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Abstract: This study presents a parameter estimation method that uses an enhanced gray wolf
optimizer (EGWO) to optimize the parameters for a two-diode photovoltaic (PV) power generation
system. The proposed method consists of three stages. The first stage converts seven parameters for
the two-diode model into 17 parameters for different environmental conditions, which provides more
precise parameter estimation for the PV model. A PV power generation model is then established
to represent the nonlinear relationship between inputs and outputs. The second stage involves a
parameter sensitivity analysis and uses the overall effect method to remove the parameters that
have smaller effect on the output. The final stage uses an enhanced GWO that is associated with
measurement data to optimally estimate the parameters that are selected in the second stage. When
the parameters are estimated, the predicted value for the PV power output is calculated for specific
values of solar irradiation and module temperature. The proposed method is verified on a 200 kWp
PV power generation system. To confirm the feasibility of the proposed method, the parameter
estimation before and after optimization are compared, and these results are compared with other
optimization algorithms, as well as those for a single-diode PV model.

Keywords: two-diode model; parameter estimation; gray wolf optimizer

1. Introduction

Photovoltaic (PV) power output is changeable and unpredictable, since it is only
generated during the day and not at night. For a large power grid, PV power generation
is an uncontrollable power source, therefore there is restricted dispatching. However, the
power output from a PV has less inertia than that from traditional units. When an accident
occurs in the system, the frequency response decreases as there is a decrease in the inertia
of the system, which becomes unstable. Accurately estimating PV power output gives an
accurate reference for auxiliary services, such as frequency modulation and rapid response
of backup capacity, but the random nature of the output makes estimation difficult.

Estimating parameters for PV power generation involves statistical methods and
physical methods. Statistical methods use a black-box model to establish a nonlinear
relationship between inputs and outputs. The inputs that are used are the historical
PV power output, irradiance, and weather information, and the output is the estimated
value for PV power generation. This method uses either indirect or direct forecasting.
Indirect prediction [1–3] predicts future irradiance using historical irradiance data and
other weather variables, and uses a conversion formula to convert irradiance into PV power
output. The curves for irradiance and PV power output are quite similar, thus this method
usually accurately estimates PV power output if the irradiance prediction is accurate. Direct
prediction [4–10] uses the historical PV power output and weather variables (including
irradiance) as input variables, and the prediction results for PV power generation are the
output. This method requires an accurate weather forecast to produce good forecast results.
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Physical methods establish a physical model for PV power generation between the
input and output to convert environmental variables, such as irradiance and tempera-
ture, into a power output. Physical model involves either an ideal model [11], a simple
power model [12], an experimental model [13], a single-diode model [14–24], a two-diode
model [22–27], or a three-diode model [28,29]. The single-diode model with five parameters
has a simpler architecture, and has been widely used to simulate the electrical behavior of
solar cells. To produce more accurate estimate, the two-diode model with seven parameters
is developed to enhance the simulation performance in low irradiance. The three-diode
model adds another diode to improve the defects of the recombination process in two-
diode model [28]. However, the addition of a diode makes the model more complicated.
Considering the accuracy and complexity, this study uses a two-diode model to simulate
the electrical behavior of solar cells. When the PV power generation model is created, it
is difficult to estimate parameters because there is a nonlinear relationship between these
parameters. In addition, after a period of operation, the PV module parameters that are
provided by the manufacturer change due to aging and deterioration of the solar cell,
therefore these must be corrected.

Some parameters affect the output only slightly and will be eliminated in the parameter
selection process. When the parameters that affect the output are selected, an optimization
tool is used to accurately estimate the parameters. Several optimization algorithms have
been used to estimate the parameters of solar cells, such as the hybrid charged system
search algorithm [15], the particle swarm optimization (PSO) method [18], the differential
evolution algorithm (DE) [19], the chaos-embedded gravitational search algorithm [21], the
bonobo optimizer [22], the improved cuckoo search algorithm [23], the chaotic improved
artificial bee colony algorithm [24], the ranking-based whale optimizer (WO) [28], and the
grasshopper optimization algorithm [29]. As mentioned above, most studies use different
optimization tools to solve the parameter estimation problem. The estimation accuracy
depends heavily on the chosen optimization algorithm. In addition, the five-parameter
and seven-parameter methods, which are respectively used for single-diode and two-diode
models, are still imprecise. To solve this problem, a novel approach is proposed in this study.
The proposed method consists of three stages. The first stage converts seven parameters
for the two-diode model into 17 parameters and establish a PV power generation model in
the MATLAB/SIMULINK environment. The second stage combines sensitivity analysis
and the overall effect method to remove the parameters that have a smaller effect on the
output. The final stage uses an EGWO to optimally estimate the parameters.

