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Abstract: With the increase in the penetration of battery electric vehicles (BEVs) all over the world,
utilities should start considering their increased demand as part of their electric demand. Generally,
the literature lacks works that consider the impact of transportation electrification on the reliability of
the power system. Thus, this paper proposes a new mechanism for reliability assessment including
BEVs, with both grid-to-vehicle (G2V) and vehicle-to-grid (V2G) modes. Three charging strategies:
uncontrolled, controlled unidirectional, and controlled bidirectional are considered in this paper to
model the interactions between the transportation and electric power systems. A dynamic stochastic
consumption model for a fleet of BEVs is developed to be used in the reliability assessment for the
distribution networks. This dynamic model takes into consideration the variability and uncertainty
of different trip purposes, starting and ending trip times, as well as the corresponding battery
consumption in weather conditions. Furthermore, it is composed of two sequential submodels: travel
behavior and battery depletion. The first submodel considers trip-related information while the
second considers battery-depleted energy. Simulation results on a benchmark test system show the
negative impacts of uncontrolled charging on the power system’s reliability. However, they also show
that controlled charging can significantly reduce or mitigate these impacts.

Keywords: battery electric vehicle; vehicle-to-grid; Monte Carlo simulation; travel behavior;
reliability analysis

1. Introduction

A great challenge that is currently facing the world is finding alternatives to internal
combustion engine (ICE) vehicles, as they contribute to global warming and deplete the
ozone layer and fossil fuel reserves. In fact, about 70% of transportation gas emissions are
caused by ICE vehicles [1,2]. Transportation electrification in conjunction with renewable
energy resources results in a reduction in all the previously mentioned negative effects,
thus leading to an increase in energy security [3]. However, even though battery electric
vehicles (BEVs) are an emerging trend, they may have negative impacts on the electric grid
if not managed properly [4–8].

The charging of BEVs can take place at homes, parking lots, or dedicated charging
stations, which are rather limited in number at present. Furthermore, BEVs can be charged
via either AC or DC charging. DC charging mainly happens at charging stations and is also
called fast charging due to the high charging currents used in the process, which can reach
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300 A [9,10]. Meanwhile, AC charging uses the onboard charger in each vehicle to rectify
the voltage from AC to DC. AC charging can take place at homes or parking lots [11–14].

With the increased penetration of BEVs, the extra load imposed by BEV charging will
cause severe consequences if not managed properly. This is due to the fact that the power
system was not originally designed to accommodate this extra load. These consequences
include, but are not limited to, thermal overloading, violation of voltage limits, degradation
of transformers, power quality problems, and load-generation imbalance [15]. Thus, the
integration of BEVs with the electric power system has a great impact on the reliability
of the power system. Moreover, this integration may benefit reliability only if controlled
charging strategies are applied. Therefore, utilities and power system operators are racing
to quantify the impacts of BEV charging on their systems. Considerable research has been
dedicated to modeling the consumption of BEVs fleets under different charging scenarios.
To manage BEV charging demand, different strategies are adopted. The main objective of
these strategies is to minimize the negative effect of BEVs on the power systems. Scheduling,
clustering, and forecasting are the most widely used strategies to achieve this goal [16].

Nowadays, some researchers have focused on studying the impact of the integration
of BEVs on the reliability of the power system. For example, the authors in [17] applied
bidirectional charging modes, grid-to-vehicle (G2V), and vehicle-to-grid (V2G), to model
the interaction between electric and transportation systems to determine the reliability
indices. In [18], the trip chain theory was presented to describe the travel behavior of
BEVs. The trip start time, end time, and different trip distances were not considered in
this model while considering the traffic flow. The authors of [19] proposed an analytical
model to study the impact of BEVs on the system reliability under battery-swap mode.
The main advantage of the analytical model is its high calculation accuracy; however, the
random spatiotemporal state of BEVs makes this model difficult to apply to BEVs. In
addition, Ref [20] presented a time-varying model to compute the load profile of BEVs. The
sequential Monto Carlo technique was utilized in this model to implement the reliability
study. Moreover, Ref [21] utilized two charging modes (G2V, V2G) to assess the impact of
power exchange between electric and transportation networks. Furthermore, the reliability
indices are determined based on the minimal path technique, while load flow analysis was
implemented based on the backward-forward technique. The authors in [22] assumed that
the BEVs could be discharged to supply power to the home in case of power outage in
the islanded mode. The authors of [23] proposed two metrics to study the impact of BEVs
on power system reliability. The first index was used to determine the maximum load
of BEVs which the power system can accommodate without upgrading it or affecting its
reliability. In contrast, the second index was presented to determine the minimum size of the
generation unit to be added to restore the power system reliability in case of exceeding the
maximum load of BEVs. In [24], a heuristic-based method was implemented to determine
the optimal duration for charging and discharging of BEVs, taking into consideration the
grid price and normal household demand. However, a rigid arriving/departure schedule
is assumed, where all BEVs were assumed to arrive at 9 PM and depart at 9 AM the next
day. On a related front, the work in [25] studied the reliability of the power system, taking
into consideration the charging of the BEVs using the battery-swapping mode instead of
the plug-in mode. Furthermore, in [26], to study the reliability of the power system, BEV
charging was considered as an interruptible load. The impact of BEV charging on the power
system’s reliability was studied in [27] considering V2G scheme. However, the proposed
model in this work is based on a 48 h BEV arrival and departure period, which does not
reflect a real-life pattern of BEV charging, which varies from weekdays to weekends and
from one month to another.

