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Abstract: Various industrial operations involve frequent heating and cooling of electrical systems. In
such circumstances, the development of relevant thermal devices is of extreme importance. During
the development of thermal devices, the second law of thermodynamics plays an important role by
means of entropy generation. Entropy generation should be reduced significantly for the efficient
performance of the devices. The current paper reports an analytical study on micropolar fluid
with entropy generation over a stretching surface. The influence of various physical parameters on
velocity profile, microrotation profile, and temperature profile is investigated graphically. The impact
of thermal radiation, porous medium, magnetic field, and viscous dissipation are also analyzed.
Moreover, entropy generation and Bejan number are also illustrated graphically. Furthermore, the
governing equations are solved by using HAM and code in MATHEMATICA software. It is concluded
from this study that velocity and micro-rotation profile are reduced for higher values of magnetic and
vortex viscosity parameter, respectively. For larger values of Eckert number and thermal radiation
parameters, Bejan number and entropy generation are increased, respectively. These findings are
useful in petroleum industries and engineering designs.

Keywords: entropy generation; magnetic field; porous medium; viscous dissipation; mixed convection

1. Introduction

In recent decades, the study of Newtonian fluids has not been considered adequate
to specify the flow properties such as coal slurries, polymeric fluids, and mine tailings,
and these properties are expressed in non-Newtonian fluid flow model. The application
of non-Newtonian fluid in industrial processes are extensive. Micropolar fluid is also
one of the important kinds of non-Newtonian fluid. Eringen [1] was the first scientist to
investigate certain microscopic effects arising from the local structure and micro-rotations
of fluid elements. Eringen stated that due to the micro-rotation of the fluid particles and
their stress tensors in micropolar fluids, there are additional terms. Consequently, they are
viewed as the non-Newtonian fluids [2]. The micropolar fluids precisely replicate the flow
properties of geomorphic sediments, colloidal suspensions, polymeric additives, liquid
crystals, lubricants, hematological suspensions, etc. Several studies have been carried out
related to micropolar fluid. For example, Abbas et al. [3] studied the non-orthogonal stagna-
tion point flow towards a stretching sheet. They obtained the solution of coupled ordinary
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differential equation by using a well-known analytical technique of Homotopy Perturba-
tion Method (HPM) and obtained the results graphically and numerically. Su, Jingrui [4]
discussed the weak solution for micropolar fluid with compressible flow. He established
the global existence of the weak solution. Ratchagar, Nirmala P., and S. Seyalmurugan [5]
examined the horizontal micropolar fluid with Sorat effect. They took Brinkman porous
media parameter in this study and calculated the exact solution. A few more references
about micropolar fluid can be viewed in the available reference [6–15].

In 1939, Hartmann [16] solved the exact solution of magneto hydrodynamics (MHD)
equations and stated that MHD deals with the stream of fluids having non-negligible elec-
trical conductivity which interact with a magnetic field. MHD has numerous applications,
particularly, power generator, MHD accelerator, and fusion research. Some researchers stud-
ied the effect of magnetic field on unsteady free convective micropolar fluid flow between
vertical walls, etc. M. M. Khader et al. [17] analyzed the effect of non-uniform heat source
sink and thermal radiation on MHD unsteady flow of micropolar fluid. They transformed
the partial differential equation into an ordinary differential equation and solved it using
a predictor-corrector method. They plotted the graphs of velocity, microrotation profile,
and skin friction. Ram Prakash Sharma et al. [18] used a numerical technique to solve the
radiative heat energy and thermophoretic heat energy on MHD unsteady micropolar fluid.
They discussed the behavior on the characterization of parameters on flow phenomena.
B. Shankar Goud [19] examined the heat generation and absorption influence on MHD
unsteady micropolar fluid flow through porous medium in the presence of variable suction
and injection. Some more investigations related to MHD micropolar fluid can be found
through studies [20–23] and many therein.

