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Abstract: Total transfer capability (TTC) is a vital security indicator for power exchange among areas.
It characterizes time-variants and transient stability dynamics, and thus is challenging to evaluate
efficiently, which can jeopardize operational safety. A leaning-aided optimal power flow method is
proposed to handle the above challenges. At the outset, deep learning (DL) is utilized to globally
establish real-time transient stability estimators in parametric space, such that the dimensionality of
dynamic simulators can be reduced. The computationally intensive transient stability constraints
in TTC calculation and their sensitivities are therewith converted into fast forward and backward
processes. The DL-aided constrained model is finally solved by nonlinear programming. The
numerical results on the modified IEEE 39-bus system demonstrate that the proposed method
outperforms several model-based methods in accuracy and efficiency.

Keywords: total transfer capability; surrogate assisted method; transient stability; deep learning;
interior point method

1. Introduction

Power systems are currently operated near their stability boundary with the significant
proliferation of interconnected grids and renewable penetration [1]. Therefore, online
monitoring to transfer security margin of inter-area power transfer is in urgent demand. In
the electric industry, total transfer capability (TTC), defined as maximum power exchange
allowed to withstand multifarious security contingencies, is a widespread metric to quantify
such a security margin. Limited by this issue, dispatchers generally use a conservative
constant of offline TTC to decide online operations. Undoubtedly, such TTC values can
incur the unwanted waste of line capacity and incorrect estimation to security margin. To
untie these knots, the essence is to accelerate TTC calculation.

Thus far, several approaches have been proposed to model TTC calculation [2–4].
Among them, methods with only steady-state considered are inapplicable for TTC evalua-
tion involving transient stability (TS) [5]. To enable TS assessment (TSA), TTC is preferred
to be modeled as TS constrained (TSC) programming problem. As the models shown
in [6–10], differential-algebraic equations (DAEs) representing system dynamics and TS
constraints are discretized throughout the time domain simulation period. And the re-
sulting differential equations are incorporated into the optimal power flow (OPF) model.
Nevertheless, as mentioned before, solving such models is quite computationally expensive
due to the high-dimensional and nonlinear DAEs involved. In light of this, under current
time-varying power grids, inefficient physics-dominated methods can be problematic for
fast TTC monitors.

Data-driven approaches have become mainstream to increase calculation speed for
security assessment in large-scale power systems [11–13]. Reference [11] proposed an
online measurement-based TTC estimator using the nonparametric estimation. Sun et al.
developed an automatic learning technique based on the linear least-squares fitting method
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to extract the TTC operating rules [12]. Unfortunately, these methods own two critical
drawbacks. One is that they are hard to capture nonlinear patterns. An empirical and
heuristic TTC calculation in the stage of prior sample production is the other problem.
It cannot ensure finding the most extreme operating conditions, leading to low fidelity
against true modes.

To overcome the first drawback, machine learning (ML) is a promising alternative
thanks to its strong nonlinearity learning ability. Reference [13] introduced a hierarchical
deep learning machine (HDLM) to successfully achieve real-time TSA, won over other
physics-based methods with respect to speed, and beat linear data-driven methods on
precision. But sustainable energy is under-investigated. In [14], a TSA framework based on
a long short-term memory network was proposed; it improved assessment accuracy by
learning from post-fault temporal PMU data dependencies. These applications manifest
that ML is a better choice than linear learning methods in nonlinearity modeling tasks. A
comparison table with the advantages and disadvantages of the above references is listed
in Table 1.

Table 1. A comparison table with the advantages and disadvantages of each reference.

References Type Advantages Disadvantages

[2–4] Physical-driven model Focus on steady-state;
easy to solve

Transient stability is
out of consideration

[6–10]
Physical-driven model
with transient stability

constraints

Involved transient
stability constraints

Computationally
expensive

[11–13] Data-driven model Faster calculation speed

Hard to capture
nonlinear patterns; or
sustainable energy is
out of consideration

On the other hand, ML can substitute the most time-consuming TSA modules and
partially participate in TTC calculation to deal with the second deficiency. This idea
follows the classical roadmap of using optimal power flow (OPF) to approach extreme
operations but tactfully bypasses high-dimensional modeling such that optimizers can
quickly solve TTC. It is technically termed as a learning-aided (also known as surrogate-
assisted) method (LAM) [15–18], which utilizes ML algorithms to surrogate the most
complex and computationally intensive parts in optimization problems. Reference [18]
proposed a method that makes a fusion between surrogates and the evolutionary algorithm
to improve the efficiency of optimizing high-dimensional expensive problems. In [1], LAM
is also utilized to solve the TTC constrained operation planning problem. The above studies
show that LAM can speed up solving optimization problems. At the same time, because it
is a data-mechanism hybrid-driven method rather than an utterly data-driven method, it
performs better in terms of fidelity.

