting and predicting accuracy [49].
Both MSE and AME values determine the average deviation between fitting values and
original values, while MAPE provides a measurement for testing the relevant difference
between them. In this study, we use MSE as the criterion to evaluate the models. The
equation for MSE is:

MSE =
1

LT ∑L
l=1 ∑T

t=1(ot − ôt)
2, (26)

where L is the number of predicted samples, and T is the length of each sample.
We assume that a variable from a production process follows a normal distribution

with mean 100 and variance 25 when the process is under control, and that the observations
are first-order autocorrelated with a correlation coefficient of 0.6. We use IHMM, HMM and
AR(1) methods to predict observation values, respectively. The MSEs for the three models
are 15.1276, 16.1867 and 15.7861, respectively. Since these MSEs are very close, we conclude
that the predicted performances of the three approaches are similar. The predicted results
of an observation sequence with a length of 50 from the in-control process are shown in
Figure 4, from which we can see that the three models have close performances. However,
the time taken for prediction using the three models are quite different. For the prediction
of an observation sequence with a length of 50, IHMM is 14.6523 s, HMM is 93.6521 s, and
AR(1) is almost instantaneous under the environment of win10 OS (Microsoft, Redmond,
WA, USA) with CPU of Intel(R) Core(TM) i7-7500U (Santa Clara, CA, USA).
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Then, we suppose the process has a shift magnitude of 3. We still use the three methods
to predict observation values, respectively. The predicted results of an observation sequence
with a length of 50 from the out-of-control process are shown in Figure 5, from which we
can see distinctly different performances of the three models. By observing the distances
between the lines with different colors, obviously, if the MSEs are calculated, the MSE from
AR(1) is much less than that from IHMM, and the MSE from IHMM is much less than
that from HMM. The IHMM only results in a medium-level performance in the prediction
for the autocorrelated process. However, it is very interesting that the performances of
corresponding residual charts have the best performances in detecting quality shifts. This
seems to suggest that the residual charts integrating IHMM can achieve a surprising effect.
This result is verified in Section 3.
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3. Statistical Process Control with Residual Chart

Residual control charts are an effective tool for online monitoring in the presence of
autocorrelations. A residual chart called e chart is developed in our study.

Residuals are obtained by subtracting the predicted values of observations from the
original values, that is e = o− ô = (e1, · · · , eT). The control limits of the e chart are given by

UCL = µe + kσe, (27)

LCL = µe − kσe. (28)
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where UCL represents the upper limit, while LCL represents the lower limit, k is the number
of σe, µe represents the mean of e, and σe represents the standard deviation of e. µe and σe
can be obtained by simulations based on sufficient samples.

If the value of et drops within UCL and LCL, the process is judged to be in control;
otherwise, it is judged to be out of control.

4. Numerical Examples

We consider that the variable from a production process followed a normal distribution
with mean 100 and variance 25 when the process is in control and that the observations
were first-order autocorrelated. The correlation coefficient varies between −0.6 and 0.6
with increments of 0.3. Two shift magnitudes of 1.5 and 3 are considered. According to the
definition of residual charts, the ARLs of in-control processes for all predicted methods are
370, so we focus our discussion on the out-of-control processes. By conducting multiple
experiments, we find that it is appropriate to make the state number with 5 for both IHMM
and HMM. The experimental results are shown in Figures 6 and 7.
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As shown in Figures 6 and 7, when correlation coefficient changes from positive to
negative, ARLs decrease dramatically, regardless of the approach used. Compared with
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positive correlations, the ARLs of negative correlations are relatively very small, and ARLs
obtained by different models are very close to each other. Thus, the following discussions
focus on positive correlations.

As pointed out in Section 3, although the predictions of both the IHMM and HMM are
inferior to AR(1) models, the performances of residual charts from the former models are
much better than the latter ones. As seen in Figures 4 and 5, when the coefficients are larger
than zero, the ARLs by IHMMs are shorter than those by HMMs, and by HMMs shorter
than by AR(1) models.

As correlation coefficients increase, the ARLs generally increase, regardless of the
approach used, especially as the shift magnitude decreases.

Generally speaking, when detecting quality shifts, the performances of IHMM, HMM
and AR(1) models are ranked with IHMMs first, HMMs second and AR(1) last. Moreover,
as pointed out in Section 2, the times taken by IHMMs are much shorter than HMMs under
the same running environments.

5. Conclusions

In this paper, an IHMM with autocorrelated observations and a new EM algorithm
are proposed. Residual charts in conjunction with the IHMM are employed for detecting
quality shifts. The results demonstrates that: (1) the IHMM outperforms the HMM and
AR(1) method with positive correlations; (2) the IHMM has similar performances with
the HMM and AR(1) methods with negative correlations; (3) compared with positive
correlations, the ARLs of the IHMM under negative correlations are relatively very small,
as well as those of the HMMs and AR(1) models; (4) the IHMMs take a much shorter time
than HMMs, for both training and prediction, but still longer than the AR(1) models.

Future research might focus on further experimental validations for the IHMM and
its algorithm. The strict Gaussian distribution of observations could be extended to other
probability distributions. Since multistage systems are commonplace in the manufacturing
industry, it is worth extending this approach in this research direction.
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