The differences compared to the previous studies and the contributions of this study
are highlighted as follows:

• A PV power generation system based on a two-diode model is established in the
MATLAB/SIMULINK environment, which can be used for parameter estimation of
PV power plants of different types and scales.

• Converting the seven parameters of the two-diode model into 17 parameters according
to different environmental conditions provides more precise parameter estimates for
the PV model.

• A parameter elimination technique that combines parameter sensitivity analysis and
the overall effect method is used to remove the parameters that have little effect on
the output.

• To enhance the global search ability of GWO, a dynamic crowding distance (DCD)
algorithm is used to eliminate the agents with higher density region in the optimiza-
tion process.

The remainder of this paper is organized as follows. Section 2 details the PV power gen-
eration models. Section 3 describes the proposed parameter estimation method. Section 4
presents the simulation results for a 200 kWp PV power generation system and conclusions
are offered in Section V.
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2. The PV Power Generation Models
2.1. Single-Diode Model

Figure 1 shows the circuit of a single-diode model which is composed of a photo
current source, a diode, a shunt resistance, and a series resistance. The output current of
the model is expressed as [14,15]:

I = IL − Io

[
exp
(

V + IRs

nIVt

)
− 1
]
− V + IRs

Rsh
(1)

where I is the output current for the solar cell, IL is the photo current, Rsh is the parallel
resistance, Rs is the series resistance, Io is the saturation currents for the diode, Vt is the
thermal voltage, and nI is the ideal factor. Since exp

(
V+IRs

nIVt

)
� 1, Equation (1) can be

simplified as [16]:

I = IL − Io

[
exp
(

V + IRs

nIVt

)]
− V + IRs

Rsh
(2)

Figure 1. The circuit of a single-diode model.

2.2. Two-Diode Model

For a two-diode model, the saturation current is generated by two diodes. Figure 2
shows the circuit of a two-diode model. The output current for this model is expressed
as [25–27]:

I = IL − Io1

[
exp
(

V + IRs

nI1Vt1

)]
− Io2

[
exp
(

V + IRs

nI2Vt2

)]
− V + IRs

Rsh
(3)

where Io1 and Io2 are the saturation currents for the two diodes, Vt1 and Vt2 are the thermal
voltage, and nI1 and nI2 are the ideal factors. In Equation (3), Io2 is used to compensate
for the compound loss in the depleted area. This model produces more accurate estimates
than a single-diode model if there is low irradiance or shading, but the addition of a diode
makes the model more complicated.

Figure 2. The circuit of a two-diode model.

Equation (3) shows that seven parameters must be estimated for the two-diode model:
IL, Io1, Io2, nI1, nI2, Rs, and Rsh. These parameters change for different irradiance and
temperature values as [17,25–27]:

IL =
G

Gre f

[
IL,re f + αImp

(
T − Tre f

)]
(4)
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Io1 = Io1,re f

(
T

Tre f

)3

exp

(
qEg

k

(
1

Tre f
− 1

T

))
(5)

Io2 = Io2,re f

(
T

Tre f

) 3
2

exp

(
qEg

nI2k

(
1

Tre f
− 1

T

))
(6)

nIi = nI,re f , i = 1, 2 (7)

Rs = Rs,re f (8)

Rsh = Rsh,re f

(Gre f

G

)
(9)

Eg = Eg,re f

[
1− 0.0002677

(
T − Tre f

)]
(10)

where G is the solar irradiance (kW/m2), Gref is the solar irradiance under standard test
condition (STC), T is the surface temperature of the solar cell (K), Tref is the surface tem-
perature under STC, αImp is the temperature coefficient at the maximum power point, and
Eg,ref (eV) is the gap energy for the material under STC. STC defines a test environment
with 1000 (W/m2) irradiance, a temperature of 298 (K) and a 1.5 air mass.