By prioritizing both merits of physics- and data-driven modeling, this paper pro-
posed a learning-aided optimal power flow based fast TTC calculation methods with the
following features:

Deep belief network (DBN) is advocated to surrogate computationally intensive and
high-dimensional time-domain based transient stability modelling. This learning-aided
scheme allows us to significantly reduce complexity of TTC calculation.

• DBN backwards process is conducted to derive sensitivity of transient stability margin.
This sensitivity supports fast and accurate decision for the most extreme growth path
of generation and load. The TTC solved under such path is conservative and robust to
account for a reliable security indicator.

• Thanks to the above merits, interior point method (IPM) is then introduced to fast
calculate TTC. Specifically, DBN forwards and backwards processes respectively
provide fast and accurate transient stability inference and gradient information for
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IPM. This scheme is firstly used in OPF-based TTC calculation, and numerical studies
justified its merits of compromising calculation efficiency and accuracy.

• A comprehensive comparative study is constructed. Numbers of traditional methods,
such as the TSCOPF method [9], the sensitivity-based method [19], the repeated
power flow (RPF) method [20], and the direct data-driven method [21], are used to
demonstrate the superiority of our method.

The organization of this paper is as follows: Section 2 introduces TS constrained
optimal power flow (TSCOPF), adopted to model TTC calculation. The learning-aided
model for the TS constraints is introduced in Section 3. Section 4 details the proposed
solving scheme method, where the Jacobin and Hessian matrices of the learning model are
deduced to analytical form to enable combination with nonlinear programming. Section 5
illustrates the numerical study. Finally, the conclusion is presented in Section 6.

2. TTC Calculation with TSCOPF

We believe the OPF method is a brilliant choice because the optimization procedure
enables a theoretical search for extreme operating conditions representing TTC. Therefore,
TSCOPF is adopted to model TTC calculation problem in this section. According to [22],
the generic OPF method for calculating TTC can be formulated as follows:

Max f (y,u)
s.t. g(y,u) = 0

h(y,u) ≤ 0
(1)

where y,u are the state and control variable vector of the system; and g(·), h(·) are the set of
equality and inequality constraints, respectively.

(1) Objective function: It aims to maximize the sum of the active power output of all
generators in the source area, i.e.,

Max f (y,u) = ∑k∈Ssou PGk, (2)

where PGk is generator active power output at bus k; and Ssou means the source area
bus set.

(2) Static equality constraints: Power flow equations are formed under polar coordinates,
shown below:

PGi − PDi − Vi∑n
j = 1 Vj(Gijcosθij + Bijsinθij) = 0,

QGi − QDi − Vi∑n
j = 1 Vj(Gijsinθij − Bijcosθij) = 0

(3)

where PGi, PDi represent active generation and demand for bus i; QGi, QDi are reactive
generation and demand for bus i, respective; Vi and θi are the voltage magnitude and
phase angle of bus i, and θij = θi − θj; Gij + jBij is the driving point admittance and the
transfer admittance; n is the number of buses.

(3) Static inequality constraints:

PGi
min ≤ PGi ≤ PGi

max, Gi∈SG∪SW
QGi

min ≤ QGi ≤ QGi
max, Gi∈SG∪SW

Vi
min ≤ Vi ≤ Vi

max, i∈Sn
Pij ≤ Pij

max, ij∈Sl

(4)

where PGi
min, PGi

max, QGi
min, QGi

max are the lower and upper limits of the generator
active and reactive power at bus k, respective; Vi

min and Vi
max are the lower and

upper limits of the voltage at bus i; Pij
max is the transmission threshold of line ij; SG,

SW, Sn, Sl are the sets of generators, wind farms, buses, and lines.
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(4) Transient stability constraints: This paper adopts the classical generator model to
analyze transient stability. During the dynamic process, loads are modeled as constant
impedance. Hence, generic TS models can be simplified as follows:

x’(t) = ρc(x(t), y(t), u),
ψc(x(t), y(t), u) ≥ 0, c∈Sc, t∈(t0, tend]

