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Abstract: To facilitate wind power integration for the electric power grid operated by the Inner
Mongolia Electric Power Corporation—a major electric power grid in China—a high-resolution
(of 2.7 km grid intervals) mesoscale ensemble prediction system was developed that forecasts
winds for 130 wind farms in the Inner Mongolia Autonomous Region. The ensemble system
contains 39 forecasting members that are divided into 3 groups; each group is composed of the
NCAR (National Center for Atmospheric Research) real-time four-dimensional data assimilation
and forecasting model (RTFDDA) with 13 physical perturbation members, but driven by the
forecasts of the GFS (Global Forecast System), GEM (Global Environmental Multiscale Model),
and GEOS (Goddard Earth Observing System), respectively. The hub-height wind predictions
of these three sub-ensemble groups at selected wind turbines across the region were verified
against the hub-height wind measurements. The forecast performance and variations with lead
time, wind regimes, and diurnal and regional changes were analyzed. The results show that
the GFS group outperformed the other two groups with respect to correlation coefficient and
mean absolute error. The GFS group had the most accurate forecasts in ~59% of sites, while
the GEOS and GEM groups only performed the best on 34% and 2% of occasions, respectively.
The wind forecasts were most accurate for wind speeds ranging from 3 to 12 m/s, but with
an overestimation for low speeds and an underestimation for high speeds. The GEOS-driven
members obtained the least bias error among the three groups. All members performed rather
accurately in daytime, but evidently overestimated the winds during nighttime. The GFS group
possessed the fewest diurnal errors, and the bias of the GEM group grew significantly during
nighttime. The wind speed forecast errors of all three ensemble members increased with the
forecast lead time, with the average absolute error increasing by ~0.3 m/s per day during the
first 72 h of forecasts.

Keywords: mesoscale ensemble system; wind power prediction; wind speed; diurnal variation;
global forecast downscaling

1. Introduction

Wind energy, with its vast availability, cleanliness, and renewability, is growing rapidly
in the energy share, and plays an increasingly important role in the electric energy sector [1].
However, the intermittent and volatile nature of wind speeds poses a great challenge to the
grid-connected transmission of wind power output, threatening the security of the grid
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system and sometimes leading to massive wind abandonment [2]. Reliable wind power
forecasting is urgently needed for timely and accurate dispatch of power resources [3,4].
Wind speed forecasting methods include statistical approaches, machine learning meth-
ods [5–11], and numerical weather prediction [12]. There have been many works on wind
prediction reported in the past two decades, especially over the last few years. However,
most of these works are on the refinement of statistical and AI approaches [13–18]; there
have been very few studies examining and analyzing the errors of numerical weather
models. As a matter of fact, for wind forecasts beyond ~1 h, numerical weather prediction
models become essential and fundamental. Improving the performance and capability of
numerical weather prediction models and machine learning post-processing for wind farm
weather prediction is therefore critical.

The performance of numerical weather models relies greatly on model resolutions [19]
and regional climates [20], topography [21], underlying land-surface and soil properties [20],
weather measurements [22] and data assimilation schemes for model initiation [23], as well
as the lateral boundary conditions for limited-area models [24]. For these reasons, many
studies and energy forecasting firms use an ensemble of global and regional NWP outputs
to reduce forecast errors [25,26].

There are three main error sources in numerical weather forecasting: uncertainties
in initial values [27], approximation of the dynamical and physical models [28], and the
intrinsic unpredictability of atmospheric motions [29]. Ensemble numerical weather pre-
diction methods [30,31] have been used to improve the accuracy and reliability of weather
forecasts through probabilistic forecasts. Probabilistic forecasts and uncertainty quantifi-
cation are beginning to take the place of single numerical forecasts in the wind energy
industry. An ensemble forecast system can simulate the impact of the uncertainties of
initial and boundary conditions derived from different global model forecasts, atmospheric
physical parameterization schemes, and data assimilation modules. Perturbation members
of a mesoscale ensemble forecast system include sub-grid energy stochastic perturbation
members, physical parameterization perturbation members, initial and boundary value
perturbation members, and some others. Analyzing the error characteristics of ensemble
forecast members is important for exploring the value of ensemble forecast outputs and
improving the ensemble forecast system.