Based on the aforementioned discussion, studies on the impacts of transportation
electrification on the reliability of the power system are still in their early stages. Moreover,
it is evident that most of the BEV discharging models neglect real-life scenarios of BEV
arrival and departure, which depend on the travel pattern of the BEV drivers. Furthermore,
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the uncertainty related to the travel pattern was ignored. This is in addition to the fact that
seasonal impacts on the travel patterns and the BEV consumption were ignored.

Moreover, developing the energy consumption model for the BEV and introducing it
in the reliability analysis results in misleading outcomes. This is due to the fact that the
BEV battery can still gain the required charging energy fully or partially after the supply
has been restored if it is still connected to the charger. Thus, the impacts of BEVs on power
system reliability are highly dependent on travel patterns.

Therefore, the reliability analysis with the presence of significant BEV demand was
not studied properly in the literature due to the lack of accurate trip models. In this paper,
we propose a new mechanism for reliability assessment to establish reliability indices
for the consumption of normal electric loads and the demand imposed by transportation
electrification.

The main contributions of this paper can be summarized as follows:

• We propose a new mechanism for reliability assessment for the distribution networks
under high penetration of BEVs, including V2G mode, using a dynamic stochastic
BEV consumption model.

• We study the effects of different charging strategies, such as the uncontrolled charging
strategy, controlled unidirectional strategy, and controlled bidirectional strategy as
well as the impact of penetration of BEVs on the reliability of the power system.

• Various reliability indices, such as the Loss of Load Expectation (LOLE), Loss of
Energy Expectation (LOEE), Loss of Load Frequency (LOLF), Energy Not Served per
Interruption (ENSPI), System Average Interruption Frequency Index (SAIFI), and
System Average Interruption Duration Index (SAIDI), are computed under different
charging strategies to assess the impact of these strategies on the reliability of the
power system.

The rest of the paper is organized as follows: Section 2 introduces the dynamic
stochastic BEV consumption model, while Section 3 introduces the reliability analysis
under different charging strategies. Section 4 presents the results and discussions, and
Section 5 concludes the paper.

2. Dynamic Stochastic BEV Consumption Model

The stochastic model used in the reliability assessment of the power system is mainly
composed of two successive submodels explained in the next subsections: the travel
behavior submodel and the battery depletion submodel. The travel behavior submodel
takes into consideration different trip purposes as well as the uncertainty and variability
associated with trip distance, arrival, departure, and trip duration. The outcomes from
the behavior submodel are used by the battery depletion submodel to estimate the energy
consumed by the BEV during a trip. This energy is composed of two parts: traction effort
and the energy required to maintain a comfortable temperature in the vehicle. The model
is stochastic in nature and can be used for long-term studies, such as expansion planning,
asset management, reliability analysis, and distributed generation allocation, among many
others. For the purpose of illustration, we introduce one of the most important applications
for this model: the reliability analysis of power systems.

