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Abstract: The hot exhaust gas generated by a downhole combustion heater directly heats the forma-
tion, which can avoid the heat loss caused by the injection of high-temperature fluid on the ground.
However, if the temperature of the exhaust gas is too high, it may lead to the carbonization of organic
matter in the formation, which is not conducive to oil production. This paper proposes the use of low-
temperature catalytic combustion of a mixture of methane and air to produce a suitable exhaust gas
temperature. The simulation studies the influence of different parameters on the catalytic combustion
characteristics of methane and the influence of downhole high-pressure conditions. The results show
that under high-pressure conditions, using a smaller concentration of methane (4%) for catalytic
combustion can obtain a higher conversion efficiency (88.75%), and the exhaust temperature is 1097 K.
It is found that the high-pressure conditions in the well can promote the catalytic combustion process
of the heater, which proves the feasibility of the downhole combustion heater for in situ heating of
unconventional oil and gas reservoirs.

Keywords: unconventional oil and gas resources; oil shale; in situ conversion; downhole heating tech-
nology

1. Introduction

Unconventional oil and gas resources refer to oil and gas resources that are continu-
ously distributed over a large area. Traditional technology cannot obtain natural industrial
production capacity. New technologies are needed to improve reservoir permeability or
fluidity for economic development. These include heavy oil, oil sands, tight oil and gas,
shale oil and gas, coalbed methane, natural gas hydrate, and oil shale [1]. Exploration and
development practices and global new oil and gas resource evaluation have confirmed that
unconventional oil and gas resources are abundant. According to the assessment of the
International Energy Agency (IEA), the global recoverable oil resources are 9560 × 108 t, of
which unconventional oil is 4210 × 108 t, and the global recoverable natural gas resources
are 783.8 × 1012 m3, of which unconventional natural gas is 195 × 1012 m3 [2]. According
to IEA forecasts, global unconventional gas production will increase to 2.5 × 1012 m3

in 2040, accounting for about 42% of total natural gas production, of which shale gas is
1.7 × 1012 m3 and tight gas is 0.46 × 1012 m3 [2]. Oil production will increase to more
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than 10 × 108 t, accounting for about 20% of total crude oil production, of which tight oil
and shale oil production is 5.1 × 108 t, and oil sands oil production is 3.4 × 108 t [2]. The
successful development of unconventional oil and gas has greatly increased the global oil
and gas resources and promoted the growth of global oil and gas production.

However, unconventional petroleum resources such as heavy oil, oil sands, shale oil,
and oil shale cannot be easily exploited through conventional methods. Among them, heavy
oil and oil sands have high viscosity and poor fluidity, and it is difficult to achieve natural
lift only by formation energy. The commonly used methods for viscosity reduction in heavy
oil include thermal viscosity reduction, chemical viscosity reduction, mixing viscosity
reduction, and microbial viscosity reduction. Among them, thermal viscosity reduction
mainly includes steam stimulation (CSS), steam flooding (SF), gravity assisted oil drainage
(SAGD), and combustion oil layers based on steam injection production [3,4]. For shale oil
and oil shale, their main feature is the presence of undischarged liquid hydrocarbons and
unconverted organic matter (kerogen) in the shale. To maximize the development of shale
oil and oil shale resources, kerogen must be converted into oil and gas resources to improve
oil and gas recovery [5]. Investigations, tests, and field trials have shown that underground
in situ heating is the best choice for large-scale development and utilization of shale oil. The
main mining technologies include reactive heat heating, conduction heating, convection
heating, and radiant heating. The basic principle is that by injecting heat into the formation,
the kerogen-rich rock formation continues to heat up, causing a cracking process. Heavy
oil, bitumen, and other organic matter are converted into light oil and natural gas on a
large scale, leaving residual carbon and CO2 and other pollutants underground, which is
a clean and efficient mining method [6–12]. It can be seen that heat injection is the most
important method for the effective exploitation of heavy oil, oil sands, shale oil, oil shale,
and other unconventional petroleum resources. Therefore, how to effectively inject heat
into the formation is a problem that must be solved in the development of unconventional
petroleum resources.

Heat injection methods for the exploitation of unconventional oil and gas resources
can be divided into surface heating and downhole heating. Surface heating technology
means that the high-temperature heat carrier generator is placed on the surface, the low-
temperature heat carrier is transported to the surface heater through the gas injection
pipeline, and the generated high-temperature heat carrier is transported to the target reser-
voir through the insulated pipeline, and the reservoir is heated to the cracking temperature,
as shown in Figure 1a. The surface heating technology is mature, but the high-temperature
heat carrier produces a large amount of heat loss during the process of injecting into the
oil shale layer. Even after the heat-insulating pipe string is insulated, the heat loss of the
high-temperature gas in the “transportation section” is still as high as 13.5 K/m. It can
be seen that for the in situ mining of oil shale resources in the middle and deep layers,
in order to improve the efficiency of heat injection and avoid the huge heat loss of the
high-temperature heat carrier on the transmission path, it is necessary to develop heating
technology for in situ mining of the oil shale resources in the middle and deep layers.
Downhole heating technology involves placement of the high-temperature heat carrier
generator downhole, and the low-temperature heat carrier is transported to the downhole
heater through the heat injection pipeline. The high-temperature heat carrier produced
by the downhole heater directly heats the target oil shale layer and heats the oil shale to
cracking, as shown in Figure 1b. Downhole heating technology has fast heating speed,
high energy utilization rate, and the prospect of large-scale commercial development. The
downhole heater is the key equipment of this technology [13].
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Figure 1. Formation heating technology [13]. (a) Ground heating technology. (b) Downhole heat-
ing technology. Reprinted with permission from Ref. [13] Copyright 2018 Applied Thermal Engi-
neering, Elsevier. 