Moreover, the combination of free convections and forced is called mixed convection.
Such flows have huge demands in several industrial processes and engineering in nature,
for instance, electronic devices that are being cooled by fans, solar receivers uncovered to
wind currents, transmission due to different densities along the vertical path in a lake owing
to cyclic changes, flows in the ocean and in the airspace, atmospheric flow at different
temperature, and many others. The significance feature of mixed convection is buoyancy
force which is caused by differing temperature and density. Mathematically, the highly
coupled mixed convections are described by the energy and momentum equations. Patel
R. Harshad [24] examined the mixed convection MHD flow of micropolar fluid in porous
media towards a nonlinear stretching sheet. They analyzed the properties of heat and
mass transfer with thermophoresis, Brownian motion, chemical reaction, and nonlinear
thermal radiation. In another investigation, Govardhan, K. et al. [25] presented the effect of
MHD and thermal radiation on mixed convection micropolar fluid towards a stretching
sheet. In this investigation, they assumed the stretching velocity linearly with the distance
along the sheet. Two-dimensional mixed convection stagnation point micropolar fluid flow
towards a permeable sheet has been discussed by Bhattacharyya, K. and S. Shafie [26]. They
concluded that the boundary layer thickness becomes thicker and thicker with increases in
shrinking parameter.

Most of the energy-related applications and production of thermal and engineering
devices have great concern of irreversible loss of heat. The devices which are facing this
issue are the cooling of modern electronic devices, geothermal energy systems, and solar
power collectors. It is a challenging task to minimize the irreversible losses of heat that
lead to increase entropy generation. The second law of thermodynamics is used to analyze
the entropy generation because it is utilized to measure the importance of irreversibility
connected to the friction, heat transfer, and thermal system. Several studies have been done
related to entropy generation by various authors [27–31]. Recently, entropy generation
with micropolar fluid has become of great interest in the field of petroleum industries, heat
transfer, and thermal design. For example, magnetic field effects of entropy generation of
micropolar fluid in a rectangular conduit has been analyzed by Yadav, Pramod Kumar, and
Ankit Kumar [32]. These authors used momentum equation and energy equation to obtain
an entropy generation number and illustrated the impact of hydrodynamics and thermal
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parameters on entropy generation through graphs. In another article related to entropy
generation, Fatunmbi, E. O., and A. Adeniyan [33] developed entropy generation using
Joule heating, thermal radiation, and viscous dissipation. In their findings, it is mentioned
that the Prandtl number and Eckert number enhance entropy generation while with the
increment in these two parameters, there is dominance in viscous and Ohmic heating
irreversibility over heat transfer.

Keeping in view the above-mentioned studies, no analysis has been conducted re-
lated to entropy generation in a mixed convection micropolar fluid. Although Zaib, A.,
et al. [34] studied the optimization of entropy generation of micropolar fluid with convec-
tive magnetite Ferro particle in a vertical plane, much more attention is needed in this area.
Therefore, the current study addresses the entropy generation model of mixed convection
MHD micropolar fluid. The main objective of the present study is to investigate the char-
acteristics of magnetized micropolar fluid, heat transfer, and entropy generation. These
investigations will be greatly beneficial in industrial applications, thermal design, and
many other engineering sectors. The nonlinear coupled partial differential equation was
transformed into ordinary differential equations and they were solved using the Homotopy
Analysis Method [35–37]. The graphical and numerical results were analyzed and the
conclusion points also shared in this article.

2. Mathematical Modeling

The present research reports an analytical study on micropolar fluid with entropy
generation over stretching surface. The strength of uniform magnetic field B0 is applied
perpendicular to the surface. The system of Cartesian coordinated is taken in such a way
that x-axis is in the direction of stretching sheet with stretching velocity uw = ax and y-axis
is normal to the stretching surface. The physical geometry of the modeled problem is
shown in Figure 1. Furthermore, the governing equations of micropolar fluid [3,38] with
suitable boundary conditions are expressed as:

Figure 1. Physical flow diagram.
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In the above equations, different parameters are represented as (u) and (v) are com-
ponents of velocity in (x) and (y) direction, kinematic viscosity (ν), vortex viscosity (K),
magnetic field B0 fluid density (ρ), permeability of porous medium (k1), spin gradient
viscosity

(
γ = (µ + K

2 )j
)

, microinertia per unit mass (j), molecular thermal diffusivity
(α), specific heat (Cp), electrical conductivity (σ), Stefan Boltzmann constant (σ∗), mean
absorption coefficient (k◦), constant characterizing the mainstream flow (a), temperature
of fluid (T), surface temperature (Tw), ambient temperature (T∞), and angular velocity or
microrotation velocity (N).

The incompressibility condition Equation (1) is automatically satisfied while Equa-
tions (2)–(6) have the following dimensionless forms:

f f ′′ − f ′2 + (1 + Γ) f
′′′
+ Γg′ − Ha2 f ′ − K∗ f ′ + λ1θ = 0,

}
(7)
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4
3

Rd
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(9)
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(10)

Non-dimensional parameters which are used in above equations are denoted and math-
ematically defined within brackets such as Vortex viscosity constant

(
Γ = K

µ

)
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(

H2
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σ
ρa

)
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)
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∞
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)
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(
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2

)
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g1βT (Tw−T∞)

a2x

)
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(
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ν

)
.
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3. Investigation of Entropy Generation

In the modern age, most of researchers’ and engineering’s focus is on finding a
technique that can control the destruction of fruitful energy. Entropy is one of the novel
techniques that can be used to control wastage in actual performance of the system. In this
research, entropy can be generated through the friction of fluid, mass, and heat transfer.
Thus, result of volumetric entropy generation rate for micropolar fluid is given as:

Egen = Ea + Eb + Ec + Ed,
}

(11)

where

Ea =
K

T2
∞

(
∂T
∂y

)2(
1 +

16σ∗T3
∞

3k∗k

)
,

}
(12)

Eb =
2k
T∞

(
N2 + N

∂u
∂y

)
,
}

(13)

Ec =

[
σB2

Ou2

T∞

]
,

}
(14)

Ed =

[
ν

T∞k1
u2
]

,
}

(15)

The dimensionless entropy generation characteristics rate can be defined as

Es =
k(Tw − T∞)2

T2
∞x2 ,

}
(16)

By using entropy generation characteristics rate (E1), the dimensionless form of en-
tropy generation of Equation (13) can be written as

EG =
Egen

ES
= Rex

(
1 +

4
3

Rd
)

θ2 2BrRexΓ
δ

(
g2 + g f

)
+

BrRex

δ
Ha2 f 2 +

BrRex

δ
K∗ f ′2 (17)

and

E1 = Rex

(
1 +

4
3

Rd
)

θ′2 (18)

then Bejan number (Be) can be defined as the ratio of entropy generation due to heat
transfer (E1) to the total entropy generation (EG). Bejan number can be expressed as.

Be =
Entropy generation due to heat transfer

Total entropy generation
(19)

Be =
E1

EG
(20)

Dimensionless parameters which are used in above equation are described as linear

thermal radiation parameter
(

Rd = 4σ∗T3
∞

3k∗k

)
, Reynold number

(
Re = ax2

ν

)
, Brinkman num-

ber, temperature difference parameter
(

δ = Tw−T∞
T∞

)
, and magnetic parameter

(
H2

a =
σB2

O l
ρa

)
.

4. Solution of Problem

To obtain series solution through Homotopy Analysis Method (HAM), we chose initial
guesses and corresponding linear operators. Initial guesses and auxiliary operators are
given as:

f0(η) = 1− exp(−η), g0(η) = m exp(−η), θ0(η) = exp(−η)} (21)
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L f =
d3 f
dη3 + f , L f =

d3 f
dη3 + f , Lg =

d2g
dη2 + g, Lθ =

d2θ

dη2 + θ

}
(22)

the above linear operators have the following properties

L f [c1 + c2eη + c3e−η ] = 0, Lg[c4eη + c5e−η ] = 0, Lθ [c6eη + c7e−η ] = 0
}

(23)

where cj(j = 1, 2, . . . , 7) show the arbitrary constants.