Under any environmental conditions, the short-circuit current Isc and the open-circuit
voltage Voc are expressed as [17,25–27]:

Isc =
G

Gre f

[
Isc,re f + αIsc

(
T − Tre f

)]
(11)

Voc = Voc,re f + βoc

(
T − Tre f

)
(12)

At the maximum power operating point, the current Imp and the voltage Vmp are
expressed as [17,25–27]:

Imp = Imp,re f

(
G

Gre f

)
(13)

Vmp = Vmp,re f + βoc

(
T − Tre f

)
(14)

where αIsc is the temperature coefficient at short-circuit current, and βoc is the temperature
coefficient at open-circuit voltage.

Combining Equation (4) to Equation (14), the nonlinear relationship between the seven
parameters and the related parameters is briefly expressed as:

A(Y) = B(X) (15)

where Y = [IL, Io1, Io2, nI1, nI2, Rs, Rsh] and X = [IL,ref, Isc,ref, Voc,ref, Imp,ref, Vmp,ref, Gref, Tref,
nI1,ref, nI2,ref, Rs,ref, Rsh,ref, Io1,ref , Io2,ref , αImp , αIsc , βoc, g,ref]. As shown in Equation (14), the
seven parameters in Y are controlled by the 17 parameters in X, which are optimized to
provide a more accurate estimation of parameters.

3. The Proposed Method

The proposed parameter estimation method establishes a PV power generation model,
selects parameters using a sensitivity analysis, and the overall effect method and optimizes
parameters using an EGWO. Figure 3 shows a schematic diagram of the proposed method.
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Figure 3. The schematic diagram of the proposed method.

3.1. Establishment of PV Power Generation Model

Using the two-diode equivalent circuit, the PV power generation model is established
using Matlab/Simulink software. The model inputs are the solar irradiance and the module
temperature, and the outputs are the current and power generated. Figure 4 shows the
establishment of a PV power generation model, where subsystem1 is used to calculate
seven parameters, including IL, Io1, Io2, nI1, nI2, Rs and Rsh, and subsystem2 is used to
calculate the current and power output.

Figure 4. Establishment of a PV power generation model.

3.2. Parameter Selection

To allow more accurate parameter estimation, the original seven parameters in the PV
model are converted into 17 parameters for this study. The parameters that are provided
by the manufacturer change due to natural degradation of the solar cell. Some parameters
have little effect on the output, and can be removed from the model. Parameters are selected
to reduce the calculation time for the optimization process.

The parameter selection method for this study uses a parameter-output sensitivity
matrix at a specific steady-state operating point. A principal component analysis (PCA) [30]
is then used to evaluate the effect on the overall outputs. The magnitude of the parameter
effect is evaluated by the sensitivity coefficient Sij [30]:

S̃ij =
θ̃j

ỹi

∂yi
∂θj

=
θ̃j

ỹi
Sij (16)
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where θ̃j is the jth parameter, and ỹi is the ith output. In Equation (6), j = 1, 2, . . . , Q, Q is
the number of parameters.

There is a disturbance on the jth parameter, such that ∆θ = θj − θ̃j, the ith output
changes (i.e., ∆yi = yi − ỹi) and the sensitivity coefficient is approximated as [30]:

Sij =
∂yi
∂θj
≈ ∆yi

∆θj
(17)

Equation (17) is a dimensionless sensitivity matrix that expresses the relationship of
each parameter with respect to each output. The parameters that have smaller effect on the
output are removed in the first step, and the PCA is then used to evaluate the effect of each
parameter on the overall outputs.

Combining Equations (16) and (17), the overall effect of the jth parameter is ex-
pressed as:

Ee f f ,j =
∑no

i=1

∣∣λiPij
∣∣

∑no
i=1|λi|

(18)

where Ee f f ,j ∈ [0, 1] is the effect of the jth parameter on the overall variables, λi is the
eigenvalue for the ith output, Pij represents the degree of contribution for the jth parameter
on the ith output, and no is the number of outputs. The parameters with a larger value of
Ee f f are then optimized using an EGWO algorithm.