According to the source of heat, the downhole heater can be divided into two heating 
methods: electric heating and combustion heating. The heat source of the electric heating 
method is electric energy. The electric heating wire is used to convert the electric energy 
into heat energy to heat the oil shale by heat conduction, or the electric energy is converted 
into heat energy through the electromagnetic induction effect of the excitation coil to pro-
duce high-temperature fluid in the form of thermal convection, heating oil shale. Previous 
research on downhole electric heaters mainly focused on the study of the influence of 
heaters with different structures (electric heating rods) and heater materials on heater per-
formance [14–18]. The heat transfer area of the electric heating rod is small, and the low 
thermal conductivity of the oil shale makes the heating efficiency of heating the oil shale 
by heat conduction lower, and the cost is higher, which is not suitable for large-scale ap-
plications. Electric heating downhole electric heaters that generate high-temperature flu-
ids with resistance heat have no enhanced heat transfer structure on the surface of the 
heating body, which tends to produce local high-temperature areas, resulting in short 
heater life and poor stability. The heat source of combustion and heating is the combustion 
reaction heat of fossil fuels (oil or gas), and the high-temperature gas produced directly 
heats the oil shale layer by means of thermal convection, or the high-temperature gas gen-
erates a high-temperature heat carrier through the heat exchange structure to heat the oil 
shale layer. The combustion heater device does not have high requirements itself, so it has 
better stability [19,20]. 

The ignition temperature of methane is 538 °C, and the flame temperature is as high 
as 2861 °C, far exceeding the heating temperature required for heavy oil, oil sands, shale 
oil, and oil shale production, such as shale oil and organic matter conversion in oil shale. 
The temperature of oil and gas is between 300 and 500 °C. Excessive temperature leads to 
carbonization of organic matter, which is not conducive to oil production. Therefore, it is 
necessary to effectively reduce the ignition temperature and combustion temperature of 
methane by means of catalytic combustion. The use of catalysts enables flameless com-
bustion of CH4 in air below the autoignition temperature of CH4 in air (595 °C) and can 
exceed the flammability limit (4.4 vol.% 16.5 vol.% in air) [21]. This leads to a double safety 
application and safe operation of the reactor. The total oxidation of CH4 is an exothermic 
reaction with a release of about 803 kJ/mol. Since the decomposition of CH4 hydrate re-
quires +52 kJ/mol, the in situ combustion method is used to thermally increase production 
[22]. Under the action of the catalyst, methane can be burned at a lower air concentration 
and lower temperature. While ensuring the efficient conversion of methane, the tempera-
ture of the exhaust gas can be controlled by controlling the methane reaction. Methane 

Figure 1. Formation heating technology [13]. (a) Ground heating technology. (b) Downhole heating
technology. Reprinted with permission from Ref. [13] Copyright 2018 Applied Thermal Engineering,
Elsevier.

According to the source of heat, the downhole heater can be divided into two heating
methods: electric heating and combustion heating. The heat source of the electric heating
method is electric energy. The electric heating wire is used to convert the electric energy into
heat energy to heat the oil shale by heat conduction, or the electric energy is converted into
heat energy through the electromagnetic induction effect of the excitation coil to produce
high-temperature fluid in the form of thermal convection, heating oil shale. Previous
research on downhole electric heaters mainly focused on the study of the influence of
heaters with different structures (electric heating rods) and heater materials on heater
performance [14–18]. The heat transfer area of the electric heating rod is small, and the
low thermal conductivity of the oil shale makes the heating efficiency of heating the oil
shale by heat conduction lower, and the cost is higher, which is not suitable for large-scale
applications. Electric heating downhole electric heaters that generate high-temperature
fluids with resistance heat have no enhanced heat transfer structure on the surface of the
heating body, which tends to produce local high-temperature areas, resulting in short
heater life and poor stability. The heat source of combustion and heating is the combustion
reaction heat of fossil fuels (oil or gas), and the high-temperature gas produced directly
heats the oil shale layer by means of thermal convection, or the high-temperature gas
generates a high-temperature heat carrier through the heat exchange structure to heat the
oil shale layer. The combustion heater device does not have high requirements itself, so it
has better stability [19,20].