4.1. Zeroth-Order Problems

(1− r)L f [
∼
f (η, r)− f0(η)] = rh f N f [

∼
f (η, r),

∼
g(η, r),

∼
θ (η, r)]

}
(24)

(1− r)Lg[
∼
g(η, r)− g0(η)] = rhgNg[

∼
g(η, r),

∼
f (η, r),

∼
θ (η, r)]

}
(25)

(1− r)Lθ [
∼
θ (η, r)− θ0(η)] = rhθ Nθ [

∼
θ (η, r),

∼
g(η, r),

∼
f (η, r)]

}
(26)

∼
f (0, r) = 0,

∼
f
′
(0, r) = 1,

∼
f ′(∝, r) = 0,

∼
g(0, r) = m∼

∼
f
′′
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∼
g(∝, r) = 0,

∼
θ (0, r) = 1,
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θ (∝, r) = 0

 (27)
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(
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∂
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where r belongs to [0, 1] and it is represents the inserting parameter, h f , hg, hθ stand for
non-zero auxiliary parameters and N f , Ng, Nθ show the nonlinear operators.

4.2. nth-Order Problems

L f [ fn(η)− γn fn−1(η)] = h f R f
n(η)

}
(30)

Lg[gn(η)− γngn−1(η)] = h f Rg
n(η)

}
(31)

Lθ [θn(η)− γnθn−1(η)] = h f Rθ
n(η)

}
(32)

fn(0) = 0, f ′n(0) = 1, f ′n(∞) = 0, gn(0) = m∼ f ′′n (0),
gn(∞) = 0, θn(0) = 1, θn(∞) = 0

}
(33)

R f
n(η) =

n−1
∑

j=0
( fn−1−j f ′′j − f ′n−1−j f ′j ) + (1 + Γ) f

′′ ′
n−1 + Γg′n−1 − Ha2 f ′n−1

−K∗ f ′n−1 + λ1θn−1 = 0

 (34)

Rg
n = λg′′n−1 −

m−1

∑
j=0

f ′n−1−jgj +
m−1

∑
j=0

fn−1−jg′j − Γβ1
(
2gn−1 + f ′′n−1

)
= 0

}
(35)
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Rθ
n(η) =

(
1 + 4

3 Rd
)

θ′′n−1 +
n−1
∑

j=0
θ′n−1−j f j + PrEc(1 + Γ)

n−1
∑

j=0
f ′′n−1−j f ′′j

+PrHa2Ec
n−1
∑

j=0
f ′n−1−j f ′j = 0


γn =

{
0, n ≤ 1
1, n > 1

(36)

Here, if r = 0 and r = 1, we have the following forms

∼
f (η, 0) = f0(η),

∼
f (η, 1) = f (η)

}
(37)

∼
g(η, 0) = θ0(η),

∼
g(η, 1) = θ(η)

}
(38)

∼
θ (η, 0) = θ0(η),

∼
θ (η, 1) = θ(η)

}
(39)

and when p differs 0 to 1, then
∼
f (η, r),g(η, r), and

∼
θ (η, r) represent variation from initial

solutions f0(η), g0(η), and θ0(η) to the final solutions f (η), g(η) and θ(η), respectively.
According to Taylor series expansion, we have the following expressions

∼
f (η, r) = f0(η) +

∞

∑
n

fn(η)rn, fn(η) =
1
n!

∂n
∼
f (η, r)
∂rn

∣∣∣∣∣∣
r=0

 (40)

∼
g(η, r) = g0(η) +

∞

∑
n

gn(η)rn, gn(η) =
1
n!

∂n∼g(η, r)
∂rn

∣∣∣∣∣
r=0

}
(41)

∼
θ (η, r) = θ0(η) +

∞

∑
n

θn(η)rn, θn(η) =
1
n!