(5)

where x, y are the algebraic and state variables; [x(t), y(t)] refers to the operating
condition during the transient period (t0, tend]; Sc is a set of pre-contingencies; ψc(·) is
the transient stability criterion used in this paper [23], and it is shown as follows:

|δi(t) − δCOI(t)| ≤ δthr, t∈(t0, tend]
δCOI(t) = (∑i Mi · δi(t)) / (∑i Mi), i∈{1, . . . ,nG}

(6)

where δi(t) is the rotor angles of generator i; δCOI(t) is the rotor angle under the center
of inertia (COI); δthr is the instability threshold that is usually set as 180 degree [23];
Mi represents the inertia constant of the ith generator; and nG denotes the number
of generators.

It should be mentioned the DAEs Equation (5) encompasses numerous time-domain
variables, i.e., δi(t). With more precise timestep and more contingencies to be checked, the
dimensionality of Equation (5) will be of exponential growth.

3. Proposed Surrogate Model

In TSC programming problem, exact state and parameter estimation for dynamic
components (e.g., synchronous generators) must be conducted to truly model the transient
process. This is difficult because large-scale state estimation is challenging regarding
efficiency and precision. A sensible alternative is to directly encapsulate transient stability
dynamics in a parameterized model so as to bypass state estimation. Rich data is needed,
fortunately, it can be easily gathered nowadays in smart grid.

As reported before, TSA significantly increases the computational burden of solving
the OPF model. To reduce the massive time-domain variables, a data-driven learning-aided
model is proposed. This model allows us to map Equation (5) into a parametric space, such
that the time-domain variables can be surrogated by ML structural parameters independent
of optimization, and few parallel forwards processes of ML are enabled to circumvent
quantities of DAEs.

3.1. Data Sample Generation

The first step of training such learning-aided models is data generation. To this end,
random operations are sampled and simulated under prior distributions of power systems.
To simplify illustrations, we respectively denote the input features and the target features as
X and Y. X covers almost all variables that SCADA can measure, while Y is the TS margin
index. Equation (7) details the data structure:

X = {PG, VG, PD, QD, Vb}, G∈SG∪SW , D∈SD
Y = {Γc}, c∈Sc

(7)

where PG and PD are the characteristic vector of active generator output and active load,
respectively; QD is the vector of reactive load; VG represents the voltage of buses where
generators are located; and Vb means the voltage of other buses. Γc represents the TS
margin of the corresponding operation. In this paper, TS index (TSI) is adopted to quantify
TS margin, which can be formulated as:

TSI = 100 × (δthr − |δmax|)/(δthr + |δmax|),
δmax = max(|δGi − δGj|), Gi,Gj∈SG

(8)



Energies 2022, 15, 1320 5 of 14

where δmax is the maximum power angle difference during the post-fault duration.
Now turning to introduce calculation for Equation (7). To attain X, we firstly sample

controllable variables under their prior limits by Equation (9), and loads under historical
distributions by Equation (9):

Xgen = {X1
gen; . . . ; Xn

gen} = {P1
G, V1

G; . . . ; Pn
G, Vn

G},
Xload= {X1

load; . . . ; Xn
load} = {P1

D, Q1
D; . . . ; Pn

D, Qn
D}

(9)

where Xgen, Xload are the control and load variables subsets of X, respectively; n is the
number of samples.

The power flow program is then performed to get equilibrium points to determine the
state variables Vb. Notably, samples should be evenly distributed over operational space to
ensure the generalization ability of the learning-aided model. Therefore, Latin hypercube
sampling (LHS) is adopted to generate samples in this paper [24].

Afterward, we impose disturbances in contingencies for one equilibrium point of X
to obtain post-fault trajectories to compute TS margin Γc. Via traversing each point in
X, Y can be collected. Supervised learning can herewith be utilized to learn the learning-
aided model.

3.2. Deep Belief Network Based TSA Learning-Aided Model

According to the data structure, the deep belief network (DBN) is an advisable alter-
native for our goal. DBN is a probability generation model that stacks multiple restricted
Boltzmann machines (RBMs) and a fully connected layer. RBM is an unsupervised net-
work composed of a visible and hidden layer, and it can probabilistically reconstruct input
features by two-way connections between the two layers.