With respect to model forecast verification, several researchers have explored
the effects of model physical processes on wind speed forecasting [32–36]. Different
physical parameterization schemes often present different forecast capabilities un-
der different meteorological conditions or regimes [24,37,38], different geographical
regions [39–42], and/or different topographic environments [43]. In responding to
atmospheric long- and short-wave radiative forcing, model forecast errors often exhibit
diurnal and seasonal variations [44–47]. Some other researchers focused on revising
model forecast results through post-processing by using statistical and machine learn-
ing methods [48]. However, the errors of the model initial and boundary conditions
derived from different global model background fields are often large [49,50], but very
little attention has been paid to this issue [51]. In fact, we could not find any report
investigating the impact of model initial and boundary conditions of the wind farm
wind forecasting based on a 2–4 km grid high-resolution ensemble numerical weather
prediction model.

The wind energy density in the Inner Mongolia Autonomous Region, China, is
outstanding—over 400 W/m2 in some regions [52]. In 2019, wind power generation in
Inner Mongolia was 66.6 billion kWh, accounting for ~16.4% of China’s total wind power
generation in the same period (China National Energy Administration). In response
to the demand for wind power integration in Inner Mongolia, the Inner Mongolia
Electric Power Company (IMEPC) has developed a mesoscale ensemble numerical
weather prediction system that is composed of 39 perturbed WRF (Weather Research
and Forecasting) forecast members. The system is constructed with multiple global
models of forcing, multiple physical parameterization schemes, and stochastic kinetic



Energies 2022, 15, 896 3 of 18

energy perturbations. The 39 forecast members contain three subgroups of 13 physical
perturbation members, driven by the forecasts of the GFS (Global Forecast System),
GEM (Global Environmental Multiscale Model), and GEOS (Goddard Earth Observing
System), respectively.

This paper evaluates the output of the IMEPC mesoscale ensemble prediction system,
focusing on its hub-height wind prediction for the wind farms distributed across the Inner
Mongolia Autonomous Region during the spring of 2020. The model performance of three
sub-ensemble groups driven by the forecasts of the GFS, GEOS, and GEM global models
was studied, and the variations in the forecast errors with forecast lead time, wind speed
regimes, diurnal forcing, and regional changes were analyzed. The findings of this study
provide guidance for the proper use of the ensemble prediction system at the wind farms,
and for the development of model forecast post-processing capabilities by the IMEPC. Our
results also support modelers to improve the ensemble model system by adjusting the
ensemble members according to the error properties of the ensemble members driven by
different global model forecasts.

The remainder of this paper is organized as follows: Section 2 describes the obser-
vations in the study area and the setup of the ensemble forecast system used for the
numerical experiments. Section 3 presents the results of the wind speed forecast error
analysis. Section 4 presents the conclusions from these analyses. Finally, Section 5 discusses
the limitations of the present work, and describes the outlook for the future.

2. Data and Meteorology
2.1. Ensemble Numerical Weather Prediction System

The IMEPC’s WRF-based ensemble weather forecasting system produces wind
power forecasts over 100 wind farms distributed across the Inner Mongolia Autonomous
Region. This system was jointly developed by the Inner Mongolia Meteorological
Bureau, the US National Center for Atmospheric Research (NCAR), and Nanjing Uni-
versity of Information Science and Technology (NUIST); it started real-time operational
forecasting in late 2019. The system uses the forecasts of the GEOS (USA), GEM
(Canada), and GFS (USA) to derive the initial and boundary conditions to drive the
WRF forecast members. The system is configured with 10 physical parameterization
schemes, including 9 boundary layer schemes and 1 radiation scheme, and 3 stochastic
kinetic energy backward feedback dynamical perturbation (SKEP) schemes, making
up the 13 perturbation members that are driven by initial and boundary conditions
derived from the global model forecasts of the GFS, GEM, and GEOS, respectively. The
system constitutes a total of 39 ensemble forecast members.

The details of the 13 WRF members are listed in Table 1. Each member runs with
the WRF real-time four-dimensional data assimilation system (WRF-RTFDDA) [23,53–55].
The operational ensemble forecast system runs with 3-hour data assimilation and forecast
cycles, and each cycle produces 72-hour forecasts at a temporal resolution of 15 min. The
system assimilates the observations of the hub-height wind speed (the wind turbine wind
speed) and meteorological tower weather observations of the wind farms in the region,
along with various conventional weather observations [56–58].