3.3. Enhanced Gray Wolf Optimizer (EGWO)

The GWO was proposed by Mirjalili and Lewis [31]. Wolves have very strict social
behaviors, which are roughly classified into four categories: α, β, δ, and Ω in order of fitness
value. The Ω is the lowest gray wolf, which is dominated by other wolves. The GWO uses
surrounding prey, attacking prey, and searching for other prey strategies to model the social
behavior of wolves. To enhance the global search ability of GWO, a dynamic crowding
distance (DCD) [32] algorithm is used to eliminate the agents with higher density region in
the optimization process. Figure 5 shows the pseudocode for the EGWO to optimize the
parameters [33], which is described as follows.

Figure 5. The pseudocode for the EGWO to optimize the parameters [33].

3.3.1. Surrounding Prey

The wolves usually use surrounding strategy to hunt prey, which is expressed as [31]:

→
X(t + 1) =

→
Xp(t)−

→
A ·
→
D (19)

→
D =

∣∣∣∣→C→Xp(t)−
→
X(t)

∣∣∣∣ (20)
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where t is the present iteration step,
→
A and

→
C are coefficients, and

→
X and

→
Xp denote the

location of wolves and the location of the prey, respectively. In Equations (19) and (20),
→
A = 2

→
a ·→r −→a and

→
C = 2 ·→r ,

→
a decreases linearly from 2 to 0 along the optimization

process, and
→
r ∈ [0, 1] is a random vector.

3.3.2. Attacking Prey

After the surrounding is finished, the wolves stop moving and start attacking their
prey. In this stage, Ω wolves change their location based on the best location of α, β,
and δ as [31]:

→
Dα =

∣∣∣∣→C1 ·
→
Pα −

→
P
∣∣∣∣,→Dβ =

∣∣∣∣→C2 ·
→
P β −

→
P
∣∣∣∣, →Dδ =

∣∣∣∣→C3 ·
→
Pδ −

→
P
∣∣∣∣ (21)

→
P1 =

→
Pα −

→
A1 ·

→
Dα,
→
P2 =

→
P β −

→
A2 ·

→
Dβ,

→
P3 =

→
Pδ −

→
A3 ·

→
Dδ (22)

→
P(t + 1) =

→
P1 +

→
P2 +

→
P3

3
(23)

where
→
P is the location of the wolves, and

→
Pα,

→
P β and

→
Pδ denote the respective locations of

the α, β, and δ wolves.

3.3.3. Search for Other Prey

To achieve a global search, GWO allows
→
A to set randomly greater than 1 or less

than −1. This forces an exploratory search and allows the agents to search for the other
prey so that the optimization process can run away the local minimum values.

3.3.4. Dynamic Crowding Distance (DCD)

DCD [32] is a diversity maintenance strategy for retaining a certain number of solutions
uniformly distributed in the space of feasible solution. In this paper, DCD is employed to
eliminate adjacent feasible solutions as follows [32]:

di =
∑C

j=1,j 6=i
∣∣ f iti − f itj

∣∣
f itmax − f itmin

(24)

where fiti is the fitness value of the ith feasible agent, fitj is the fitness value of the jth
feasible agent, C is the number of feasible agents, and fitmax and fitmin are the maximum
and minimum fitness values, respectively.

Equation (24) states that if the value of di is small, the ith feasible agent is in a higher
density area and has a higher probability to be eliminated. The deprecated agents will be
replaced by randomly generated agents.

In Equation (24), the fitness value is calculated as:

f itj =
C

∑
j=1

(
Oj,est −Oj,mea

)2 (25)

Where Oj,est is the estimated value of the jth agent, and Oj,mea is the measured value of
the jth agent. The feasible agent with lower fitness value is better in the iteration process.