As an energy-based model, the energy function of RBM is calculated by [25]:

E(v,h) = − vTwh − aTv − bTh, w∈Rnh×nv, a∈Rnv, b∈Rnh (10)

where v,h are the visible and hidden layer matrices; a,b are the bias matrices of v,h respec-
tively; and w is the weight matrix between two layers. The joint probability distribution
P(v,h) of v and h is formulated by:

P(v,h) = Z−1 e−E(v,h), Z = ∑v,h e−E(v,h) (11)

where Z is the normalization factor that ensures the sum of the probability distribution is 1.
The marginal probability of v and h, which are also called the likelihood functions, can be
formulated as:

P(v) = Z−1∑h e−E(v,h), P(h) = Z−1∑v e−E(v,h) (12)

Due to the lack of intra-layer connections in RBM, the activations of units in the visible
and hidden layers are independent. Therefore, when the visible layer (or hidden layer)
units state is given, we can deduce the formulation of the conditional probability that an
individual unit of the hidden layer (or visible layer) is activated as:

P(hi = 1|v) = M(bi + ∑i wij · vj), hi∈h, vj∈v, wij∈w
P(vi = 1|h) = M(aj + ∑j wij · hi), aj∈a∈Rnv, bi∈b∈Rnh (13)

where M(·) is the activation function, and in the paper, it is the Sigmoid function. Then, the
conditional probability of h (or v) given v (or h) can be obtained:

P(h|v) = ∏nh
i = 1P(hi|v), P(v|h) = ∏nv

j = 1P(vj|h), hi∈h, vj∈v (14)

where nh,nv are the number of units in the hidden and visible layer, respectively.
Training RBM is to maximize the following likelihood L:

lnL = ln∏v∈StrainP(v), (15)
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where Strain is the training sample set. The commonly used numerical method for maximiz-
ing (15) is gradient ascent, which iteratively updates the parameters. Take w as an example,
and the weight wij is updated via Equations (16) and (17):

wij = wij + η · (∂ln(P(v)))/(∂wij), wij∈w (16)

(∂ln(P(v)))/(∂wij) = P(hi = 1|v)vj −∑v P(v)P(hi = 1|v)vj, hi∈h, vj∈v (17)

where η is the learning rate.
DBN training consists of two parts: pre-training and fine-tuning. In the pre-training

part, any two connected layers except the fully connected layer can be regarded as an
RBM. These RBMs are trained to obtain better initial weights and to alleviate the gradient
disappearance problem. In the fine-tuning part, the trained RBMs are connected with the
fully connected layer. The sample sets [X, Y] and the global learning algorithm are then used
for supervised fine-tuning of the DBN, learning the mapping between input data and labels.
Thence, the mathematical model of an l-layer DBN can be simplified by Equation (18):

Ψ(X) = O(M(Dl − 1( . . . M(D1(X)) . . . ))), (18)

Di(xi) = wixi + bi, wi∈Rni × n(i−1), i = 1, . . . ,l − 1 (19)

wi = [wi
1, . . . ,wi

ni], wi
ni∈R1 × n(i−1)

bi = [bi
1, . . . ,bi

ni]
(20)

where O(·) is the output function of the fully connected layer, and O(x) = Dl(xl). The loss
function can be defined as the weighted sum of the estimated error and L2 norm, i.e.:

Min α‖Y − Ψ(X)‖2
2 + (1 − α)∑n

i = 1 ‖wi‖2
2, (21)

Equation (21) can be solved by training and fine-tuning the DBN model [24].
After training, the learning-aided model is reformed as Equation (22):

Γc = Ψc(X), c∈Sc (22)

3.3. Learning-Aided OPF for TTC Calculation

The trained learning-aided model is finally forwarded to replace (5)~(6) to mitigate
the TTC computational burden. The reformed learning-aided OPF for calculating TTC is
given as follows:

Maximize (2)
s.t. (3)~(4)

Γc ≥ 0, c∈Sc

(23)

In Equation (23), steady-state physics remains the same, but dynamics become a data
model. This modeling strategy possesses several merits: (1) it remarkably reduces the
solving complexity of the full physics version. (2) it preserves physics to decrease adverse
effects from significant learning errors. A common way to solve Equation (23) is gradient-
free algorithms [26–28]. However, these algorithms characterize cumbersome stochastic
search mechanism. A fast-solving algorithm for such physics and data hybrid model is still
under exploitation.