The ignition temperature of methane is 538 ◦C, and the flame temperature is as high
as 2861 ◦C, far exceeding the heating temperature required for heavy oil, oil sands, shale
oil, and oil shale production, such as shale oil and organic matter conversion in oil shale.
The temperature of oil and gas is between 300 ◦C and 500 ◦C. Excessive temperature leads
to carbonization of organic matter, which is not conducive to oil production. Therefore, it
is necessary to effectively reduce the ignition temperature and combustion temperature
of methane by means of catalytic combustion. The use of catalysts enables flameless com-
bustion of CH4 in air below the autoignition temperature of CH4 in air (595 ◦C) and can
exceed the flammability limit (4.4 vol.% 16.5 vol.% in air) [21]. This leads to a double safety
application and safe operation of the reactor. The total oxidation of CH4 is an exothermic re-
action with a release of about 803 kJ/mol. Since the decomposition of CH4 hydrate requires
+52 kJ/mol, the in situ combustion method is used to thermally increase production [22].
Under the action of the catalyst, methane can be burned at a lower air concentration and
lower temperature. While ensuring the efficient conversion of methane, the temperature of
the exhaust gas can be controlled by controlling the methane reaction. Methane catalytic
combustion technology is relatively mature. At present, common methane combustion
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catalysts mainly include noble metal catalysts (Pd, Pt, Au, Rh, Ru, etc.) [5] and non-precious
metal catalysts (transition metal oxides, perovskites, spinel, and other metal oxides) such
as stone and hexaaluminate [23,24]. Under the action of noble metal catalysts, methane is
decomposed and adsorbed into methyl (CH3) or methylene (CH2). The adsorbed oxygen
directly generates CO2 and H2O or formaldehyde (HCHO), which then reacts with the
noble-metal-adsorbed oxygen to generate CO2 and H2O [25]. Catalysis can reduce the igni-
tion temperature and combustion peak temperature of methane and generate exhaust gas
with different temperatures to meet the different process requirements of unconventional
petroleum resources.

At present, the research on catalytic combustion of methane mainly focuses on coal
mine tail gas treatment, Micro-Electro-Mechanical System, and other fields. The main focus
is on how to improve the conversion efficiency of low-concentration methane in coal mine
exhaust gas, and how to reduce the emission of nitrogen oxides (NOx) including nitrogen
monoxide, nitrogen dioxide, and nitrous oxide and reduce air pollution [26–29]. A large
number of studies have been carried out on the catalytic combustion efficiency of methane
and the exhaust gas composition of methane catalytic combustion. However, for the in situ
extraction of unconventional oil and gas resources, in addition to the catalytic combustion
efficiency of methane, whether the temperature of the exhaust gas produced by combustion
can meet the heat injection requirements of in situ extraction is also the main parameter of
concern. In addition, the in situ mining of unconventional oil and gas resources is usually
carried out at a depth of several hundred meters underground, so the high pressure of the
formation must be overcome when high-temperature gas is injected into the formation.
Under high pressure underground, the density of the gas, the contact area, and the reaction
characteristics of the mixture on the catalyst surface are all affected. The effect of these
changes on the downhole catalytic combustion process is unclear. Therefore, this the
means of numerical simulation were adopted in this study to analyze the influence of
high-pressure environment on methane catalytic combustion by comparing the methane
catalytic combustion process under two different working conditions, atmospheric pressure
and underground high pressure. A reference is provided for the selection of downhole
catalytic combustion heating process parameters.

2. Principle of Downhole Catalytic Combustion Heater

The principle of the downhole catalytic combustion heater is shown in Figure 2, which
mainly includes five parts: the gas injection mechanism, ignition mechanism, catalytic
combustion mechanism, remote control components, and temperature monitoring com-
ponents. It includes the following steps: (a) A mixture of methane and air is injected into
the heater (Figure 3a). (b) After a period of injection, the ignition mechanism is turned on
by the remote control component, and the ignition mechanism generates an open flame to
ignite the mixture. The combustion of methane produces high-temperature exhaust gas
to heat the precious metal catalyst (Pd) inside the catalytic combustion mechanism, and
the temperature of the catalyst is monitored by the temperature monitoring component
(Figure 3b). (c) When the catalyst reaches the required temperature, gas injection is stopped,
and the combustion is stopped. The external thermal insulation layer ensures the tempera-
ture of the catalyst, and then the mixed gas is introduced again. At this time, methane is
catalytically burned under the action of the high-temperature catalyst, and the generated
high-temperature exhaust gas is injected into the formation (Figure 3c).
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3. Numerical Simulation Method
3.1. Physical Model

The heater consists of a large number of porous media coated with platinum catalyst
on the inner wall. The loading density is 2.72 × 10−9 mol/cm2. The porous medium
material is foamed alumina, which has the advantages of reduced pressure, large specific
surface area, and high mechanical strength. It has a diameter of Φ150 mm and a length of
30 mm, and the single pore diameter of the porous medium is about Φ1 mm. The simulated
combustion process is the same as the working steps of the downhole catalytic combustion
heater. First, a certain temperature is applied to the porous aluminum foam supporting
the catalyst to cause the catalytic combustion reaction to occur. The methane-air mixture
enters the pores from one side of the reactor and is preheated by the solid substrate to the
catalytic reaction temperature. Under the action of the catalyst coated on the inner wall of
the pore, a catalytic reaction occurs on the wall. The flue gas generated after the reaction
exits the reactor through the vent outlet. Since the structure, internal flow and reaction of
each channel are the same, the characteristics of the entire catalyst were selected in this
study as the simulation object, as shown in Figure 4. The inner diameter is Φ1 mm, and the
length is 30 mm.
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3.2. Method