4. Numerical Results

The proposed method was tested using a 200 kWp PV power generation system. The
data were collected from January 2019 to December 2019, which consists of the hourly
historical PV power output and the associated irradiance and module temperature. Due
to sunshine, the data in summer season (from June to September) were collected from
06:00 a.m. to 19:00 p.m. at a total of 14 points; in the non-summer season, data were
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collected at a total of 12 points from 06:00 a.m. to 17:00 p.m. To verify the feasibility of the
proposed method, the proposed EGWO was compared with the other swarm optimization
algorithms such as PSO and WO. To evaluate the accuracy of the forecast, the mean relative
error (MRE) is used as follows [15]:

MRE =
1
N ∑N

i=1

∣∣∣Pf ore − Ptrue

∣∣∣
Pcap

× 100% (26)

where Pfore is the estimated value, Ptrue is the actual value, Pcap is the capacity of the PV
power generation, and N is the number of data points. As shown in Equation (26), the MRE
is calculated by dividing the estimation error by the capacity of PV power generation in
order to reduce the weight of the lower power generation to the error percentage.

4.1. Establishment of PV Power Generation Model

Table 1 indicates the reference values for the 17 parameters under STC. These param-
eter values are obtained by the manufacturer or by experience. A PV power generation
model is then created using the 17 parameters in the MATLAB/SIMULINK environment.
Figure 6 shows the current–voltage (I-V) and power–voltage (P-V) characteristic curves
for diverse irradiance values. The higher the irradiance, the larger is the output current
and power, but the effect on the maximum voltage is small. Figure 7 shows the I–V and
P–V curves under different temperatures. The greater the module temperature, the less
is the output current and power, and there is a significant effect on the maximum voltage.
As observed in Figures 6 and 7, irradiance affects current and power output more than
module temperature.

Table 1. The reference values for related parameters under STC.

No Parameter Reference Value No Parameter Reference Value

1 IL,ref (A) 3.45 10 Io1,ref (A) 1.16 × 10−15

2 Voc,ref (V) 66.4 11 Io2,ref (A) 1.07 × 10−15

3 Isc,ref (A) 3.66 12 nI1,ref 1.8609
4 Vmp,ref (V) 52.0 13 nI2,ref 1.8609
5 Imp,ref (A) 3.51 14 αIsc (A/K) 6.81 × 10−4

6 Gref (W/m2) 1000 15 αImp (A/K) 6.50 × 10−4

7 Tref (K) 298 16 βoc (V/K) −0.166
8 Rs,ref (Ω) 2.4089 17 Eg,ref (eV) 1.121
9 Rsh,ref (Ω) 150

Figure 6. The (a) I–V and (b) P–V characteristic curves for different irradiance values.



Energies 2022, 15, 1460 9 of 16

Figure 7. The (a) I–V and (b) P–V characteristic curves for different temperatures.

4.2. Parameter Selection for Optimization

To determine the effect of individual parameters on the outputs, a parameter sensitivity
analysis with ±5% disturbance is used, and the results are shown in Table 2. The results for
the overall effect value show that parameters IL,ref, Voc,ref, Isc,ref, Vmp,ref, Imp,ref, Gref, Tref, Rs,ref,
Rsh,ref, nI1,ref, αImp , and βoc have a greater effect on the output, parameters Io1,ref , Io2,ref , αIsc ,
and Eg,ref have little effect on the output. Furthermore, nI2,ref = nI1,ref, therefore nI2,ref can
be removed. Obtained from this table that in the optimization process, the five parameters
Io1,ref , Io2,ref , αIsc , nI2,ref, and Eg,ref will remain unchanged, and only 12 parameters are used
for optimization.

Table 2. Parameter sensitivity matrix and overall effect value for individual parameters for a
±5% disturbance.