4. Proposed Solution Method

In this paper, the interior point method (IPM) [29] is conducted to solve (25). Towards
this end, the Jacobian and Hessian matrix of the trained DBN model is analyzed.
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4.1. Interior Point Method

For the sake of simplification, model Equation (23) is firstly reformed as the following
canonical form:

Max F(x),
s.t. G(x) = 0,

[H(x) ≤ 0] = [Hc(x) ≤ 0, HS(x) ≤ 0]
(24)

where F(x) is the objective function; G(x) = [G1(x), . . . ,Gm(x)]T is the nonlinear equality
constraints; H(x) = [H1(x), . . . ,Hr(x)]T is the non-linear inequality constraints, and Hc(x),
HS(x) are the constraints in (4) and the surrogate model in (23b), respectively; r,m are the
number of inequality and equality constraints.

Use IPM to solve Equation (24), and the steps are as follows [29]:

1. Add slack variables l = [l1, . . . , lr]T (l > 0) and u = [u1, . . . , ur]T (u > 0) to transform
H(x) into equality constraints;

2. Introduce the disturbance factor µ (µ > 0) to transfer F(x) into the barrier function,
which makes it impossible for the barrier objective function to find an extremal
solution on the boundary, and the optimal solution can only be obtained when the
constraints are satisfied;

3. Apply Lagrangian multiplier method to solve the transformed model, and the La-
grangian function is formulated as:

L = F(x) − ζTG(x) − zT[H(x) − l − Hmin] − ωT[H(x) + u − Hmax]
− µ∑r

i = 1 log(li) − µ∑r
i = 1 log(li),

(25)

where ζ,z,ω, are Lagrangian multipliers, respectively.
4. Calculate µ via Equation (26):

µ = σ(lTz − uTω)/2r, (26)

where σ denotes the central parameter.
5. Consider the Karush–Kuhn–Tucker (KKT) conditions and adopt the Newton method,

the matrix form of the modified equations can be deduced as:

Λ · ∆x + (∂G(x)/∂x) · ∆x = Φ,
(∂G(x)T/∂x) · ∆x = G,

Λ = (∂2G(x)/∂x2)ζ + (∂2H(x)/∂x2)(z + ω) − (∂2F(x)/∂x2)
+ (∂H(x)/∂x)(u−1ω − l−1z)(∂H(x)/∂x)T,

Φ = −Lx − (∂H(x)/∂x)[L−1(Ll
µ + ZLz) + U−1(Lu

µ + WLω)]

(27)

where Lx, Lz, Lω, Ll
µ and Lu

µ are the partial derivatives of L to x, z, ω, l and u.

Besides, the corrections of z, ω, l and u can be calculated via (28):

∆z = L−1Ll
µ − L−1Z∆l,

∆l = (∂H(x)/∂x)T∆x − Lz,
∆ω = U−1Lu

µ − U−1W∆u,
∆u = −(∂H(x)/∂x)T∆x + Lω

(28)

where Z = diag(z); W = diag(ω); L = diag(l); and U = diag(u).

6. Use the corrections calculated via Equations (27) and (28) to update the variables
as follows:

x(k + 1) = x(k) + αp∆x, ζ(k + 1) = ζ(k) + αd∆ζ,
l(k + 1) = l(k) + αp∆l, z(k + 1) = z(k) + αd∆z,

u(k + 1) = u(k) + αp∆u, ω(k + 1) = ω(k) + αd∆ω,
(29)
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where the step size αp and αd for each update are shown in Equation (30).

αp = 0.9995min[min(−li/∆li, li < 0; −li/∆ui, ui < 0), 1],
αd = 0.9995min[min(−zi/∆zi, zi < 0; −ωi/∆ωi, ωi > 0), 1], i = 1, . . . , r

(30)

7. Termination condition: if (lTz − uTω) < ε, the current x is output; else re-execute (4) to
(6). Here ε represents the specified threshold.