In the combustion process of porous media, the flow, heat transfer, and chemical
reaction processes involved are quite complicated, and it is difficult to simulate the detailed
process completely. Therefore, the combustion process must be simplified. The simplified
assumptions involved in this study were:
1© The porous medium is isotropic and the porosity is constant,
2© The chemical reaction occurring on the surface of the catalyst is uniform,
3© The dispersion effect of gas in porous media is ignored,
4© The influence of gravity is negligible,
5© The solid wall surface is a radiant gray body.

The control equation used is as follows [30,31].
Continuity equation:

∂ρg

∂t
+

∂

∂x
(
ρgµ

)
+

∂

∂y
(
ρgν
)
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Energy equation:
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Component conservation equation:

∂

∂t
(pYl) +

∂

∂x
(pµYl) +

∂

∂y
(pνYl) = −∂Jl

∂x
− ∂Jl

∂y
+ Rl (5)

ρg is the gas density, u is the lateral velocity, p is the pressure, T is the temperature,
v is the longitudinal velocity, µ is the dynamic viscosity, Jl is the mass flow, Sh,r are the
chemical reaction sources, hl is the enthalpy of each component, Yl is the mass fraction
of the component, and Rl is the net production rate of the component. The flow model
in the article is a low-pressure laminar flow model. The component transport model is
selected for the combustion model, and the chemical reaction rate follows Arrheniu’s law.
For the detailed surface chemical reaction mechanism, the authoritative mechanism of
methane catalytic reaction on the Pt surface proposed by Deutschmann is selected, which
includes 7 adsorption reactions, 11 surface reactions, and 5 desorption reactions, as shown
in Table 1 [32]. Since the space in the hole is extremely small, the temperature in the
combustion chamber is not high, the fuel residence time is short, and the spatial reaction is
ignored [33].
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Table 1. Grid number assessment parameter table.

Number of Grids Exhaust Gas Temperature /K

750 1740.79

3000 1718.69

12,000 1661.04

27,000 1558.94

48,000 1425.14

75,000 1415.43

108,000 1401.21

3.3. Boundary Conditions

The inlet of the mixed gas was set as the velocity inlet, the flow rate is set to 0.5, 1,
1.5, 2, 2.5, and 3 m/s, and the initial methane concentration was set to 3%, 4%, 5%, 6%,
7%, and 8%. The outlet was set as a pressure outlet, and the outlet pressure was set as
normal pressure, 2 and 4 MPa. The hole wall was set as the wall, the loading density was
2.72 × 10−9 mol/cm2, and the initial temperature was 1500 K. The velocity inlet boundary
conditions, the pressure outlet, and the inner wall were non-slip boundary conditions, and
the wall had adiabatic boundary conditions. The simulated single pore was a pore in the
porous medium, and the outside of this pore was the other identical pore. There was no
temperature difference between the pore channels, and no heat exchange occurred between
them. Therefore, the outer wall of a single channel was approximately adiabatic.

3.4. Validation of the Grid Independence

Grid independence research involves changing the number of grids and observing
the influence of the number of grids on the calculation results. In order to ensure that the
mesh can not only fully reflect the physical process of exhaust gas flow but also achieve
good convergence, a mesh-independent study must be carried out. The quality of meshing
directly affects the speed of convergence and even the success or failure of the solution.
Quadrilateral grids were mainly used in this study, and the number of grids was: 750, 3000,
12,000, 27,000, 48,000, 75,000, and 108,000.

The grid independence is studied by comparing the variation of exhaust gas tempera-
ture of catalytic combustion under conditions of different grid numbers. The results show
that the exhaust gas temperature changes significantly with the increase in grid number,
and when the grid number increases to a certain value, the temperature remains relatively
stable. The results are shown in Table 1. As the number of grids increases, the exhaust gas
temperature decreases sharply. When the number of grids reaches 48,000, the temperature
remains basically stable. Thus, the total number of grids used for the calculation is 48,000.
The specific division of the grid is shown in Figure 5.
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The SIMPLE algorithm was adopted for the model, and steady state calculations
were used. The second-order upwind style was utilized for the discrete format, and the
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single-precision coupled solver was used to solve the control equations. The conversion
rate of methane was calculated using the following formula:

η =
min − mout

min
× 100% (6)

min is the methane inlet mass concentration, and mout is the methane outlet mass concentra-
tion.