∂n
∼
θ (η, r)
∂rn

∣∣∣∣∣∣
r=0

 (42)

The convergence of Equations (44)–(46) depends on ћ f , ћθ , and ћφ. These equations
converge at p = 1, the value of auxiliary variables selected in such method

f (η, r) = f0(η) +
∞

∑
n

fn(η)

}
(43)

g(η, r) = g0(η) +
∞

∑
n

gn(η)

}
(44)

θ(η, r) = θ0(η) +
∞

∑
n

θn(η)

}
(45)

The general solutions ( fn, gn, θn) of the Equations (30)–(32) in term of special solutions
( f ∗n , g∗n, θ∗n) are following form

fn(η) = M∗1 + M∗2 eη + M∗2 e−η + f ∗n
}

(46)

gn(η) = M∗4 eη + M∗5 e−η + g∗n
}

(47)

θn(η) = M∗6 eη + M∗7 e−η + θ∗n
}

(48)
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where the arbitrary constants M∗j (j = 1, 2, . . . , 7) through the boundary conditions Equation
(27) and are the following forms

M∗2 + M∗4 + M∗6 = 0, M∗3 = ∂ f ∗n (η)
∂η

∣∣∣
η=0

,

M∗3 = −M∗3 − f ∗n (0), M∗5 = g∗n(0), M∗7 = θ∗n(0)

}
(49)

5. Results and Discussion

The main purpose of this section is to investigate the influence of various physical
parameters on entropy (EG(η)), Bejan number (Be(η)), microrotation (g(η)), temperature
(θ(η)), and velocity ( f ′(η)) distributions over stretching sheet. Moreover, the graphical
presentation of analytical results are also shown.

6. Velocity Distribution

Figures 2–4 show the impact of pertinent parameter Ha, K∗, and λ1 on velocity distri-
bution. Figure 2 illustrates the control of magnetic field parameter (Ha) on velocity field,
increasing numerical values of magnetic parameter decays the velocity. The outcome of this
phenomenon is because of opposing force (Lorentz force) created by magnetic field applied
normal to the flow. Figure 3 explains the consequence of the porosity parameter (K∗) on
fluid velocity, various values of porosity parameter decrease the velocity of micropolar
fluid flow. Figure 4 concerns of local buoyancy parameter (λ1) on velocity field, different
numerical values of local buoyancy parameter cause an increase in the velocity.

Figure 2. Impact of Ha on f ′(η) keeping Γ = 0.5, Pr = 2, Br = 2, λ = 2, Ec = 0.2, Rd = 2, β1 = 0.2,
λ1 = 0.2, K∗ = 2.
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Figure 3. Impact of K∗ on f ′(η) keeping λ1 = 2, Pr = 2, Br = 2, λ = 2, Ec = 0.2, Rd = 2, β1 = 0.2,
Ha = 2, K∗ = 2.

Figure 4. Impact of λ1 on f ′(η) keeping Γ = 0.5, Pr = 2, Br = 2, λ = 2, Ec = 0.2, Rd = 2, β1 = 0.2,
Ha = 2, K∗ = 2.

7. Micro Rotation

Figures 5–7 explore the effect of significant parameters dimensionless material prop-
erties (λ), (β1) and vortex viscosity constant (Γ) on microrotation. Figure 5 reveals the
impression of dimensionless material property (β1) on angular velocity profile; the observa-
tion of the graph gives the clear result of decreasing of microrotation profile but the reverse
result is shown for dimensionless material property (λ) in Figure 6. It should be noted
that strong streamline circulations are generated for larger values in the micro rotation
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parameter and weak circulation occurs near the upper plate in the presence of angular
rotation of particles

Figure 5. Impact of β1 on g(η) keeping λ1 = 2, Pr = 2, Br = 2, λ = 2, Ec = 0.2, Rd = 2, Γ = 0.5, β1 =
0.2, Ha = 2, K∗ = 2.