2.1. Travel Behavior Submodel

The overall model consists of two consecutive submodels. In this subsection, we
introduce the details of the travel behavior submodel. This submodel is based on the nature
of the various trips covered by BEV drivers. Specifically, the driving habits of BEV drivers
are used to generate virtual trip scenarios including their purpose, start times, duration and
distance. In our previous work in [8], we proposed a travel behavior model. This model
takes into consideration the probability distribution functions (PDFs) of the trip ending
times and durations, which are statistical functions that describe all of the possible values
and probabilities for the trip ending times and durations within a certain range. It also
considers different trip purposes, for instance, educational, shopping, or commuting, as
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shown in Table 1. We herein propose modifying this model to include the starting trip
time of each vehicle. Therefore, another stage is added, which represents the probability
of a trip of a particular purpose p to be started in a certain hour. The modified travel
behavior submodel can present the starting and ending times of each vehicle in addition to
the trip duration of each vehicle. This duration is used in the battery depletion submodel
to calculate the dissipated energy from each vehicle’s battery, as will be shown in the
sequel. The proposed travel behavior submodel is comprised of multiple steps. As shown
in Figure 1, the submodel accepts the BEV fleet size NEV as an input, which is used to
calculate the expected annual number of trips. These trips are then distributed according to
the purpose, month, and day based on their corresponding probability distributions. Such
information can be obtained through travel surveys.

Furthermore, the probability distributions of the trips’ starting times, durations and
distance will be used to shape the generated trips. The details of these steps are described
as follows. The first step is to generate the daily number of trips for each purpose in each
month. Assuming that the size of the EV fleet is NEV and the average number of annual
trips per vehicle is Nyr, the daily number of trips Ndaily

p,m,d for purpose p in month m and day
d can be calculated as

Ndaily
p,m,d = NEV × Nyr × Pprp

p × Pmonth
p,m × Pday

p,d /Nweek
m

∀ p ∈ {1, . . . , Nprp}, m ∈ {1, . . . , 12}, d ∈ {1, . . . , 7},
(1)

where Pprp
p is the probability that the trip serves a specific purpose p, Pmonth

p,m is the proba-

bility that the trip with purpose p occurs in month m, Pday
p,d is the probability that the trip

with purpose p occurs on day d, and Nweek
m is the number of weeks in month m. Note that

the distribution of the monthly trips over the weeks is assumed to be uniform, which is
reflected in the multiplier 1/Nweek

m .

Table 1. Different trip purposes.

p Purpose p Purpose

1 Commuting 6 Business

2 Education 7 Escort education

3 Shopping 8 Other escort and personal business

4 Visit friends 9 Holiday trip

5 Day trip 10 Others (entertainment, public activity, etc.)

The probabilities in (1) belong to three categorical probability mass functions (PMFs)
and are given for any random trip x as follows:

f prp(x = p) = Pprp
p

f month
(

x = m
∣∣∣ p) = Pmonth

p,m

f day
(

x = d
∣∣∣ p) = Pday

p,d

 (2)

where f prp, f month, and f day are the PMFs for the purpose, monthly, and daily distributions
of the trips, respectively. The PMF is a function that computes the likelihood of a discrete
random variable, such as trip purpose, being equal to a given value.
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Figure 1. Proposed travel behavior submodel flow chart.

Since the total number of starting and ending trips has to be equal to the number of
daily trips, the daily trips are categorized twice according to their starting and ending time,
as in (3) and (4) below

NStart_hr
p,m,d,h = Ndaily

p,m,d × PStart_hr
p,h ∀p, m, d and h ∈ {1, . . . , 24}, (3)

NEnd_hr
p,m,d,h = Ndaily

p,m,d × PEnd_hr
p,h ∀p, m, d and h ∈ {1, . . . , 24}, (4)

where NStart_hr
p,m,d,h and NEnd_hr

p,m,d,h are the number of trips belonging to purpose p in month m on
day d that start and end in every hour h, respectively.

To distribute the total number of daily trips Ndaily_tot
m,d = ∑

p
Ndaily

p,m,d for all purposes

across NEV EVs, the average number of trips per day for each vehicle is calculated as
µ

daily
m,d = Ndaily_tot

m,d /NEVand the relative standard deviation (RSD), defined as the ratio of
the standard deviation to the mean, is assumed to be known. The RSD is used as a measure
of dispersion for the lognormal distribution representing the number of daily trips per EV
in which the logarithm is normally distributed.