The ensemble model contains three forecast domains (Figure 1). Domain 2 and
Domain 3 cover the central and western plateau regions of the Inner Mongolia Au-
tonomous Region (40~45◦ N, 105~120◦ E), at 2.7 km grid intervals. Domains 2 and 3
are embedded in a coarser grid domain (Domain 1) with a grid size of 13.5 km. Most of
the wind farms studied in this paper are located in Domains 2 and 3, featuring complex
terrain including stratified high plains, stony hills, terraces, foothills, and inter-hill low-
lands. The wind farms are mostly built around four major mountain ranges, including
Langshan Mountain (LS), Seertengshan Mountain (SRTS), Ural Mountain (ULS), and
Daqingshan Mountain (DQS), along with fan sites located near the Yinshan Mountains
(YS), a low plain area to the south of the Hetao Plain (HTPY), and a high plain area
near the Xilin Gol League (XLGL) (Figure 1b).
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Table 1. Mesoscale ensemble prediction member names and parameterization scheme configuration.

Member Name Member Perturbations

CTRL YSU PBL [59]
BOU BouLac PBL [60]

MYNN2 MYNN 2.5 level TKE scheme [61]
MYJ Mellor–Yamada–Janjic TKE PBL scheme [62]
SHS Shin–Hong ‘scale-aware’ PBL scheme [63]

TEMF TEMF (Total Energy Mass Flux) scheme [64]
UNW UW boundary layer scheme from CAM5 [65]
GBM Grenier–Bretherton–McCaa scheme [66]
QNS Eddy-diffusivity mass flux, quasi-normal scale elimination PBL [67]

SKEBA Stochastic kinetic energy backscatter scheme A
SKEBB Stochastic kinetic energy backscatter scheme B
SKEBC Stochastic kinetic energy backscatter scheme C
RRMG Morrison Microphysics + Mellor–Yamada–Janjic PBL scheme

2.2. The Observations and Forecasts

Verification statistics of the ensemble forecasts were calculated based on 411 rep-
resentative wind turbine sites selected from 130 wind farms, with 1–4 wind turbine
sites per wind farm, depending on the wind farm’s size. The wind turbine sites are
mainly distributed in central Inner Mongolia (Figure 1b). The analysis period was
from 1 March to 15 April 2020. Wind speeds at the hub height of the wind turbines,
~50–80 m high from the ground, were retrieved from the SCADA (Supervisory Control
and Data Acquisition System) of the wind turbines and averaged to 15-minute win-
dows. To maintain the data continuity, for periods with less than an hour of missing
data, a linear interpolation was used to fill in the gaps. For computing the verification
statistics, forecasts of the ensemble numerical weather prediction were interpolated
to the location and hub height of the selected turbines through a bilinear interpola-
tion method, forming observation and forecast-matched pairs for direct comparison.
With 411 wind turbines, 45 days, 72 h of forecasts per day at 15 min intervals, and
39 ensemble members, there were a total of 207,735,840 data samples processed in the
verification computation.

To analyze the regional differences in the model forecasts, the wind farms were
divided into seven sub-areas according to the distribution of wind farm clusters and
topographic characteristics. These areas are marked in the cyan boxes in Figure 2. The
wind farm sites in Area 1 are located on the northern slope of Langshan Mountain. The
sites in Area 2 are mostly concentrated between Langshan Mountain and Seertengshan
Mountain. Area 3 is over the southern part of the Loop Plain to the north of the
mountain. Area 4 is between Seertengshan Mountain and Ural Mountain, and some of
the turbine sites are close to the local mountain peaks. Area 5 is in the eastern part of
Ural Mountain, with higher elevation. Area 6 is located in the relatively more complex
area of Daqingshan Mountain to the west of Ural Mountain, with lower elevation, and
the turbine sites are more dispersed. Finally, Area 7 is characterized by a high plain
area with a flattering topography near the Xilin Gol League. The numbers of stations
in these sub-areas are 22, 61, 13, 131, 72, 72, and 40, respectively.