4. Result Analysis and Discussion
4.1. Influence of Methane Concentration on Conversion Rate and Exhaust Gas Temperature

The simulation parameters are shown in Table 2. Methane conversion and exhaust gas
temperature were negatively correlated with methane volume fraction, as shown in Figure 6.
Methane conversion is up to 96%, at which point the methane percentage is 3%. The exhaust
gas temperature can reach up to 1696.25 K, and the methane percentage at this time is 8%.
Although the conversion of methane decreases, the exhaust gas temperature increases. This
is because the conversion rate of methane is as high as 91.63% even when the percentage
of methane is 8%. As the percentage of methane increases, the total reaction amount of
methane increases, the heat generated by combustion increases, and the temperature of
the exhaust gas increases. However, the reduction in methane conversion means that the
overall energy efficiency of the combustion of the mixture is reduced, which is detrimental
to the overall energy utilization efficiency of the in situ mining process.

Table 2. Simulation parameters of the influence of Methane Concentration on Conversion Rate and
Exhaust Gas Temperature.

Injection
Flow Rate

(m/s)

Ignition
Temperature

(K)

Methane
Concentration

(%)

Outlet
Pressure

(MPa)

Conversion
Rate (%)

Exhaust Gas
Temperature

(K)

0.5 1500

3

0.1

96.83 929.51
4 96 1098.49
5 94.6 1265.18
6 93.5 1415.43
7 92.57 1558.82
8 91.63 1696.25
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As the inlet volume concentration of methane decreases, the methane conversion
rate also declines to a certain extent. This is because the increase in methane fraction
increases the density of the adsorption reaction, and under the conditions of constant wall
temperature, the frequency of reactions (7) and (8) is the main factor that determines the
rate of catalytic reaction. Therefore, in practical applications, if the adiabatic loss of the
burner can be reduced to a negligible level, the temperature of the catalytic bed maintains a
certain value or even gradually increases, so increasing the inlet methane concentration
can increase the methane conversion rate.

CH4 + 2 Pt (s) => CH3 (s) + H(s) + 2Pt (7)

CH4 + 2 Pt (s) => CH3 (s) +H(s) + 2Pt (8)

1© Exhaust gas temperature
Figure 7 is a cloud diagram of temperature distribution in a single channel with

different methane concentrations. From the axial temperature distribution, we can see
that the higher the methane concentration, the longer the axial distance used to reach the
maximum temperature. On the one hand, methane can react quickly under the conditions of
constant wall surface temperature. When the methane concentration is lower, the methane
reacts completely within a shorter reaction distance. The reaction speed is faster, and the
low temperature zone is shorter. On the other hand, the higher the methane concentration,
the slower the reaction rate, which requires a longer axial distance for the reaction. With
the increase in methane concentration, the wall temperature and reaction rate both increase,
and the preheating distance and methane reaction distance are both extended. The higher
the methane concentration, the longer the axial length required to reach the maximum
temperature in the pores.
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2© Methane conversion rate
Figure 8 shows that the higher the methane concentration, the longer it takes for the

methane to be completely consumed. The higher the methane concentration, the longer
the required preheat section length. When the methane concentration is 3%, when the
methane reaches the reaction temperature, because the methane concentration is low, the
reaction speed is fast, and 12 mm of methane is required to complete the reaction. When
the methane concentration is 8%, the length of the catalytic section is 26 mm, and the
length of the preheating section is significantly increased compared to when the methane
concentration is 3%. This is because the higher the concentration, the slower the reaction
rate and the longer the reaction time. Therefore, the higher the methane concentration, the
greater the increase in the catalytic section to completely consume methane.
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4.2. Influence of Ignition Temperature on Conversion Rate and Exhaust Gas Temperature

The simulation parameters are shown in Table 3. The simulation results of catalytic
combustion ignition temperature, methane conversion rate, and exhaust gas temperature
are shown in Figure 9.

Table 3. Simulation parameters of the influence of ignition temperature on conversion rate and
exhaust gas temperature.

Injection
Flow Rate

(m/s)

Ignition
Temperature

(K)

Methane
Concentration

(%)

Outlet
Pressure

(MPa)

Conversion
Rate (%)

Exhaust Gas
Temperature

(K)

0.5

700

6 0.1

93.58 1142.14
800 93.58 1141.8
900 93.55 1141.68
1100 93.56 1141.13
1300 93.58 1142.03
1500 93.56 1142.43
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1© Exhaust gas temperature
Figure 10 shows the change of heater outlet temperature with ignition temperature. It

can be seen that different ignition temperatures have no significant effect on the methane
conversion rate and exhaust gas temperature. There is also no effect on combustion
efficiency. The scale distribution of methane catalytic combustion in the pipeline also
presents the same characteristics. Including the length of the catalytic combustion zone, it
can be seen that the ignition temperature only affects the ignition phase of methane.
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2© Methane conversion rate
Figure 11 shows that the higher the preheating temperature, the more violent the