Finally, the distances for each trip are to be assigned. This is performed by generating
a virtual trip distance Dp,m,d according to the purpose of each trip using the inverse
cumulative distribution function (CDF) F−1

p , given the parameters of pdf for each trip
purpose in Table 2, of the trip distances as

Dp,m,d = F−1
p (U, µ/c, σ/k) (5)
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where U is a normally distributed random variable which has a value between 0 and 1,
µ and σ are the mean and the standard deviation of Lognormal pdf respectively, and c
and k are the shape and scale of the Weibull PDF respectively in Table 2. Table 2 shows
the parameters of the different purposes used in the travel model illustrated in Table 1,
which is acquired via the National Travel Survey [28]. In this survey, four PDFs, which are
exponential, lognormal, gamma and Weibull, are used to fit the actual data of each purpose.
The exponential distribution is associated with the Poisson distribution, which specifies
the frequency of occurrence of an event. The exponential distribution’s “memoryless”
property asserts that an object’s future lifespan will follow the same distribution as its
previous lifespan. The lognormal distribution is often employed when values are favorably
skewed and cannot go below zero. In the same context, the Gamma distribution is related
to the lognormal, exponential, Pascal, Erlang, Poisson, and chi-square distributions and
it is used to estimate the time interval between occurrences. Finally, the Weibull distribu-
tion is frequently used in reliability studies to characterize failure duration and material
breaking strengths in quality control tests. Depending on the shape parameter, the Weibull
distribution may reflect the exponential, Rayleigh, or other distributions. When the Weibull
shape parameter is equal to 1, the Weibull distribution is comparable to the exponential
distribution. With the closed PDF, for each purpose, actual data which have the highest
likelihood are selected and their parameters are determined based on the highest likelihood
method [28] as shown in Table 2.

For each generated trip, the generated trip distance in (5) should match the trip starting
and ending times calculated from (3) and (4), i.e., Dp,m,d ≤ Tend

p,m,d − Tstart
p,m,d. If not, the model

will regenerate another random trip distance using (5).
The outputs of the BEV travel behavior submodel that need to be fed to the battery

depletion submodel are the purpose and the distance, in addition to the starting and ending
times for all the daily trips for each EV in the fleet.

Table 2. Fitted PDFs parameters for different purposes.

p Fitted pdf Parameters p Fitted pdf Parameters

1 Lognormal µ = 3.27 σ = 1.02 6 Lognormal µ = 3.02 σ = 1.32

2 Weibull c = 111.75 k = 1.27 7 Weibull c = 83.81 k = 0.93

3 Lognormal µ = 2.48 σ = 1.16 8 Weibull c = 176.47 k = 2.67

4 Lognormal µ = 2.16 σ = 1.38 9 Weibull c = 79.63 k = 1.19

5 Lognormal µ = 2.76 σ = 1.18 10 Lognormal µ = 3.42 σ = 1.29

2.2. Battery Depletion Submodel

In this subsection, the submodel of the energy consumed from the onboard batteries
by a fleet of BEVs is explained. This submodel utilizes the outcomes from the previously
discussed travel behavior submodel.

The battery depletion submodel also considers additional energy consumption due
to the usage of A/Cs or heaters based on the daily average temperature. Based on the
outcome of the travel behavior submodel along with the average hourly temperature data,
the battery depletion submodel is proposed as shown in Figure 2. The submodel determines
the energy consumed from the battery of each BEV to cover its trips. This battery depletion
submodel is built while considering the same assumptions in [8].
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Figure 2. Battery depletion submodel.

The associated energy depleted from the battery can then be obtained as in Equations (6)–(13),
which are modified from [8]. The total depleted energy from the BEV battery is the
minimum energy required to cover the trip and the maximum useful energy available in
the battery, as in (7). The battery useful energy EMAX

v is generated virtually for each vehicle
in each class c using the CDF of the PMF extracted from the market share of available
BEV models. Assuming that B represents the set of all batteries, then the PMF of class
c describing any random vehicle in this class to have the battery size corresponding to
b ∈ B can be defined as

f BAT
c (x = b) = PBAT

b (6)

Furthermore, the energy required to cover the trip is composed of two parts: the
tractive energy ETE

v, t and the energy required for cooling or heating EHVAC
v, t . The tractive

energy in kWh defined in (8) represents the inertia of a vehicle and the road resistance
energies, where v and t are the vehicle and trip indices, respectively; TEv is the average
required energy for traction per mile for vehicle v; and ηtot

v is the total efficiency, including
the efficiency of the battery, the power electronics converters, and any accessories. Each
vehicle v ∈ V is assigned to one of the four classes Vc ⊂ V, where Vc is the subset of
vehicles in class c. For all the classes, these subsets represent partitions of V. The traveled
distance Dv, t is one of the outcomes of the travel behavior submodel.