Figure 6. Impact of λ on g(η), keeping λ1 = 2, Pr = 2, Br = 2, Γ = 0.2, Ec = 0.2, Rd = 2, β1 = 0.2,
Ha = 2, K∗ = 2.
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Figure 7. Impact of Γ on g(η) keeping λ1 = 2, Pr = 2, Br = 2, λ = 2, Ec = 0.2, Rd = 2, β1 = 0.2,
Ha = 2, K∗ = 2.

Figure 7 demonstrates the sway of vortex viscosity constant on the microrotation
profile. It is obvious from the figure that enhances the values of vortex viscosity constant
decays microrotation profile.

8. Temperature Distribution

Figures 8–10 are sketched to elaborate the bearing of reflecting parameters, namely
magnetic parameter (Ha), Eckert number (Ec), and linear thermal radiation parameter
(Rd), on temperature distribution. The effect of the Eckert number (Ec) on temperature
distribution is visualized in Figure 8. It has been noticed that temperature shoots up due
to rising estimations of the Eckert number. It is worth mentioning that increasing in Ec
number leads to an increase in the density of microorganisms due to which penetration rate
of microorganisms and fluid particles from the sheet to fluid grows. The behavior of the
magnetic parameter (Ha) on temperature distribution is observed in Figure 9. It elucidates
that temperature rises with enhancing values in Ha. Figure 10 sketches the properties of
temperature profile via higher thermal radiation parameter (Rd). It can clearly be seen
from the figure that temperature distribution rises as the numerical value of Rd enhances.
The reason behind this phenomenon is that an increase in thermal radiation leads to an
increase in the Rosseland radiation absorbability. Consequently, the fluid temperature
increases.
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Figure 8. Impact of Ec on θ(η) keeping λ1 = 2, Pr = 2, Br = 2, λ = 2, Γ = 0.2, Rd = 2, β1 = 0.2,
Ha = 2, K∗ = 2.

Figure 9. Impact of Ha on θ(η) keeping Γ = 0.5, Pr = 2, Br = 2, λ = 2, Ec = 0.2, Rd = 2, β1 = 0.2,
λ1 = 0.2, K∗ = 2.
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Figure 10. Impact of Rd on θ(η) keeping Γ = 0.5, Pr = 2, Br = 2, λ = 2, Ec = 0.2, Ha = 0.2, β1 = 0.2,
λ1 = 0.2, K∗ = 2.

9. Entropy Generation and Bejan Number

The effect of Prandtl number (Pr), Brinkman number (Br), magnetic parameter (Ha),
thermal radiation parameter (Rd), and Eckert number (Ec) on entropy generation (EG(η))
and Bejan number (Be(η)) are displayed in Figures 11–15. Figure 11 depicts that aug-
mentation in the Brinkman number causes increase in entropy generation. This fact is
because of effecting viscosity by the Brinkman number and the fluid friction produced
by the viscous force produced, which resists fluid flow that causes an upshot in entropy
generation. Figure 12 shows the bearing of the magnetic parameter on entropy generation.
The figure gives us the notice of augmentation of (EG(η)) advancing the numerical values
of (Ha). Figure 13 signifies the enhancing of the Prandtl number causing ascending in
(EG(η)). Figure 14 presents the graph of entropy generation corresponding variation of
thermal radiation parameter. Figure 14 depicts augmentation of (EG(η)) with advancing
(Rd). Figure 15 indicates the effect of (Br) on the Bejan number. It can be clearly observed
that the Bejan number decreases on the different ascending values of the Brinkman number.
Figure 16 demonstrates the impact of the Eckert number on (Be(η)). It is observed from
the figure that the Bejan number has ascending behavior for increasing values of (Ec).
The influence of (Γ) on (Be(η)) is visualized in Figure 17. It is obvious from the figure
that various enhancing values of vortex viscosity constant decay the Bejan number. The
impact of the Prandtl number is illustrated in Figure 18. It shows the increasing behavior
of the Bejan number corresponding to ascending values of (Pr). The effect of the thermal
radiation parameter on the Bejan number is demonstrated in Figure 19. It can be observed
from the figure that the different increasing numerical values of the thermal radiation
parameter causes an increase in the Bejan number.
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Figure 11. Impact of Br on EG(η) keeping Γ = 0.5, Ha = 0.2, Br = 2, λ = 2, Ec = 0.2, Rd = 2,
β1 = 0.2, λ1 = 0.2, K∗ = 2.