No. Parameter Power Current Voltage Eeff

1 IL,ref (A) 0.6210 0.0312 4.2 × 10−6 0.9532
2 Voc,ref (V) 0.001 0.002 0.0098 0.3440
3 Isc,ref (A) −0.120 −0.0025 −0.0001 0.8031
4 Vmp,ref (V) 0.004 0.00075 5.1 × 10−5 0.4680
5 Imp,ref (A) 0.052 0.001 3.2 × 10−5 0.7865
6 Gref (W/m2) −0.194 −0.0038 −0.0025 0.9425
7 Tref (◦K) 0.490 0.0125 0.14525 0.8821
8 Rs,ref (Ω) −0.1155 −0.02201 −0.0000 0.7971
9 Rsh,ref (Ω) 0.0015 1.3 × 10−5 0.0011 0.3635

10 Io1,ref (A) 3.5 × 10−6 1.2 × 10−6 4.8 × 10−5 0.0806
11 Io2,ref (A) 2.9 × 10−6 0.6 × 10−6 1.6 × 10−5 0.0912
12 nI1,ref 0.0410 0.0023 8.5 × 10−5 0.3131
13 nI2,ref 0.0410 0.0023 8.5 × 10−5 0.3131
14 αIsc (A/K) 5.1 × 10−6 1.8 × 10−6 1.2 × 10−7 0.0112
15 αImp (A/K) 0.00067 0.00032 2.9 × 10−7 0.2302
16 βoc (V/K) 0.00024 0.00011 −9.3 × 10−7 0.2031
17 Eg,ref (eV) 5.1 × 10−6 1.8 × 10−6 0.8 × 10−5 0.0633

4.3. Parameter Optimization

This paper uses an EGWO to optimize the 12 parameters that are selected in the
parameter selection stage. Table 3 shows the reference parameters and the parameters
after optimization. The ranges for parameters are set in terms of operator experience. In
total, four different weather types, including sunny, rainy, cloudy, and slightly cloudy,
are used to study the estimation results. Table 4 shows a comparison of the estimation
results before and after parameter optimization for different weather types. An optimized
parameter gives a smaller value for MRE than one that is not optimized. To verify the
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performance of the proposed EGWO method, the similar swarm optimization algorithms,
such as PSO [18,34] and WO [28,35], are also used to optimize the 12 parameters. The
numerical results are shown in Table 5. The proposed EGWO outperforms PSO and WO
for different weather types. This table also shows that optimized estimates produce more
accurate results than the parameters that are not optimized. The average computation
time of the PSO and WO methods through 10 different runs is 12.5 min. and 10.5 min.,
respectively, while the proposed EGWO takes approximately 9.1 min.

Table 3. Reference parameters and optimized values using EGWO.

No. Parameter Reference Range Optimization

1 IL,ref (A) 3.45 3.4~3.5 3.42
2 Voc,ref (V) 66.4 63~69 66.35
3 Isc,ref (A) 3.66 3.5~5.4 3.71
4 Vmp,ref (V) 52.0 41~55 51.62
5 Imp,ref (A) 3.51 3.43~3.65 3.508
6 Gref (W/m2) 1000 950~1050 1015.3
7 Tref (K) 298 282~310 295.6
8 Rs,ref (Ω) 2.4089 2.3~2.5 2.424
9 Rsh,ref (Ω) 150 130~170 148
10 nI1,ref 1.8609 1.75~1.95 1.86
11 αImp (A/K) 6.50 × 10−4 4.50 × 10−4~8.50 × 10−4 4.93 × 10−4

12 βoc (V/K) −0.166 −0.145~−0.185 −0.171

Table 4. Estimation results before and after parameter optimization using EGWO.

Weather Types Optimization MRE (%)

Sunny day Before optimization 3.7532
After optimization 1.2542

Rainy day Before optimization 1.1991
After optimization 0.6931

Cloudy day Before optimization 1.7640
After optimization 0.9277

Slightly cloudy day Before optimization 1.9742
After optimization 1.7337

Table 5. Estimation results using different optimization algorithm.

Weather Type Method MRE (%)

Sunny day

Before optimization 3.7532
PSO [18,34]
WO [28,35]

EGWO [31,33]

1.8321
1.6235
1.2542

Rainy day

Before optimization 1.1991
PSO [18,34]
WO [28,35]

EGWO [31,33]

0.9125
0.9012
0.6931

Cloudy day

Before optimization 1.7640
PSO [18,34]
WO [28,35]

EGWO [31,33]

0.9936
0.9312
0.9277

Slightly cloudy day

Before optimization 1.9742
PSO [18,34]
WO [28,35]

EGWO [31,33]

1.7452
1.7545
1.7337
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Table 6 shows the estimation results for different PV models using EGWO. The single-
diode model with nine parameters produces lower MRE than the single-diode model with
five parameters. Similarly, the proposed two-diode model with 12 parameters allows better
estimate than the two-diode model with seven parameters. The results in this table show
that using Equation (15) to convert the original model to a more refined model according to
different environmental conditions can provide more accurate parameter estimation.