2.3. Evaluation Metrics

The statistical verification of the ensemble forecasts includes calculation of systematic
error (BIAS), mean absolute error (MAE), and correlation coefficient (CC) for all selected
wind turbine sites and the wind turbine sites in each sub-area. The ensemble wind speed
forecast performance is assessed by examining both individual metrics and their combina-
tions. The three statistical variables are calculated based on the hub-height observed (Xo)
and forecast (Xf) 15-minute mean wind speed pairs.
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Figure 1. (a) Schematic diagram of the ensemble prediction domains for wind farms in the Inner
Mongolia Autonomous Region. The horizontal resolution of the coarse-grid simulation domain is
13.5 km, and the horizontal resolution of the two-nested fine-grid simulation domain is 2.7 km.
The colored background is the terrain. (b) Topography (color filled map) and distribution of test
stations (black dots) in the study area. The black line in (b) marks the provincial boundary of the
Inner Mongolia Autonomous Region, while Areas 1–7 mark the seven subregions enclosed by
cyan-colored rectangles.
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3. Statistical Verification Results
3.1. Characteristics of the Winds in the Region

Figure 2 shows the diurnal variation in wind speed observations averaged at all wind
turbine sites over the study area, as well as those in the seven sub-areas given in Figure 1.
The wind speed over the whole region (Figure 2) exhibits evident diurnal variations, with
errors gradually increasing during daytime (from 00:00 to 09:00 UTC, i.e., 08:00–17:00 LST).
The median wind speed maximizes between 09:00 UTC and 10:00 UTC (~6.8 m/s), and
then starts to decrease in the nighttime. The 25 and 75% sub-quartile wind speeds are
4.2 and 8.2 m/s, respectively; ~5% of the wind speeds are greater than 12 m/s, and ~5% of
the wind speeds are less than 2 m/s.

Although the median wind speeds in all seven sub-areas are close (~6 m/s), the diurnal
variations in the wind speeds in these regions are quite large. Area 1 possesses a high peak



Energies 2022, 15, 896 7 of 18

wind speed at 02:00 UTC and 15:00 UTC, and is also prone to greater wind speeds during
the day–night transition. The median wind speed in Area 2 tends to slowly increase during
daytime, with two local maxima at 03:00 UTC and 09:00 UTC, respectively. The wind speed
in Area 3 is higher at night, with a peak median wind speed at 18:00 UTC.

Wind farms in Areas 4, 5, and 6 are in complex mountainous terrain, where winds
increase until 09:00–10:00 UTC during the daytime, and show a decreasing trend at night.
Finally, Area 7 is in a high plain region, and the diurnal variation in its wind speed is
relatively flat, with a small peak in the afternoon, a small trough in the evening, and then a
gradual rebound at night.

3.2. Overall Performance of the Wind Forecasts

To compare the forecasts of the ensemble members driven by the initial and boundary
conditions derived from the three global model forecasts (GFS, GEOS, and GEM), we first
calculated the error metrics of each ensemble member, and then averaged the errors of
the 13 members within each subgroup. The average error for each sub-group is computed
as follows:

xm =
1
13

13

∑
i=1

xi (1)

where xi (m/s) represents the error metrics of the forecast of the ith ensemble member.
With verification done for 0–24 h forecasts for the 45 days for all 411 wind turbines, the
total number of data samples used in computing the statistical verification in each cell of
the Table 2 was 23,081,760.

Table 2. Statistical verification of all stations for the GFS, GEOS, and GEM groups (45 days).

GEOS Group GEM Group GFS Group
Mean Max Median Min Mean Max Median Min Mean Max Median Min

CC 0.68 0.66 0.62 0.58 0.64 0.63 0.58 0.53 0.70 0.67 0.65 0.61
BIAS (m/s) +0.56 +0.75 +0.60 −0.05 +0.76 +0.91 +0.79 +0.15 +0.67 +0.91 +0.69 +0.04
MAE (m/s) 1.84 2.13 2.06 1.86 1.99 2.32 2.15 1.99 1.81 2.10 2.03 1.80

The overall performance of the three groups of global model forecast members, along
with the CC, BIAS, and MAE of the 0–24-hour wind turbine hub-height wind forecasts
of all members of the three groups, are calculated and shown in the ‘mean’ column in
Table 2. The CC and MAE of the wind forecasts of the GFS group are better than those
of the GEOS group, and both are better than those of the GEM group. In contrast, the
BIAS in the GEOS group is smaller than that in the GFS group. The GEM group has the
worst scores for all three metrics. The minimum, maximum, and median of correlation
coefficients, mean errors, and mean absolute errors of 13 member predictions (13 outcomes
for each background field) versus observations are shown in the ‘min’, ‘max’, and ‘median’
columns, respectively, in Table 2. Ensemble average forecasts outperformed the best
members. Overall, the GFS group was better than GEOS, and GEM was the worst, which is
statistically significant (with all at a confidence level above 98%).