4.2. Deducing Analytical Surrogate Model for IPM

As shown in Equation (26), the gradient of functions F,G and H are needed in the
process of IPM. The gradient of F, G and Hc can be obtained directly. However, since the
surrogate model is a “black-box”, the gradient of Hs cannot be simply calculated. Based on
Equations (22) and (23), the gradient of Hs can be transformed into:

5Hs =5Γc =5Ψc(X), c∈Sc
52Hs =52Γc =52Ψc(X)

(31)

Next, by DBN backwards process, Equation (31) is deduced to get the Jacobin and
Hessian matrix, which are also known as sensitivities of transient stability against optimiza-
tion variables. See Appendix A for the detailed DBN backwards process. The algorithm
flow and implementation of the proposed method are shown in Figure 1.

Figure 1. The flow chart of the proposed method.

5. Numerical Case Study
5.1. Test System

The proposed method is testified on the modified IEEE 39-bus system. The base
power of the system is 100 MW, and the system is divided into the source (Area I) and
sink (Area II) areas by four tie-lines 1–39, 2–3, 3–18, and 16–17, as shown in Figure 2. Two
wind farms with a total capacity of 500 MW are connected to buses 17 and 21. As shown
in Section 3.1, TSI calculated by power angle is adopted to quantify TS margin. So, this
paper assumes that the wind farms have sufficient reactive power reserves and low voltage
ride-through capability to ensure they do not trip. A three-phase short circuit on each
tie-line is pre-selected as the contingencies.

5.2. Learning-Aided Model Construction

As mentioned before, generation prior distribution is assumed to be a uniform distribu-
tion over generators’ nominal limits. Regarding generation and load balance constrained,
the total load is determined as the sum of generation. Nodal load is then acquired by
sampling from historical load distributions. As for the settings of time-domain simulation,
fault start time is 0.1 s, simulation period is 2 s, and timestep is 0.05 s. Following the
above preconditions, 10,000 samples are generated, of which the ratios to the training set,
validation set, and test set are 80%, 10%, and 10%.
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Figure 2. The modified IEEE 39-bus system for case study.

The DBN structure from the input layer to the output layer is {93-40-20-10-5-4}, where
the elements stand for neuron quantity. Sigmoid is selected as the activation function. After
training the samples, the DBN is forwarded to be tested on out-of-sample sets (i.e., test set).
The scatter of estimates vs. actual values and error distribution is shown in Figure 3. The
coefficient of determination (R2) is 0.9814, and the mean square error is 5.84 × 10−4. As
shown in Figure 3b, the error distribution approximately obeys a normal distribution, and
the mean and standard deviation of the estimation error are 0 and 0.023. It can be found
that 95% of the samples are in the interval of [−0.042, 0.046] through statistics, and the error
with the 95% confidence level of the normal distribution is 0.004. Figure 3 demonstrates
that the proposed learning model can render accurate TSA and strongly generalizes.

Figure 3. The visualization of testing the trained learning model: (a) estimate vs. true; (b) error distribution.

To further verify the performance of DBN, comparisons against back propagation
neural network (BPNN), support vector regression (SVR), and regression tree (RT) are
carried out, and the outcomes are given in Table 2. Mean square error (MSE) and square
correlation coefficient (SCC) are used to evaluate the performance. You can see clearly that
the DBNs beat other learning methods; thus, it can be concluded that DBN is the best one
in TSA tasks.

Table 2. Accuracy comparison of each TSI surrogate model on test sets.

Indicator 2-Layer DBN 3-Layer DBN BPNN SVR RT

MSE/p.u. 0.0054 0.0019 0.0023 0.0346 0.0927
SCC 0.9480 0.9712 0.9627 0.9171 0.8814
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5.3. The Results of TTC Fast Calculation

In this section, the proposed method is testified and compared with other methods,
such as the TSC-OPF method [9], the sensitivity-based method [19], the repeated power
flow (RPF) method [20], and the direct data-driven method [21]. These methods are
summarized in Table 3. M1 is to directly incorporate the DAEs into the optimization
problem by adopting the implicit integration rule. M2 uses trajectory sensitivity to achieve
TTC calculation. M3 gets the TTC by gradually increasing the generator power base on the
initial state and repeatedly calculating the power flow until a certain constraint is about to
be violated. And, M5 applies NNs to learn the mapping between system state variables
and TTC values. Moreover, to manifest the superiority of our methods, we have advanced
experiments under single- and multi-contingency conditions, of which the outcomes are
respectively visualized in Figure 4a,b.

Table 3. Different methods and pre-contingencies for TTC calculation.