EBat
v, t = min

(
ETE

v, t + EHVAC
v, t , EMAX

v

)
, (7)

ETE
v, t =

Dv, t × TEv

ηtot
v

, (8)
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The EHVAC
v,t defined in (9) is the energy required to keep the vehicle and the battery

within acceptable ranges. In addition to the energy required by the heater EHT
v,t and the

A/C EAC
v,t , the battery pack may need cooling as its temperature can reach critical levels

as high as 65 ◦C in hot climates [29,30]. These high temperatures reduce the battery life as
well as increasing self-discharge [29–31]. To cool the battery pack, the refrigeration circuit
of the A/C and a secondary coolant circuit are used, which are powered by the battery
itself. Thus, we define the third part of EHVAC

v,t to be the energy required EBC
v,t for cooling the

battery. ΘAC, ΘHT and ΘBC are the temperature thresholds in ◦C for operating the A/C,
the heater, and the battery cooling system, respectively. SAVG−trip

t is the average speed in
mph for a trip t. Using the travel behavior submodel, each trip t is assigned to one of the
Nprp purposes, where each purpose has a unique average speed SAVG−purpose

p . The trip
duration TD

v,t in h can be calculated as in (10). WStart
A/C(v) and WStart

HT(v) are the consumed power

in kW by the A/C and the heater during the starting period TStart
A/C and TStart

HT for A/C and
heater, respectively. WCont

A/C(v) and WCont
HT(v) are the consumed power in kW by the A/C and

the heater, respectively, during continuous operation for the passengers. Finally, WBC
v is the

power in kW consumed by the battery cooling system.
As shown in (11) and (12), the energy consumed by the A/C or the heater is the energy

consumed during the starting period plus the energy consumed during normal continuous
operation. For the battery cooling system, the power consumption is constant whenever
the temperature exceeds ΘBC, as in (13).

EHVAC
v, t = EAC

v, t + EBC
v, t + EHT

v, t , (9)

TD
v,t =

Dv, t

SAVG−trip
t

, (10)

EAC
v, t =


 WStart

A/C(v) TD
v,t ∀TD

v,t ≤ TStart
A/C

WStart
A/C(v)T

Start
A/C + WCont

A/C(v)

(
TD

v,t − TStart
A/C

)
∀TD

v,t > TStart
A/C

∀ΘAC ≤ ΘAVG
t ,

0 elsewhere

(11)

EHT
v, t =


 WStart

HT(v) TD
v,t ∀TD

v,t ≤ TStart
HT

WStart
HT(v)T

Start
HT + WCont

HT(v)

(
TD

v,t − TStart
HT

)
∀TD

v,t > TStart
HT

∀ΘHT ≥ ΘAVG
t ,

0 elsewhere

(12)

EBC
v, t =

{
WBC

v TD
v,t ∀ΘBC ≤ ΘAVG

t
0 elsewhere

, (13)

3. Reliability Assessment under Different Strategies

Reliability studies are usually conducted based on analytical or chronological proba-
bilistic models. Since the EV consumption has to be modeled chronologically, the study
will follow the chronological probabilistic modeling approach, where virtual scenarios of
generation and demand have to be developed and used to calculate the reliability indices.

In this work, the conventional generating units are represented by two states—fully
rated or failed state. To generate virtual scenarios of the time-to-fail (TTF) and the time-to-
repair (TTR), we use the exponential CDF as in (14) and (15), where MTTF and MTTR are
the mean-time-to-fail and the mean-time-to-repair in years, respectively. U f is a uniformly
distributed random number between 0 and 1, corresponding to interruption f .

TTFf = −MTTF ∗ 8760 ∗ Ln U f (14)

TTR f = −MTTR ∗ 8760 ∗ Ln U f (15)
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Failures in the generation units may cause load interruption, as shown in Figure 3.
Then, for any interruption i, the amount of energy not served ENSi and the duration hi can
be determined, as shown in Figure 3.

The different reliability indices can be categorized into two types: annual system
and interruption indices. The annual system indices category includes the Loss of Load
Expectation (LOLE) in h/yr, Loss of Energy Expectation (LOEE) in MWh/yr, and Loss
of Load Frequency (LOLF) in interruption/yr (int./yr), while the Energy Not Served per
Interruption (ENSPI) in MWh/int., System Average Interruption Frequency Index (SAIFI)
in interruption/customer (int./cu.) and System Average Interruption Duration Index
(SAIDI) in h/cu. can be considered interruption indices. For NI interruptions in N years,
these reliability indices can be calculated as in (16)–(21).