To assess the overall performance of the members driven by the three global model
forecasts, the statistical metrics of the three group ensemble forecasts were ranked from
the best to the worst for each wind turbine site. The number of stations that performed the
best and worst by each ensemble group was counted, as shown in Table 3, along with their
proportion to the total turbine sites. The performance of the three ensemble forecast groups
varies with the geographic setting of the turbines, as well as the local regional weather and
climate characteristics. The statistical verification metrics were calculated separately for
each site.
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Table 3. Ranking statistics of wind speed forecast errors for the three ensemble forecast groups driven
by the GFS, GEOS, and GEM model forecasts.

GEOS Group GEM Group GFS Group

NBPS */R * NWPS */R NBPS/R NWPS/R NBPS/R NWPS/R
CC 141/34.3% 81/19.7% 8/1.9% 318/77.4% 262/63.7% 12/2.9%

BIAS 315/76.6% 28/6.8% 27/6.6% 315/76.6% 69/16.8% 68/16.5%
MAE 152/37.0% 47/11.4% 9/2.2% 355/86.4% 241/58.6% 9/2.2%

* NBPS: # of best performing stations; NWPS: # of worst performing stations; R: ratio with reference to the total.

Among the three forecast groups, the GFS groups performed the best at ~59–64% of
the total sites in terms of CC and MAE, the GEOS group achieved ~34–37%, and the GEM
group performed the best for the remaining ~2%. Conversely, from the perspective of the
worst performance of the forecasts, the GEM group underperformed at ~77–86% of sites,
the GEOS group at ~11–20%, and the GFS group at only ~2–3%. It is interesting to point
out that the GEOS group performed the best (~77% of sites) in terms of BIAS, and had
relatively more cases with larger positive and negative deviations.

Figure 3 shows the distribution of the turbine sites colored for the predominant best
performing ensemble group in terms of the mean CC, BIAS, and MAE among the three
ensemble forecast member groups driven by the GFS, GEOS, and GEM global model
forecasts. In general, the sites that achieved the best CC and the best MAE coincide.
Nevertheless, for BIAS, the GEOS group performed the best at the most turbine sites.
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3.3. Variations of Forecast Errors with Wind Regimes

Wind power generation is proportional to the cubic wind speed [68]. Therefore, it is
important to evaluate the model performance in different ranges of wind speeds. Herein,
the wind speed is divided into bins of 3 m/s from 0 to 21 m/s, and the forecast errors for
each wind speed bin are computed and shown in Figure 4.
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The winds in the region are mostly 3–12 m/s (Figure 4). The wind forecast bias
of all three groups is similar. The wind forecast bias is negatively correlated with the
observed wind speeds, with a nearly linear relationship. For the weak wind conditions
of 0–3 m/s, the wind speed is overestimated by 2 m/s. In the bin of 3–9 m/s, the
bias gradually decreases to 0, and then the negative bias gradually increases with the
wind speed. For winds over 15 m/s, the negative bias reaches 4–5 m/s. The MAE
of the wind forecast of the three groups is around 2 m/s in the wind speed range of
3–12 m/s. The overestimation of wind speed in the low-wind-speed range (0–3 m/s) and
the underestimation of wind speed in the high-wind-speed range lead to larger MAE for
the weak and strong wind ranges.

For the winds in the range of 0–6 m/s, the forecast errors of the GFS and GEOS groups
are basically the same, and both are better than the GEM group. For strong winds over
12 m/s, the forecast errors of the GEOS and GEM groups are very similar, and worse than
the GFS group. The overestimation of wind speeds in the low-wind-speed range and the
underestimation of wind speeds in the high-wind-speed range are smaller for the GFS
group than for the other two groups.

3.4. Diurnal Variation in Wind Forecast Errors

Figure 5 presents the diurnal variation of the mean observations, and the forecasts
and MAE of the wind speed for the ensemble groups driven by the GFS, GEOS, and GEM
forecasts. During daytime (00:00–09:00 UTC), the mean wind speed increases from 6 m/s to
7 m/s from morning to evening. Overall, the bias of the wind forecasts of all three groups
is small. The GEOS group shows a bias close to zero, the GEM group has a weak negative
deviation, and the GFS group has a bias that gradually increases from a negative deviation
of ~0.1 m/s to a positive deviation of 0.2 m/s.
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At ~11:00 UTC, the wind forecasts of all three ensemble groups experience a sharp
increase toward a positive deviation. Within half an hour, the bias of the wind forecasts
of the GEOS, GFS, and GEM groups increases to ~0.9, 1.1, and 1.3 m/s, respectively.
Subsequently, at night, the mean wind speed gradually weakens and the mean bias of
the wind speed forecasting of the GFS group remains roughly unchanged, but the mean
deviation in the GEOS and GEM groups continues to increase. By 23:00 UTC, the positive
wind forecast biases of all three groups decrease rapidly as the boundary layer starts to
grow after sunrise.