Methods TSCOPF The Sensitivity-Based
Method

The Repeated Power
Flow Method

TSCOPF with
DBN-Assisted

Symbol M1 M2 M3 M4

single contingency multi contingency

Line 1–39 1–39, 2–3, 3–18, 16–17

Figure 4. The results of TTC calculation under four different methods: (a) Single contingency;
(b) Multi contingencies.

Figure 4 shows the TTC values calculated by the applied methods under 100 unseen
scenarios. The samples are sorted according to the ascending order of the TTC value
calculated by M1 to facilitate viewing, and the histogram shows the error between the TTC
values calculated by M1 and M4. Taking Figure 4b as an example, the TTC error of M4 is
within the acceptable range of [0, 0.5 p.u.], and the average error is 0.1019 p.u. The TTC
average errors of M2 and M3 are 0.2308 p.u. and 0.3547 p.u., respectively. Obviously, the
TTC value calculated by M4 has the smallest error among several comparison methods.
It illustrates that the proposed learning-aided OPF based method can calculate the TTC
value more accurately than the RPF and sensitivity-based method. This is because M4,
like M1, is modeled based on TSCOPF, which can better describe the system state and
has better fidelity than M2 and M3. In addition, it can search the extreme operating point
more accurately.

Furthermore, to verify the accuracy of the proposed method, it is compared with the
direct data-driven approach (symbol as M5). M5 takes the TTC calculated by M1 as the
sample label. Then, it utilizes the DBN model to learn the implicit relationship between
the input feature X and the target feature YTTC and forms a mapping. Figure 5 shows the
comparison results of M4 and M5 when the TTC calculated by M1 is used as the reference
value. It can be found that M4 has a smaller average relative error, 0.1019 p.u., than M5,
which is 0.3297 p.u., in 100 test samples. It means the proposed method has better fidelity
than direct data-driven methods.
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Figure 5. The results of TTC calculation under four different methods: (a) M4 compared with M1;
(b) M5 compared with M1.

In addition, time-domain simulations are performed for each test sample to verify
that the operation obtained when calculating the TTC value satisfies the TSCs. The post
-fault transient trajectory of rotor angle differences between the individual generators is
recorded. The result of a typical sample is shown in Figure 6, where Figure 6a is the
transient trajectories after sample initial power flow calculation. Then, utilize the proposed
method to calculate the TTC of this sample, and a new operating condition, whose transient
trajectories are shown in Figure 6b, can be obtained. It can be observed that the curves
have apparent fluctuations. The angle difference between Gen34 (the generator on bus 34)
and Gen39 (the generator on bus 39) has the most significant change and is close to the set
stability threshold, 180 degrees. It means that the system is operating at its TS boundary
at this time. In addition, Figure 6b illustrates that DBN can accurately estimate TSI, and
the sensitivity of transient stability margin can help OPF find boundaries of the system.
It demonstrates that the learning-aided model can follow the TSCs effectively when it
calculates the TTC. Furthermore, the learning-aided model can help the TSCOPF accurately
find the most extreme operating condition.
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5.4. Efficiency Comparison

Figure 7 depicts solving time statistics, where the X-axis represents the number of faults
in pre-contingency, and the Y-axis is computation time. As shown in Figure 7, the runtime
of M1, M2, and M3 are significantly longer than that of M4 under single contingency
(i.e., one fault in pre-contingency). And, all algorithms consume more time to compute TTC
with more contingencies considered, except for M4. This is because M1, M2, and M3 all
need to calculate DAEs associated with TSCs in iterations, and the dimensions of DAEs are
higher as more contingencies are considered. However, M4 surrogates the time-consuming
part by learning-aided model, and reduces the computation time. The results claim that
the proposed method significantly outperforms other comparative methods with respect
to efficiency.
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Figure 7. Efficiency analysis.

6. Conclusions

Large-scale wind power penetration has increased the potential insecurity risk of inter-
area power exchange. Therefore, rapid and accurate security assessment for inter-corridors
is imperative. Towards this end, this paper proposes a learning-aided method for fast
TTC calculation. The TTC calculation is firstly modeled as transient stability constrained
optimal power flow. Then, to reduce the complexity of the TSCOPF model, DBN-based
learning-aided transient stability assessment is introduced to surrogate high-dimensional
and time-consuming time-domain constraints. In the end, the Jacobian and Hessian matrix
of the trained learning-aided model is derived; thereby, nonlinear programming is allowed
to solve the learning-aided TSCOPF model efficiently.

