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Abstract: The present paper focuses on nonlinear oscillations of a horizontally supported Jeffcott
rotor. An approximate solution to the system of governing equations having quadratic and cubic
nonlinearities is obtained in two cases of practical interest: simultaneous and internal resonance.
The Optimal Auxiliary Functions Method is employed in this study, and each governing differential
equation is reduced to two linear differential equations using the so-called auxiliary functions
involving a moderate number of convergence-control parameters. Explicit analytical solutions are
obtained for the first time in the literature for the considered practical cases. Numerical validations
proved the high accuracy of the proposed analytical solutions, which may be used further in the
study of stability and in the design process of some highly performant devices.

Keywords: nonlinear oscillations; rotor dynamics; asymmetric nonlinearity; simultaneous and
internal resonance; optimal auxiliary functions method

1. Introduction

The nonlinear dynamics of rotors have long attracted attention, being an interesting
subject with considerable technical depths and breadths. The theory of oscillations was
intensively developed in the field of high-speed machinery and can be used particularly in
studies of a disk on a massless shaft; power generation; land, sea, and air transportation;
aerospace; textiles; home appliances; or various military systems. For an analysis of simple
machinery, one has to take into consideration the accurate forms of excitation, heating
and supports, the complicated geometry of the rotor, and so on. There are many types
of rotating machines, with different rotor sizes, complexities, speeds, loads, powers, and
rigidities [1].

The nonlinear oscillations of rotating machines were studied by many researchers.
Muszynska [2] proposed many possible responses of rotor–stator systems. Karlberg and
Aidanpää [3] considered the nonlinear vibrations of a rotor system with clearance, analyzing
the two-degree-of-freedom unbalanced shaft in relation to a non-rotating massless housing.
The rotor start-up lateral vibration signal is investigated by Patel and Darpe [4]. Vibration
responses are simulated for the Jeffcott rotor having two lateral degrees of freedom. The
Hilbert–Huang transform is applied to investigate the coast-up rub signal, and the wavelet
transform is employed for comparison purposes.

The chaotic vibration analysis of a disk–shaft system with rub impact was per-
formed by Khanlo et al. [5], including a consideration of the Coriolis and centrifugal
effect. Yabuno et al. [6] explored nonlinear normal modes which considered the natural fre-
quencies in vertical and horizontal directions, investigating the characteristics with primary
resonance. Theoretical and experimental investigations are presented by Lahriri et al. [7],
considering the impact motion of the rotor against a conventional annular backing guide,
and an unconventional annular guide built with four adjustable pins. Various analytical
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methods, such as those proposed by Dunkerly, Stodola, and Reynolds, etc., are presented
by Dimarogonas et al. [8] for the study of nonlinear dynamics.

The behavior of a non-smooth Jeffcott rotor with bearing clearance is investigated by
Chavez and Wiercigroh [9], including a bifurcation analysis of the rotor system performed
using TC-HAT, a toolbox of AUTO97 which proves to be useful in detecting bifurcation in
non-smooth dynamical systems. Gu and Chu [10] presented an investigation of the rotor
shaft in the presence of universal temperature gradients. The thermal vibration of the rotor
structure is analytically modeled and investigated.

Vibration phenomena caused by aircraft hovering flight in a rub-impact rotor system is
investigated by Hou et al. [11] by using bifurcation diagrams and corresponding Lyapunov
exponent spectrums. Ma et al. [12] developed a model of the rotor-blade system, consider-
ing the coupling action of some factors, which include the motion of bending and torsion,
the gyroscopic effects of the rotor, centrifugal stiffening, spin softening, and Coriolis force.
Stochastic bifurcation, and the chaos of rub-impact rotor systems having random stiffness
and excitation, are explored in reference [13]. The passive control of a rotor instability called
helicopter ground resonance is studied by Bergeot et al. [14]. The passive device relies on a
set of cubic nonlinear absorbers called nonlinear energy sinks, each one positioned on a
blade. The model is presented and transformed to a time-invariant system by means of
Fourier transform.

The nonlinear vibrations of a horizontally supported Jeffcott rotor near the resonant
speed are investigated by Saeed and Gohary [15]. The multiple scales perturbation method
is utilized and bifurcation analyses are conducted. The stability is investigated by using
Lyapunov’s first method. The modal characteristic of a rubbing rotor system with additional
constraints is analyzed by Hong et al. [16]. The governing equations are obtained and the
eigen problem is analyzed using the complex nonlinear mode concept.

The nonlinear vibrations of the rotor working in a magnetic field in the presence of
geometric and inertia nonlinearity are analyzed by Eftekari et al. [17]. The first three vibra-
tion modes are considered, emphasizing the effects of the electromagnetic load generated
by asymmetric magnetic flux density.