Table 6. Estimation error (MRE%) for different PV models using EGWO.

Weather Type Single-Diode
Model 1

Two-Diode
Model 2

Single-Diode
Model 3

Two-Diode
Model 4

Sunny day
(25–26 July) 2.8521 2.8011 2.2951 1.7487

Rainy day
(8–9 December) 1.8922 1.8910 1.7973 1.7869

Cloudy day
(1–2 November) 2.2324 2.2025 2.0390 1.7340

Slightly cloudy day
(21–22 June) 2.8865 2.6698 2.6538 2.0996

1 Five parameters (IL,Io, nI, Rs, Rsh) are optimized. 2 Seven parameters (IL,Io1, Io2,nI1, nI2, Rs, Rsh) are optimized.
3 9 parameters (IL,ref, Voc,ref, Isc,ref, Vmp,ref, Imp,ref, Gref, Tref, Rs,ref, Rsh,ref) are optimized. 4 12 parameters (IL,ref, Voc,ref,
Isc,ref, Vmp,ref, Imp,ref, Gref, Tref, Rs,ref, Rsh,ref, nI1,ref , αImp , βoc) are optimized.

Figures 8–11 respectively show a comparison of the estimation results for a two-diode
model and a single-diode model for sunny, rainy, cloudy, and slightly cloudy days. In
total, nine parameters are optimized for the single-diode model, which are selected from
the original 13 parameters. The curves show that the two-diode model produces better
estimation results than the results for a single-diode model. Table 7 compares the estimation
performance of the two models for different time periods. The two-diode model gives better
estimation results in the morning and afternoon periods if irradiance is low. The two models
give similar results for the higher irradiance period at noon. The average error for the
two-diode model shows that it gives better estimation results than the single-diode model.

Figure 8. Estimation results for a sunny day (25–26 July).
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Figure 9. Estimation results for a rainy day (8–9 December).

Figure 10. Estimation results for a cloudy day (1–2 November).

Figure 11. Estimation results for a slightly cloudy day (21–22 June).
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Table 7. Comparison results of single-diode and two-diode models for different time periods.

Weather Type Time Period Single-Diode Model
MRE (%)

Two-Diode Model
MRE (%)

Sunny day
(25–26 July)

Morning 1 2.1855 1.3590
Noon 2 3.2484 2.4492

Afternoon 3 1.4296 1.3600
Average error 2.2951 1.7487

Rainy day
(8–9 December)

Morning 1 2.0953 2.0278
Noon 2 1.4920 1.9675

Afternoon 3 1.8045 1.3655
Average error 1.7973 1.7869

Cloudy day
(1–2 November)

Morning 1 2.4880 1.0525
Noon 2 2.5213 2.1633

Afternoon 3 1.8313 1.8188
Average error 2.0390 1.7340

Slightly cloudy day
(21–22 June)

Morning 1 2.3463 2.0363
Noon 2 2.6648 2.9756

Afternoon 3 2.8888 1.2744
Average error 2.6538 2.0996

1: Morning: 06:00–09:00 a.m.; 2: Noon: 10:00–15:00 for June–September and 10:00–14:00 for other months;
3: Afternoon: 16:00–19:00 for June–September and 15:00–17:00 for other months.

4.4. Discussion

The following observations are yield from the above results:

• A photovoltaic power generation system based on a two-diode model is established in
the MATLAB/SIMULINK environment, which can be applied to PV power plants of
different types and scales only by changing the number of modules in series and parallel.

• As observed in Tables 4 and 5, the proposed algorithm combining GWO and DCD allows
better global search ability and lower estimation error than the PSO and WO methods.