The result of the case study demonstrates that the learning-aided model can achieve
TSA with higher accuracy and generalization. Moreover, the learning-aided TSCOPF model
proposed in this paper can obtain more accurate TTC values than RPF, sensitivity-based,
and direct data-driven methods. This is because the proposed method can both take into
account the fidelity and efficiency of physics- and data-driven modeling by combining the
learning-aided model with the OPF. And compared with the heuristic search of RPF, the
OPF model can search the extreme operating point more accurately. On the other hand, due
to the use of the learning-aided model to surrogate the time-consuming TSA, it has higher
computational efficiency than other physics-driven methods, which means that it can be
applied online after sufficient offline training. Besides, the proposed method is not limited
to TTC-oriented research. Because of its high compatibility with other static or dynamic
models, it can be extended to other index calculations in the power system that require a
large amount of computation but require high efficiency. Other advanced machine learning
algorithms will be used to achieve better calculation performance in our future work. And,
it would also be meaningful to optimize and control the TTC.
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Appendix A
According to the chain rule,5Hs in (31) is:

∂Ψc(X)/∂xi = [dΨc(X)/dM(Dl − 1( . . . (M(D1(X))) . . . ))] × . . . × [dD1(X)/dX] × [dX/dxi]
= wl [dxM(Dl − 1( . . . (M(D1(X))) . . . )) × (wl − 1ei)],

(A1)

To simplify (A1), the following functions are defined:

wi
1 = w1ei (A2)

Al(X) = dxM(Dl( . . . (M(D1(X))) . . . )) × wl (A3)

∏l2
i = l1Ai(X) = Al1 × . . . × Al2, if l2 < l1 < l,

= Al2 × . . . × Al1, if l1 < l2 < l,
= 1, if l2 < l ≤ l1,
= Al1, if l1 = l2

(A4)

where dxM(Dl( . . . (X) . . . )) in (A3) can be derived from the following matrix formulation:

dxM(Dl( . . . (X) . . . )) = { [dDl_1( . . . (X) . . . )M(Dl
1( . . . (X) . . . )), 0, . . . , 0];

[0, dDl_2( . . . (X) . . . )M(Dl
2( . . . (X) . . . )), . . . , 0];

. . .
[0, 0, . . . , dDl_nl( . . . (X) . . . )M(Dl

nl( . . . (X) . . . ))]},

(A5)

Dl( . . . (X) . . . ) = [Dl
1( . . . (X) . . . ); . . . ; Dl

nl( . . . (X) . . . )] ∈ Rnl × 1,
Dl

k( . . . (X) . . . ) = wl
kM(Dl-1( . . . (X) . . . )) + bl

k (A6)

Using (A2)~(A4), the Jacobian matrix can be simplified to:

∂Γc/∂xi = wl[∏2
i = l − 1Ai(X)] × [dxM(D1(X)) × w1

i], (A7)

Similar to the derivation process of the Jacobian matrix, the Hessian matrix can be
obtained by the following formulations:

dxjAl(X) = d2
x,xjM(Dl( . . . (X) . . . )) × wl

= { [d2
x,xjM(Dl

1( . . . (X) . . . )), 0, . . . , 0];
[0, d2

x,xjM(Dl
2( . . . (X) . . . )), . . . , 0];

. . .
[0, 0, . . . , d2

x,xjM(Dl
nl( . . . (X) . . . ))] }

(A8)

d2
x,xjM(Dl

k( . . . (X) . . . )) = [d2M(Dl
k( . . . (X) . . . )) /d(Dl

k( . . . (X) . . . ))2] × wl ×
∏2

i = l − 1Ai(X) × [dxM(D1(X)) × w1
j],

(A9)

where, wl = w1
i if l = 1 in (A8) and (A9). And, defined (A10) as follows:

Λk = [∏l−1
i = k + 1Ai(X)] × dxjAk(X) × [∏1

i = k-1Ai(X)], if k ≥ 2,
= [∏l−1

i = k + 1Ai(X)] × dxjAk(X), if k = 1,
= dxjAk(X) × [∏1

i = k − 1Ai(X)], if k = l − 1
(A10)

Then, the Hessian matrix can be derived as (A11):

∂2Γc/(∂xi∂xj) = wl[Σ
l − 1

k = 1Λk] (A11)
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