reaction at the inlet. This is because the increase in the intake air temperature makes it
easier for the fuel to reach the gas phase reaction temperature. The length of the complete
reaction of methane gradually becomes shorter with the increase in the inlet temperature,
but the range of change is not large.
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Figure 2 shows the working process of the heater. The heater first uses an open flame
to ignite the mixture, and the mixture burns to generate low-temperature exhaust gas to
heat the catalytic layer. The injection of the mixed gas is then stopped, and the mixed gas is
re-introduced after the open flame is extinguished. At this time, the mixed gas undergoes a
catalytic combustion reaction under the action of a high-temperature catalyst. Numerical
simulation reproduces this process. First, a constant high temperature, i.e., the ignition
temperature, is applied to the wall of the tunnel, and the steady-state calculation converges.
At this time, the mixture is combusted at a high temperature reaching the ignition point,
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generating exhaust heating channels. The constant temperature on the wall of the channel is
then stopped, while the mixture continues to be injected, the catalytic combustion reaction
occurs, and the steady-state calculation converges. At this time, the obtained exhaust gas
temperature is the temperature at which the combustion reaches a steady state. When the
combustion reaches a steady state, the combustion process is only related to the ratio of fuel
gas to auxiliary gas and the flow rate. Therefore, the ignition temperature is independent of
methane conversion and exhaust gas temperature under the process conditions of Figure 2.

4.3. Influence of Injection Rate on Methane Conversion Rate and Exhaust Gas Temperature

A total of six sets of working conditions were simulated. The simulation parameters
are shown in Table 4. The result is shown in Figure 12.

Table 4. Simulation parameters of the influence of injection rate on methane conversion rate and
exhaust gas temperature.

Injection
Flow Rate

(m/s)

Ignition
Temperature

(K)

Methane
Concentration

(%)

Outlet
Pressure

(MPa)

Conversion
Rate (%)

Exhaust Gas
Temperature

(K)

0.5

1500 6 0.1

93.58% 1142.43
1 84.73% 1106.05

1.5 78.42% 1049.18
2 73.67% 999.89

2.5 70.00% 958.32
3 67.17% 925.08
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The rate of the injected gas changes the amount of fuel entering the heater and the
residence time and affects the mass transfer and heat transfer process between the fuel
and the inner wall of the pore and the temperature distribution, velocity distribution, and
methane reaction process in the reactor. As the inlet gas velocity increases, the reactor
outlet temperature gradually decreases, reaching the lowest value of 930 K at 3.0 m/s.
The increase in gas velocity doubles the amount of fuel entering the reactor. The main
reason why the methane conversion rate decreases with the increase in the rate is that the
adsorption reaction time in the catalytic reaction on the wall surface is insufficient after the
speed increases. It can be seen that proper control of the rate can effectively increase the
methane conversion rate.

1© Exhaust gas temperature
Figure 13 shows that in the flow rate range of 0.5 to 2.5 m/s, a pore length of 30 mm

is sufficient for the fuel to react fully. But when the flow rate is greater than 2.5 m/s,
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the channel length of 30 mm is not enough to make the fuel fully react, so when the gas
flow rate is 3 m/s, the outlet temperature reaches the lowest because although the wall
temperature at the exit of the tunnel has reached the highest value, the gas temperature on
the central axis has not yet reached the highest value and is discharged from the reactor, so
the outlet flue gas temperature decreases. When the gas velocity reaches 3 m/s, due to the
excessively high gas velocity, part of the methane on the central axis of the pore channel
is not preheated to the reaction temperature and is discharged out of the pore channel,
resulting in a decrease in the outlet flue gas temperature.
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2© Methane conversion rate
Figure 14 shows the variation of methane concentration distribution with flow velocity.

As the gas velocity increases, the length required for the complete reaction of methane
continues to increase. As the gas velocity increases, the amount of fuel entering the pores
per unit time increases, and the residence time of the fuel becomes shorter. The residence
time becomes shorter, and the amount of fuel becomes shorter. The double effect of the
increase makes the length of the methane reaction continue to increase. When the gas
velocity reaches 3 m/s, it can be seen that there is still a certain concentration of methane at
the outlet of the tunnel that has not reacted completely, resulting in a waste of fuel and a
decrease in the combustion efficiency of the burner.
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4.4. The influence of Downhole Pressure on Methane Conversion Rate and Exhaust Gas
Temperature

The simulated downhole pressure is 2 and 4 MPa, and the simulation parameters are
shown in Tables 5 and 6. The simulation results of methane conversion rate and exhaust
temperature are shown in Figures 15 and 16. Compared with 0.1 MPa (Figure 12), the
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exhaust gas temperature is higher when there is bottom hole pressure. For example, when
the methane injection rate is 1m/s and the formation pressure is 2 MPa, the heater’s exhaust
temperature is 1426.21 K, and when the formation pressure is 4 MPa, the heater’s exhaust
temperature reaches 1892.9 K. Under the same conditions, the heater’s exhaust temperature
under normal pressure is 1106.09 K. The downhole high pressure causes the gas to be
compressed, the density increases, the specific heat capacity increases, and the heat carried
per unit volume increases, indicating that the existence of downhole pressure can increase
the exhaust gas temperature of catalytic combustion. As the injection volume of the mixed
gas increases, the temperature of the exhaust gas gradually decreases. This is because as
the injection volume increases, and the heat taken away during the gas flow increases,
resulting in a decrease in the temperature of the exhaust gas per unit volume. Another main
reason is that as the injection volume increases, the contact time between methane and the
catalytic wall surface is shortened, and the methane conversion rate decreases, resulting in
a decrease in the temperature of the exhaust gas produced by catalytic combustion.