• As shown in Table 6, whether a single-diode model or a two-diode model is used, it
is more accurate to convert the original model to a more refined model with more
parameters according to different environmental conditions.

• Although the proposed EGWO takes approximately 9 min to complete the parameter
optimization, it only needs to be executed offline, and usually needs to be performed
once a month or when a new PV array is installed.

5. Conclusions

This study creates a PV power generation system based on a two-diode model in
the MATLAB/SIMULINK environment. A sensitivity analysis and the overall effect are
then used to eliminate the parameters that have a smaller effect on the outputs. An
enhanced GWO algorithm is employed to optimize the 12 parameters that are selected
from the original 17 parameters. Testing on a 200 kWp PV power generation system
shows that optimized parameters produce better estimation results than parameters that
are not optimized for four different weather types. When compared with PSO and WO
algorithms, the proposed EGWO allows for better optimization performance in terms of
estimation error and computation time. Whether a single-diode model or a two-diode
model is used, it is more accurate to convert the original model to a more refined model
with more parameters according to different environmental conditions. Furthermore, a
two-diode model gives better estimation results than a single-diode model in the morning
and afternoon when irradiance is lower. The two modes give similar results during the
high irradiance period at noon. The average error values show that the two-diode model
gives better estimation results. Although the proposed method allows more accurate
estimate than previous works, the estimation error caused by the shading effect is still
unsolved, which is the limitation of the proposed method. A future work to improve the
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estimation error due to shading is under study. In addition, the weather information, such
as wind speed and wind direction, which affect heat dissipation from the PV module, can
be considered as input to increase the estimation accuracy.
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Nomenclature
αImp Temperature coefficient at the maximum power point
αIsc Temperature coefficient for the short-circuit current
βoc Temperature coefficient for the open-circuit voltage
λi Eigenvalue of the ith output
θ̃j The jth parameter
→
A Coefficient vector
C Number of feasible agents
→
C Coefficient vector
di Diversity of the ith agent
DCD Dynamic crowding distance
DE Differential evolution
EGWO Enhanced gray wolf optimizer
Ee f f ,j The effect of the jth parameter with respect to the overall variables
Eg Gap energy
Eg,re f Gap energy under STC
f iti Fitness value of the ith feasible agent
f itj Fitness value of the jth feasible agent
f itmax Maximum fitness value
f itmin Minimum fitness value
G Solar irradiance
Gre f Solar irradiance under STC
GWO Gray wolf optimizer
I Output current
IL Photo current
IL,re f Photo current under STC
Imp Maximum output current
Imp,re f Maximum output current under STC
Io (Io1, Io2) Saturation current

Io1,re f

(
Io2,re f

)
Saturation current under STC

Isc Short-circuit current
Isc,re f Short-circuit current under STC
k Boltzmann constant (1.38× 10−23 J/K)

nI (nI1, nI2) Ideal factor

nI1,re f

(
nI2,re f

)
Ideal factor under STC

no Number of outputs
N Number of data points
Oj,est Estimated value of the jth agent
Oj,mea Measured value of the jth agent
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Pcap Capacity of the PV power generation
Pf ore Estimated value
Ptrue Actual value
PSO Particle swarm optimization
PV Photovoltaic
→
P Location of the gray wolf
Pij Principal component element for the jth parameter of the ith output
→
Pα Positions of α wolf
→
P β Positions of β wolf
→
P δ Positions of δ wolf
Q Number of the parameter
q Electron charge

(
1.60× 10−19 C

)
Rs Series resistance
Rs,re f Series resistance under STC
Rsh Parallel resistance
Rsh,re f Parallel resistance under STC
Sij Sensitivity coefficient in the steady state
STC Standard test condition
t Current iteration
T Surface temperature
Tre f Surface temperature under STC
V Output voltage
Vmp Maximum output voltage
Vmp,re f Maximum output voltage under STC
Voc Open-circuit voltage
Voc,re f Open-circuit voltage under STC
Vt (Vt1, Vt2) Thermal voltage
WO Whale optimizer
→
X Location vector of agent
→
Xp Location vector of the prey
ỹi The ith output
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