LOLE =
∑NI

i=1 hi

N
, (16)

LOEE =
∑NI

i=1 ENSi

N
, (17)

LOLF =
NI
N

, (18)

ENSPI = ∑NI
i=1 ENSi

NI
=

LOEE
LOLF

, (19)

SAIFI =
The number o f customers interputions

Total customers served
, (20)

SAIDI =
Total durations o f customers interputions

Total customers served
(21)

Figure 3. Load and generating profiles.

For the normal load, the Roy Billinton Test System (RBTS) load profile will be used in
this study. On the other hand, for the BEV consumption, the outcomes from the dynamic
model in Section 2 are utilized to assess the power system reliability and thus, establish re-
liability indices for the integrated normal electric demand and transportation electrification
demand under different charging strategies. As shown in Figure 4, the developed group
of virtual trips with different start and end times, including the depleted energy from the
batteries, are fed to the reliability assessment stage. The reliability assessment stage then
translates the outcome of our model to energy consumption based on the desired charging
strategy to model the interactions between the integrated systems, and thus study the effect
of BEV penetration on the power system reliability.
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Figure 4. The integration of the proposed model with the Reliability assessment.

Examples of the different charging strategies in Figure 4 may include:

1. Uncontrolled G2V charging strategy [32], where the power flow is only unidirectional
from the grid to the BEV. The BEVs start charging once plugged into the charger
without supervision.

2. Controlled G2V charging strategy [33], where the power flow is still in one direction
from the grid to the BEV. However, the EV chargers accept external control signals to
enable/disable the charging process and control the level of charging. This external
control signal can be sent by the BEV owner, the utility, or a third party subject to
appropriate contracts or agreements.

3. Controlled Bidirectional Strategy [34], where the power flow may be in two directions,
G2V or V2G. The BEV may discharge to the grid during load peak periods, which can
help enhance the power system reliability and stability as well as relief congestions.

4. Indirect Controlled Bidirectional Strategy [35]; in this strategy, the power flow can
be in both directions. The advantage of this approach is that smart coordination can
be used to determine the optimal periods of charging to decrease the energy cost in
addition to the advantages of the controlled bidirectional strategy, where the charging
is indirectly affected by energy prices.

Thus, utilities can compare between uncoordinated and coordinated charging, which
can be enforced by setting different tariffs or by controlling the chargers from the utility side.

In the next section, the outcomes of the overall proposed model along with different
charging strategies are used to estimate the effect of the different penetration levels of BEVs
on the reliability of the power system. Three strategies are considered: the uncontrolled G2V,
controlled G2V, and controlled bidirectional. As in typical chronological-based reliability
analysis, Monte Carlo simulations are used to generate virtual scenarios for the generation
units’ availability and normal demand. Then, the proposed model is used to generate
virtual scenarios of BEV arrivals and departures along with the battery-depleted energy.
Applying different charging strategies allows translating the model outcome into consumed
energy, which is then added to the normal demand and included in the reliability analysis.
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4. Simulation Results

In this section, the reliability of the power system is studied, taking into consideration
BEV charging based on three levels of BEV penetration: 20%, 40%, and 60%. In addition,
two chargers with ratings of 7.2 kW and 9.6 kW are considered. The temperature used in
the proposed model is the average daily temperature of the United Arab Emirates (UAE).
The simulation period is one year, which is equivalent to 8760 h. Each month in this year is
represented by one week. The simulation time slot is one hour.

To test the proposed model, we use the IEEE-RBTS model shown in Figure 5 for the
reliability studies [36]. In the IEEE-RBTS system, there are 11 generating units with a total
capacity of 240 MW. The peak value of the load in this system is 185 MW.

We carried out reliability analysis for the IEEE-RBTS with the BEV consumption
superimposed on normal demand. Sequential Monte Carlo simulations are used to gen-
erate 5000 years, i.e., N = 5000, of synthetic samples until the reliability indices reach
convergence, as shown in Figure 6. The reliability analysis is carried out for three different
strategies and two different chargers. The results for three different charging strategies for
different BEV penetrations are summarized in Table 3.

Firstly, we want to study the impact of MTTR and MTTF variations on the reliability
indices with 0% penetration of BEV (base case). Table 4 illustrates the different reliability
indices with various values of MTTR and MTTF. The reliability of the system is enhanced
with increasing MTTR or decreasing MMTF as explained in Table 4, as each generating
unit will require less time to repair if MTTR is decreased and this generating unit will
operate for longer until the next failure if MTTF is increased.