Table 5. Simulation parameters of the influence of injection rate on conversion rate and exhaust gas
temperature at 2 MPa.

Injection
Flow rate

(m/s)

Ignition
Temperature

(K)

Methane
Concentration

(%)

Outlet
Pressure

(MPa)

Conversion
Rate (%)

Exhaust Gas
Temperature

(K)

1

1500 6 2

81.66 1426.21
2 72.83 1352.47
3 70.83 1325.07
4 66.67 1264.63
5 60 832.8

Table 6. Simulation parameters of the influence of injection rate on conversion rate and exhaust gas
temperature at 4 MPa.

Injection
Flow Rate

(m/s)

Ignition
Temperature

(K)

Methane
Concentration

(%)

Outlet
Pressure

(MPa)

Conversion
Rate (%)

Exhaust Gas
Temperature

(K)

1

1500 6 4

85.5 1892.09
2 79.33 1753.55
3 70.67 1711.99
4 66.67 1595.5
5 65 1394.28
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The influence of downhole pressure on methane conversion rate is also obvious. As the
amount of mixed gas injected increases, the methane conversion rate shows a downward
trend. Taking the injection rate of 3 m/s as an example, the methane conversion rate
under normal pressure is 67.17%. When the downhole pressure is 2 MPa, the methane
conversion rate is 70.67%. When the downhole pressure is 4 MPa, the methane conversion
rate is 70.83%. Under the action of pressure, the methane conversion rate increases to
a certain extent, which also provides an explanation for the increase in the temperature
of the exhaust gas. The increase in methane conversion rate is mainly due to the fact
that the mixed gas is compressed under pressure, and the density increases. The content
of methane and oxygen per unit volume of the mixed gas increases, and the amount of
contact with the catalyst increases, resulting in an increase in the methane conversion
rate. But under the conditions of 2 and 4 MPa, the increase in methane conversion rate
is very small. This is mainly due to the increase in the content of methane and oxygen
per unit volume of the mixed gas, which leads to an increase in the reaction volume of
methane on the catalytic wall. As shown in Figures 17 and 18, there is a sharp increase
in temperature and flow velocity near the wall, which is also accompanied by a sharp
decrease in methane concentration and gas mixture density at the same position. The gas
mixture in the pores is caused by pressure. The density of the gas increases, and the content
of methane and oxygen in the mixture per unit volume increases, resulting in an increase in
the reaction amount of methane on the catalytic wall surface, an increase in the amount of
gas generated by the catalytic combustion reaction, and a higher gas temperature, resulting
in the reaction. The rapid increase in the flow rate hinders the subsequent adsorption
of methane on the catalyst surface, resulting in a small increase in the conversion rate of
methane. The amount of gas produced by the catalytic combustion reaction increases, and
the gas temperature rises, causing the volume of the exhaust gas produced by the reaction
to expand, hindering subsequent methane adsorption on the catalyst surface, resulting in a
decrease in the methane conversion rate. At the same time, as the gas velocity increases,
the length required for the complete reaction of methane continues to increase. As the
gas velocity increases, the amount of fuel entering the pores per unit time increases, the
residence time of the fuel becomes shorter, and the residence time becomes shorter. The
dual effect of increasing the dose makes the catalytic reaction time continuously increase.



Energies 2022, 15, 1186 16 of 23

Energies 2022, 15, 1186 16 of 24 
 

 

is caused by pressure. The density of the gas increases, and the content of methane and 
oxygen in the mixture per unit volume increases, resulting in an increase in the reaction 
amount of methane on the catalytic wall surface, an increase in the amount of gas gener-
ated by the catalytic combustion reaction, and a higher gas temperature, resulting in the 
reaction. The rapid increase in the flow rate hinders the subsequent adsorption of methane 
on the catalyst surface, resulting in a small increase in the conversion rate of methane. The 
amount of gas produced by the catalytic combustion reaction increases, and the gas tem-
perature rises, causing the volume of the exhaust gas produced by the reaction to expand, 
hindering subsequent methane adsorption on the catalyst surface, resulting in a decrease 
in the methane conversion rate. At the same time, as the gas velocity increases, the length 
required for the complete reaction of methane continues to increase. As the gas velocity 
increases, the amount of fuel entering the pores per unit time increases, the residence time 
of the fuel becomes shorter, and the residence time becomes shorter. The dual effect of 
increasing the dose makes the catalytic reaction time continuously increase. 

 
(a) 

 
(b)  

 
(c)  

Energies 2022, 15, 1186 17 of 24 
 

 

 
(d)  

Figure 17. Temperature, concentration, density, and flow velocity distribution at 2 MPa. (a) Tem-
perature distribution. (b) Methane concentration distribution. (c) Density distribution. (d) Velocity 
distribution. 