The GEM ensemble group possesses the largest MAE of the wind forecasts during
daytime, followed by the GEOS group, while the MAE of the GFS group is the lowest. After
a brief increase, MAE stabilizes at ~1.5 m/s between 03:00 and 11:00 UTC. After sunset
(11:00–13:00 UTC), the MAE of all three groups increases to ~2.2 m/s. After nightfall, the
MAE of the wind speed forecast of the GEM group continues to increase significantly, to
2.7 m/s, while that of the GEOS and GFS groups only increases to 2.3 m/s. Finally, after
sunrise at 22:00 UTC, the MAE of all three groups decreases rapidly. Overall, the MAE of
the GFS group was smaller than that of the other two groups, and the MAE of the GEM
group was the largest for both nighttime and daytime. The MAE of the GEOS group during
nighttime is similar to that of the GFS group.

To further compare the distribution of the wind forecast errors of the three en-
semble groups and their diurnal variations, the forecast deviations of each ensem-
ble member were analyzed for four day-periods: daytime (00:00–10:00 UTC), sunset
(10:00–12:00 UTC), nighttime (12:00–22:00 UTC), and sunrise (22:00–00:00 UTC); the re-
sults are summarized in Figure 6.

The error distributions of the wind forecasts of all three groups are quite wide. The
forecast members of the GFS group have relatively smaller variance (i.e., smaller dispersion)
than the other two groups. In contrast, the forecast members of the GEM group have
relatively larger variance and median bias. During the daytime and sunset periods, the
error distributions of the three ensemble groups are relatively similar, and the numbers of
samples with positive and negative deviations are close. However, during the night and
sunrise phases, most of the model forecasts in all groups overestimate the wind speed, and
the positive deviations of the GEM group are significantly larger than those of the GFS and
GEOS groups.
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3.5. Forecast Errors in Seven Regions

The previous analysis indicates that the ensemble members driven by the three global
model forecasts perform differently at different sites (Figure 3). To further investigate
the regional differences in these ensemble groups, the wind farms in the study area were
divided into seven sub-areas, according to geographical location, from west to east (see
Figure 1). As shown in Figure 1, the wind farms are mainly built along the narrow
mountain ridges that span the Inner Mongolia region. Based on the topography and wind
farm distribution in the seven areas, they can be divided into four main types:

(a) The wind farms located on the northern slope of a mountain, with another mountain
tens of kilometers to its northwest (Areas 1 and 3);

(b) The wind farms located on valley passes or leeward slopes of mountains. (Areas 2, 4,
and 5);

(c) The wind farms located over relatively low terrain (Area 6);
(d) The wind farms located over flat terrain away from significant mountains (Area 7).

Figure 7 demonstrates that (1) the diurnal variation in the average wind speed and
the forecast bias of the three ensemble groups in the four representative areas are quite
different, (2) the trend of the wind speed forecast bias of the three ensemble groups is
consistent, and (3) the average bias of the wind speed forecasting of all three ensemble
groups is negatively correlated with the magnitude of the wind speed, i.e., the higher the
wind speed, the smaller the bias.