Figure 5. RBTS–IEEE study system [36].
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Table 3. Reliability indices for different BEV penetrations and different chargers’ ratings.

BEV
Penetration

Reliability
Indices

Charger Rating = 7.2 kW Charger Rating = 9.6 kW

Uncontrolled Unidirectional Bidirectional Uncontrolled Unidirectional Bidirectional

0 %

LOLE (h/yr) 1.0562

LOEE
(MWh/yr) 9.7788

LOLF
(int./yr) 0.2078

ENSPI
(MWh/int.) 47.058

SAIFI
(int./cu.) 0.1154

SAIDI
(h/cu.) 0.5283

20%

LOLE (h/yr) 1.7882 1.88 0.8818 1.8728 1.96 0.884

LOEE
(MWh/yr) 17.3736 10.8958 6.5947 18.046 11.1448 6.1485

LOLF
(int./yr) 0.4352 0.4228 0.1974 0.4538 0.4482 0.2138

ENSPI
(MWh/int.) 39.9209 25.7706 33.4076 39.7663 24.8657 28.75

SAIFI
(int./cu.) 0.2489 0.136 0.0706 0.2473 0.1392 0.0668

SAIDI
(h/cu.) 0.9391 0.589 0.3565 0.9755 0.6024 0.3323

40%

LOLE (h/yr) 2.9652 3.209 1.11 3.1912 3.4398 1.1558

LOEE
(MWh/yr) 32.265 13.1856 5.3179 34.6965 14.2084 4.929

LOLF
(int./yr) 0.8222 0.8170 0.3706 0.8122 0.8204 0.4134

ENSPI
(MWh/int.) 39.243 16.139 14.3495 42.7191 17.3189 11.923

SAIFI
(int./cu.) 0.5249 0.1823 0.0627 0.5105 0.1973 0.0624

SAIDI
(h/cu.) 1.7441 0.7127 0.2875 1.8775 0.768 0.2664

60%

LOLE (h/yr) 5.9982 6.26 1.581 6.7096 6.9426 1.6984

LOEE
(MWh/yr) 63.3742 18.468 4.8154 70.3812 21.535 4.6879

LOLF
(int./yr) 2.016 2.014 0.7138 2.0284 2.0622 0.779

ENSPI
(MWh/int.) 31.4356 9.1698 6.7461 34.6979 10.4427 6.0178

SAIFI
(int./cu.) 1.2168 0.3149 0.0655 1.1635 0.3664 0.0722

SAIDI
(h/cu.) 3.4256 0.9983 0.2603 3.8044 1.1641 0.2534
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Table 4. Reliability indices for different MTTR and MMTF values with 0% BEV penetration.

Base Case 20% Increase
in MTTR

20% Decrease
in MTTR

20% Increase
in MTTF

20% Decrease
in MTTF

20% Increase in
MTTR & MTTF

20% Decrease in
MTTR & MTTF

LOLE 1.0562 1.6780 0.6166 0.5854 1.7692 1.0178 0.9846

LOEE 9.7788 15.4054 5.0921 4.5251 16.6511 9.037 9.6237

LOLF 0.2078 0.3240 0.1328 0.1282 0.3500 0.202 0.2006

ENSPI 47.058 47.5475 38.3433 35.2971 47.5745 44.7376 47.9745

Figure 6. The convergence of reliability indices in the case of no BEV.

4.1. Uncontrolled Charging

For the uncontrolled scenario, it is assumed that charging occurs once the BEV is
plugged in. During an outage, the energy not supplied to the BEV cannot be shifted. Thus,
any charging energy will increase the ENSi and hi for any interruption i, which results in
higher LOLE and LOEE. In addition, the increase in the total load due to BEVs may result
in load interruption that did not exist in the case without BEVs, which causes the LOLF to
increase. On the other hand, the ENSPI may decrease due to the increase in the number of
interruptions with smaller ENSi that caused the LOLF to increase. A sample is shown in
Figure 7, where the normal load is not interrupted during an incident of generation outage.
However, with uncontrolled BEV consumption superimposed on the normal load, the total
load exceeds the available generation capacity, leading to increased ENSi.

In contrast, the SAIFI and SAIDI are determined based on the following assumption,
where the customers are assumed to be residential customers with an average consumption
of 5 kWh. The number of customer interruptions as well as the duration of the interruptions
will be increased in this scenario, as there is no control over BEV charging and thus the
energy for BEVs cannot be shifted, which results in higher values of SAIFI and SAIDI
compared to the values of these indices in the case without BEVs.