 
(a)  

 
(b) 

Figure 17. Temperature, concentration, density, and flow velocity distribution at 2 MPa. (a) Tem-
perature distribution. (b) Methane concentration distribution. (c) Density distribution. (d) Velocity
distribution.
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4.5. The Influence of Methane Percentage on Catalytic Combustion of Methane under Downhole
Pressure Conditions

The pressures are respectively 2 and 4 MPa, and the simulation parameters are shown
in Tables 7 and 8. The simulation results of methane conversion rate and exhaust gas
temperature when the methane percentage is 4% are shown in Figures 19 and 20.
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Table 7. Simulation parameters of the influence of injection rate on conversion rate and exhaust gas
temperature at 2 MPa, 4% of CH4.

Injection
Flow Rate

(m/s)

Ignition
Temperature

(K)

Methane
Concentration

(%)

Outlet
Pressure

(MPa)

Conversion
Rate (%)

Exhaust Gas
Temperature

(K)

1

1500 4 2

88.5 819.68
2 78 751.19
3 71.37 699.07
4 66.75 660.99
5 63.5 632.5

Table 8. Simulation parameters of the influence of injection rate on conversion rate and exhaust gas
temperature at 4 MPa, 4% of CH4.

Injection
Flow Rate

(m/s)

Ignition
Temperature

(K)

Methane
Concentration

(%)

Outlet
Pressure

(MPa)

Conversion
Rate (%)

Exhaust Gas
Temperature

(K)

1

1500 4 2

88.75 824.32
2 78 753.04
3 71.5 700.09
4 67 661.6
5 63.25 632.04
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Comparing Figure 16, Figure 17, Figure 19, and Figure 20, it can be seen that the re-
duction in methane concentration significantly increases its catalytic combustion efficiency.
When the injection rate of the mixed gas is 1 m/s and the downhole pressure is 2 MPa, the
methane conversion rate is 88.5%. When the downhole pressure is 4 MPa, the methane con-
version rate is 88.75%, it can be seen that when the methane percentage is 4%, the methane
conversion rate is higher than 6%, indicating that the methane combustion efficiency is
higher at this time. When the injection rate is 1m/s and the ambient pressure is 2 MPa, the
exhaust gas temperature of methane combustion is 1092.68 K. When the ambient pressure
is 4 MPa, the exhaust gas temperature of methane combustion is 1097.32 K. This shows
that the combustion of the methane burner is more stable when the methane percentage is
4%.

When the pressure is 2 and 4 MPa, the injection rate is 1–5 m/s, and the methane
percentage is 4%. The temperature distribution cloud diagrams of exhaust temperature,
methane concentration, mixed gas density, and gas velocity during the combustion process
are shown in Figures 21 and 22. It can be seen from the cloud chart that when the percentage
of methane in the mixed gas is 4%, there are no fluctuations in temperature, density, or
gas velocity during the catalytic combustion of methane, and methane obtains higher
combustion efficiency and combustion stability. The greater the methane concentration at
the inlet, the longer it takes for the temperature in the burner to stabilize. Although the
methane concentration in the early stage is large, the reaction speed is fast and the amount
of heat released is large. As the temperature rises, the flow velocity of the mixed gas in the
burner increases, and the high-temperature gas quickly moves to the outlet end. Under
stable temperature and high concentration conditions, the length of the burner through
which the mixed gas passes is increased. With the change of methane concentration, the
velocity distribution trend in the combustor is basically the same. Because it is a non-slip
wall, the velocity near the wall is basically zero. As the temperature of the gas in the
combustor increases, the velocity increases and stabilizes after a certain distance. At the
same length from the entrance, the greater the concentration of methane, the greater the
conversion rate. This is because there is sufficient air at this time, and more methane
molecules and oxygen molecules react chemically on the surface of the catalyst. At this
time, the methane reaction rate is fast. A small amount of methane remains near the end.
This is because the reaction speed is too fast. After the reaction reaches a certain level, the
methane concentration is naturally low and the reaction speed decreases. At this time, the
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speed is relatively high, and it is already close to the end of the burner, so there is a small
amount of methane unreacted.
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5. Conclusions

(1) The in situ cracking temperature of organic matter in unconventional oil and gas
resources is between 623 and 823 K. When the flow rate is 0.5 m/s and the proportion
of methane is 7–8%, the exhaust gas temperature is between 656.51 and 825.49 K, which
can meet the technological requirements of in situ mining of oil and gas resources.
The methane conversion rate is higher than 90%, and the energy utilization efficiency
is high.

(2) Under downhole pressure conditions, the catalytic combustion characteristics of
methane are different from those under atmospheric pressure conditions. The main
manifestation is that the downhole pressure increases the density of the mixed gas,
resulting in unstable methane catalytic combustion process, fluctuating flue gas tem-
perature, methane conversion rate, gas density, and conversion rate, which may
seriously affect the performance of the heater and low energy utilization.

(3) For the high-pressure environment in the well, the high concentration of methane
in the mixed gas is not conducive to obtaining stable combustion, improving the
utilization efficiency of methane and reducing energy consumption. It is necessary to
appropriately reduce the mixed gas according to the actual working conditions. It is
best to use a ratio of about 4%. When the injection flow rate is 1 m/s, the methane
conversion rate can reach up to 88.75%, and the exhaust gas temperature can reach
824.32 K, which can meet the on-site mining process requirements of unconventional
oil and gas resources.
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