Area 1 (Figure 7) is located on the north slope of a mountain. The wind in this region
displays a very complex diurnal evolution, and the bias of the wind forecasts of all three
ensemble groups presents similar, negatively correlated evolution of the mean wind speed.
Among the three ensemble groups, the GEOS group has the smallest bias in the daytime
and the largest late at night. The GEM group possesses the largest bias during most times,
except for a 2-hour period around 18:00 UTC.
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Area 3 (Figure 7) is on the southern slope of the Hetao Plain, with a relatively low
altitude. This area is affected by the prevailing westerly and northwesterly winds. Blocked
by the Langshan Mountain tens of kilometers away to the northwest, the wind speed is
smaller during the daytime and higher at nighttime compared to other areas, and the area
is prone to strong winds. The nighttime wind speeds in this area gradually increase from
6.1 m/s at sunset to 7.1 m/s before sunrise, and a peak occurs at night (18:00 UTC). The
bias of the wind speed forecasting of the three ensemble groups is small during daytime, at
close to 0 for the GFS group, and with slight negative bias for the GEOS and GEM groups.
In the evening, with the adjustment with the atmospheric boundary layer, the wind speed
forecasts of the three ensemble groups grow rapidly to positive bias, reaching a maximum
at ~13:00 UTC, and then gradually decreasing. The wind forecast biases of the GFS and
GEOS groups are close, but the forecast bias of the GEM group has a much larger amplitude
of diurnal variations, with a positive bias 0.3–0.4 m/s larger than that of the GFS group at
night. It should be noted that the CC of the sites in Areas 1 and 3 is high (0.7~0.85).
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The diurnal variations in the average wind speed and the wind forecast verification
in Areas 2, 4, 5, and 6 are relatively similar. Unlike Area 3, the wind speed in these areas
is characterized by high wind speeds during daytime, gradually strengthening after
sunrise, reaching a peak around 9:00 UTC, and then decreasing to a minimum in the
early morning. The bias of the wind speed forecasting of the three ensemble groups
exhibits a very similar diurnal trend, with very little bias during daytime and a stable
positive deviation of ~1.4 m/s at night. The GEOS group has a higher percentage of
superior forecasts in Areas 2 and 4, mainly in the middle of the pass and on the northern
slopes of the mountains in Area 4. The GFS group dominates better forecasts on the
high slopes. The western part of Area 6, which is on the eastern part of the mountain
peak, is a leeward slope where the forecast errors—mainly with negative bias—are
relatively larger.

Area 7 (Figure 7) is a high plain characterized by flat terrain. The wind speed is
characterized by a peak wind speed in the afternoon (08:00 UTC) and a shallow trough in
the evening at 13:00 UTC. The wind speed forecasts of the three ensemble groups possess
an obvious positive bias, except for the enhanced wind speed period in the afternoon
(06:00–09:00 UTC), when the bias is smaller. The biases of the wind speed forecasts of the
GFS and GEOS groups in this area are generally close to one another throughout the day, at
~0.5 m/s during daytime and close to 1.5 m/s at night. The GEM group underestimates the
wind speed during daytime and overestimates the wind speed during nighttime, both of
which errors are significantly larger than those of the GFS and GEOS groups. On average,
the GFS group performs the best in this area, with a high CC of ~0.75.

3.6. Growth of Forecast Errors with Lead Time

The 0–72 h forecasts of the ensemble groups driven by the GFS, GEOS, and GEM
were examined to analyze the growth of the wind forecast errors with the forecast length
(Figure 8). The MAE of the wind speed forecasts of the three ensemble member groups
increases with the forecast length at a rate of ~0.4 m/s per day for the 3 days (Figure 8a).
The MAEs of the wind speed forecasts of the GFS and GEOS groups are rather close to one
another, while the GFS group has a slight advantage. The wind speed errors of the GEM
group grow faster at nighttime, resulting in MAE of 0.4 m/s and 0.6 m/s more than the
other two groups on the first and second days, respectively.
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Comparing Figure 8a,b, we can see that the large MAE of the wind forecasts at night
was mainly due to the systematic overestimation of the nighttime wind speeds by the
model. It is interesting to note that although the MAE of wind forecasts of the GFS and
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GEOS groups is relatively close, the bias of the wind speed forecasts of the GEOS group
is significantly better than that of the GFS group. Figure 8 shows more clearly that the
mean wind forecast error of the GEM group has a large diurnal variation, with a large
overestimation of positive wind bias in the nighttime and negative bias in the daytime.

4. Summary and Conclusions

In this paper, statistical verification of a mesoscale ensemble numerical weather pre-
diction system was conducted for hub-height wind prediction at 411 wind turbines rep-
resenting ~130 wind farms. The ensemble system contains 39 forecast members, and is
divided into 3 groups driven by the US GFS and GEOS and the Canadian GEM global
weather model forecasts. Each group contains the same set of 13 physical perturbations.
The verification period was from 1 March to 15 April 2020. This paper analyzes the error
characteristics of the mean wind forecasts of the three ensemble groups and compares their
performance. The error statistics (CC, BIAS, and MAE) of the wind forecasts—including
the diurnal variability, differences in seven geographical regions, dependence on wind
speed regimes, and growth by forecast time—are analyzed. The main conclusions of this
study are as follows.