For penetrations of 20%, 40%, and 60%, the LOLE increases by 69.3%, 180.74%, and
467.9%, respectively. A higher charger rating would increase the LOLE further. For example,
for 20% BEV penetration, the LOLE is 4.5% higher with a 9.6 kW charger compared to the
7.2 kW charger. On the same context, the SAIFI increases by 115.68%, 354.85%, and 954.42%
for the different BEV penetrations. However, the variation in the charger rating has almost
no impact on both SAIFI and SAIDI indices.
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Figure 7. Load consumption for one scenario during an interruption period with 40% BEV penetration
and 7.2 kW charger rating.

4.2. Controlled Charging

In this strategy, BEV charging is controlled during an interruption to shift any charging
requirement to a later time if possible. Figure 7 illustrates the load profile with BEV demand
for one scenario during an interruption period using uncontrolled and controlled G2V
strategies. As shown, when the charging of BEV batteries is controlled, the shifting in the
charging requirements can definitely reduce the ENSi or, in the worst case, not change
it. However, this may be accompanied by an increase in the interruption duration, as
illustrated in Figure 8. Thus, for 20% BEV penetration, although the LOEE in the case of
controlled charging is reduced by 37.3% compared to the case of uncontrolled charging,
the LOLE increased by 4.8%. In addition, for 20% BEV penetration, we can notice a severe
reduction in the ENSPI by 35.45% compared to the uncontrolled case, due to the ability
of the controlled G2V strategy to reduce ENSi. Furthermore, the SAIFI and SAIDI are
increased only by 17.85%, 11.49%, respectively for 20% penetration compared to the case
without BEV.

Figure 8. Load consumption for one scenario during an interruption period with 20% BEV penetration
and 7.2 kW charger rating.
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4.3. Controlled Charging/Discharging

The controlled unidirectional strategy can lead to a reduction in ENSi by shifting
the charging energy, but it cannot eliminate the occurrence of interruptions if the load
without BEV penetration is higher than the generation capacity. However, in the case of
the controlled bidirectional charging strategy, the BEV batteries can discharge to support
the generation and may overcome the interruption. Therefore, the controlled bidirectional
strategy can lead to a reduction in both the interruption periods in addition to the amount of
energy not served. As shown in Table 3, the bidirectional-controlled strategy reduced all the
reliability indices compared to the case without BEV. For example, for 20% BEV penetration
and a 7.2 kW charger rating, the V2G strategy reduced the LOLE, LOEE, SAIFI, and SAIDI
by 16.5%, 32.6%, 38.82%, and 32.52% compared to the case without BEVs, respectively.
Moreover, the LOLF and ENSPI are reduced by 5% and 29%, respectively.

The discharging of BEV batteries in this scenario which has a great impact on enhanc-
ing the system reliability can be implemented through a contract between the owner of BEV
and the owner of the parking lot to compensate the BEV owner for the battery degradation
caused by the discharging of his battery, and this can be implemented through reducing
the charging price for these clients.

5. Conclusions

In this paper, a new mechanism for reliability assessment under high penetration of
BEVs is proposed. Three charging strategies are considered to establish reliability indices
and assessment methods for the integrated electric and transportation systems: the uncon-
trolled G2V, controlled G2V, and controlled bidirectional (G2V, V2G). A dynamic stochastic
consumption model that includes travel behavior and battery depletion submodels for a
fleet of BEVs is utilized in the reliability assessment. The travel behavior model takes into
consideration different trip purposes, trip distances, and variations in driver behavior. The
outcomes from this model are the starting times, ending times, trips distances, and trips
durations. The battery depletion model utilizes the outcomes from the previous model,
considering the environmental conditions to determine the BEV battery depletion by the
end of a trip. The outcomes of these models are used to study the impact of different BEV
penetrations on the power system reliability using three charging strategies, which can
translate the model outcomes to power consumption to study the interactions between the
integrated systems.

The reliability indices are determined for three charging strategies. The results show
that the increase in BEV penetration leads to a decrease in the reliability of the power
system as the interruption periods and the energy not served during the interruption will
both increase. However, the impacts of BEV penetrations can be reduced by considering the
different control strategies. The controlled unidirectional strategy succeeds in reducing the
amount of energy not used. However, it results in an increase in the interruption duration.
On the contrary, the use of the controlled bidirectional strategy leads to a reduction in both
the interruption duration and the amount of energy not served by discharging the BEV
batteries to the grid to prevent the expected interruption.
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