Figure 12. Impact of Ha on EG(η) keeping Γ = 0.5, Pr = 2, Br = 2, λ = 2, Ec = 0.2, Rd = 2, β1 = 0.2,
λ1 = 0.2, K∗ = 2.
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Figure 13. Impact of Pr on EG(η) keeping Γ = 0.5, Ha = 0.2, Br = 2, λ = 2, Ec = 0.2, Rd = 2,
β1 = 0.2, λ1 = 0.2, K∗ = 2.

Figure 14. Impact of Rd on EG(η) keeping Γ = 0.5, Ha = 0.2, Br = 2, λ = 2, Ec = 0.2, Pr = 0.5,
β1 = 0.2, λ1 = 0.2, K∗ = 2.
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Figure 15. Impact of Br on Be(η) keeping Pr = 0.5, Ha = 0.2, Γ = 0.2, λ = 2, Ec = 0.2, Rd = 2,
β1 = 0.2, λ1 = 0.2, K∗ = 2.

Figure 16. Impact of Ec on Be(η) keeping Pr = 0.5, Ha = 0.2, Γ = 0.2, λ = 2, Br = 2, Rd = 2, β1 = 0.2,
λ1 = 0.2, K∗ = 2.
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Figure 17. Sway of Γ on Be(η), with Pr = 0.5, Ha = 0.2, Br = 2, λ = 2, Ec = 0.2, Rd = 2, β1 = 0.2,
λ1 = 0.2, K∗ = 2.

Figure 18. Impact of Pr on Be(η) keeping Br = 2, Ha = 0.2, Γ = 0.2, λ = 2, Ec = 0.2, Rd = 2, β1 = 0.2,
λ1 = 0.2, K∗ = 2.
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Figure 19. Impact of Rd on Be(η) keeping Pr = 0.5, Ha = 0.2, Γ = 0.2, λ = 2, Ec = 0.2, Br = 2,
β1 = 0.2, λ1 = 0.2, K∗ = 2.

10. Summarized Conclusions

In this study, analytical investigation of micropolar fluid with entropy generation over
stretching surface was analyzed. HAM was implemented to compute the problem and the
results are represented through graphs for the impacts of all pertinent parameters. It is
worth mentioning here that when putting the parameter values to zero in Equations (7) and
(8) ( λ→ 0 λ1 → 0), we get same ordinary differential equation for micropolar fluid flow as
obtained by [39]. Further, the same graphical behavior was obtained by S.M. Atif et al. [39]
for velocity profile against magnetic parameter and micro rotation profile for different
values of material parameters. The main points of the current article are summarized
as below.

• By raising the values of the magnetic field parameter (Ha), porosity parameter (K∗),
and vortex viscosity constant (Γ), velocity distribution of micropolar fluid is reduced,
while the inverse consequence is observed by raising values of local buoyancy param-
eter (λ1).

• It is observed that angular velocity enhances with the greater estimations of dimension-
less material property (λ), while it reduces with increasing values of dimensionless
material property (β1).

• It is also observed that magnetic parameter (Ha), Eckert number (Ec), and linear
thermal radiation parameter (Rd) upsurges the temperature distribution.

• The entropy generation enhances with increasing values of Prandtl number (Pr),
Brinkman number (Br), vortex viscosity constant (Γ), magnetic parameter (Ha), and
thermal radiation parameter (Rd).

• It is concluded that the Bejan number is increasing in function of the Eckert number
(Ec) and linear thermal radiation parameter (Rd) and Prandtl number (Pr), while
decreasing in function of the vortex viscosity constant and Brinkman number.
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