(1) Among the ensemble groups driven by the GFS, GEOS, and GEM global weather
model forecasts, the GFS group significantly outperformed the other two groups
with respect to the CC and MAE of the wind forecasts, with 59–64% of the turbines
performing best. The GEM group was poorer overall, with only 2% of turbines
achieving the best prediction. The wind forecast MAE of the GEOS group was similar
to that of the GFS group, but the GEOS group tended to perform better in terms of
BIAS. In the GEOS group, there were some larger positive and negative biases that
offset one another, resulting in a smaller overall bias;

(2) All three ensemble groups overestimated the low wind speed (0–3 m/s) and underesti-
mated the high wind speed. All three groups had better forecasts for the wind speeds
ranging from 3 to 12 m/s, and the errors of the GFS and GEOS groups were similar.
For wind speeds greater than 12 m/s, the GFS group outperformed the GEOS group,
and the GEM group had the largest error. The average deviation of the wind forecasts
from the observations increased approximately linearly with the magnitude of wind
speeds, reaching more than −4 m/s for the cases of strong winds over 15 m/s;

(3) The wind speed forecasts of all three ensemble groups exhibited similar diurnal
variation in each of the seven subregions. The wind forecast bias was generally small
during daytime but overestimated by 1–1.5 m/s at night. The GFS group had the best
performance, the GEOS group was slightly worse, and the GEM group significantly
underestimated the wind speed during daytime. The GEOS group had more accurate
wind speed forecasts than the GFS group in nighttime in several complex terrain areas;

(4) The errors of the wind forecasts of the three ensemble groups increased with forecast
lead time, with a growth rate of ~0.3 m/s for the 3-day forecast period. The nighttime
MAE was 0.6–0.5 m/s higher than that in the daytime. The MAEs of wind forecasts of
the GFS and GEOS groups were relatively close to one another, and the GFS group
had a slight advantage. The wind speed forecast errors of the GEM group grew much
faster at night, and its biases were ~0.4–0.6 m/s larger than those of the other two
groups. The large MAE of the GEM group wind forecast during nighttime was mainly
due to the systematic overestimation of wind speed at night;

(5) Based on the results of this study, the ensemble outputs should first be processed to
remove the bias of the three subgroups separately before they are combined for deriv-
ing probabilistic wind power forecast products. The model post-processing should be
done for each region, as best as possible, for each wind turbine site independently, in
order to deal with the unique forecast error properties of the ensembles in different
regions. Model developers should devote their attention to mitigating the trend of the
wind forecast bias growth with wind speeds.
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5. Discussion

It should be noted that the performance of numerical weather models is highly
reliant on model resolution [18], regional climate [19], topography [20], underlying
land-surface and soil properties [19], weather measurements [21] and data assimilation
schemes for model initiation [23], as well as the lateral boundary conditions for limited-
area models [24]. The ensemble forecasts overestimate wind speeds. Similar results have
also been reported in several previous studies using the WRF model over different global
regions [24,36,38]. Although several studies have tried to identify the physical reasons
for this, they have not reached a consensus on the issue. From the dynamical point of
view, the height and roughness of the subsurface may not be sufficiently considered in
the WRF model [69,70], and from the thermodynamic point of view, the WRF model
may misestimate the cloudiness, making it difficult to predict the long- and short-
wave radiation accurately, and resulting in the misestimation of near-surface wind
speed [71–73]. Our results show that, driven by different global model forecasts, the
BIAS properties of the WRF forecasts differ, but the overall BIAS trends are the same for
all subregions in the studied domain.

This study focused on the wind forecast error characteristics of the Inner Mongolia
mesoscale ensemble forecasting system with respect to the impact of the ensemble members
driven by different global numerical weather prediction model forecasts. Our findings
provide a basis for developing a statistical post-processing of the ensemble forecasts to
improve wind and power forecasting for the wind farms, and for further improvement of
the forecast capability of the WRF models in the future.

However, the present study was based on only 45 days of wind prediction data in
the spring of 2020, making it insufficient to describe the year-round forecast error pattern.
We are collecting more data to expand this work to a full-year period, and studying the
seasonal variation patterns of wind forecast error statistics. Furthermore, this ensemble
forecast system contains 10 perturbed members of the varying atmospheric boundary
layer parameterization scheme. We are currently analyzing and comparing the error
characteristics of the wind forecasts using these different atmospheric boundary layer
parameterization schemes; the results will be reported in a separate paper.
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