Li et al. [18] studied the nonlinear vibrations of a rotor system, considering cogging
and harmonic effects. Governing equations are established and the effects of stator structure
parameters are investigated. An efficient simulation of the misaligned multi-degree-of-
freedom rotor model, which is developed to predict the transient dynamic behavior of
driveshaft deflection, is introduced by Tehomeni and Alugomgo [19]. The model accounts
for tight clearance as a function of contact deformation, according to the nonlinear Hertzian
contact theory. Jin et al. [20] examined the nonlinear vibration characteristics of a dual-
rotor aero-engine displaying blade-casing rubbing, based on numerical simulations and
experimental measurements. The dynamic model is considered based on the finite element
method, considering coupling misalignment, blade-casing rubbing, and nonlinearities
supporting rolling element bearings. Saeed et al. [21] analyzed the dynamical character-
istics of a horizontally supported asymmetric nonlinear rotor system, which is governed
by two coupled second-order nonlinear differential equations with quadratic and cubic
nonlinearities. In consequence, the equations of motion were analyzed in two stages and
the model is studied by means of perturbation analysis, bifurcation diagrams, Poincare
maps, and a frequency spectrum.

The objective of this article is to apply a new and accurate approach to nonlinear
differential equations governing the oscillations of a horizontally supported Jeffcott rotor,
namely the Optimal Auxiliary Functions Method (OAFM).

The OAFM is used in the present study to obtain a first-order approximate analytical
solution to governing nonlinear equations with quadratic and cubic nonlinearities in two
cases: simultaneous and internal resonance. Our analytical technique is effective, explicit,
accurate, and proves a rapid convergence to the exact solution after the first iteration. It
provides a rigorous way to control and adjust the convergence of an analytical-approximate
solution by means of a moderate number of convergence-control parameters. Our technique
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does not imply the presence of a small or large parameter in the governing equations, or
the boundary/initial conditions, and can be applied to a variety of engineering domains.
The validity of this original method is proved by comparing the results with numerical
integration results. We deal with the OAFM in a proper manner and completely differently
in comparison with other known techniques. The cornerstone of the validity and flexibility
of this approach is in the choice of linear operators and optimal auxiliary functions, which
both contribute to obtaining highly accurate results. The convergence-control parameters
involved in our procedure are optimally identified in a rigorous mathematical way. Each
nonlinear differential equation is reduced to two linear differential equations that do not
depend on all terms of the nonlinear equation.

The present study provides accurate explicit analytical solutions which may be used
further in the study of stability, and in the design process of some highly performant devices.

2. The Governing Equations of Motion

In this research, we consider the horizontally supported Jeffcott rotor presented in
Figure 1.
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Figure 1. Jeffcott rotor system and coordinate system.

The origin O of the inertial coordinate system, Ouvz, is the intersection of the disk
and the bearing center line. The whirling motion is assumed to occur on the U-V plane.
The mass of the disk is m, its center of gravity G(u,v) deviates slightly from the geometric
center with eccentricity ed. Ifω is the angular velocity of the rotor spinning, the restoring
force F can be a symmetric nonlinear cubic function with respect to the vertical deflection r
of the shaft:

F(r) = k1r + k3r3 (1)

where k1 and k3 are positive constants. The nonlinear differential equations that describe
the horizontal and vertical oscillations of horizontally supported Jeffcott rotor system are
expressed as follows [6,15]:

m
..
u + cu

.
u + k1u + k3u(u2 + v2) = medω

2 cosωt (2)

m
..
v + cv

.
v + k1v + k3v(u2 + v2) = medω

2 sinωt−mg (3)

where k3u
(
u2 + v2) and k3v

(
u2 + v2) is a nonlinear restoring force due to the bearing

clearance, cu and cv are the damping coefficients in the U and V directions, g is the gravity
acceleration, and the dot represents the derivative with respect to time.

From Equation (3), the deflection of the shaft due to the gravity in the static equilibrium
state satisfies:

u(0) = 0, k1vst + k3v3
st = −mg (4)

where vst is the static displacement of the geometric center G due to the disk weight.
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From Equation (4) it holds that:

vst =

(m2g2

4k2
3

+
k3

1
27k2

3

)1/2

− mg
2k3

1/3

−

(m2g2

4k2
3

+
k3

1
27k2

3

)1/2

+
mg
2k3

1/3

(5)

as a consequence, the motion of geometrical center G in terms of deviations ud and vd from
the static equilibrium can be rewritten in the directions U- and V- as:

u = 0 + ud, v = vst + vd (6)

and therefore, the resulting equations are:

m
..
ud + cu

.
ud + (k1 + k3v2

st)ud + 2k3vstudvd + k3(u2
d + v2

d)ud = medω
2 cosωt (7)

m
..
vd + cv

.
vd + (k1 + 3k3v2

st)vd + k3vst(u2
d + 3v2

d) + k3(u2
d + v2

d)vd = medω
2 sinωt (8)

introducing the dimensionless parameters:

τ =

√
k1

m
t, u =

ud
vst

, v =
vd
vst

(9)

one can get the dimensionless nonlinear differential equations of motion:

u′′ + 2µ1u′ +ω2
1u + 2λvu + λ(u3 + uv2) = f Ω2 cos Ωτ (10)

v′′ + 2µ2v′ +ω2
2v + λ(u2 + 3v2) + λ(u2v + v3) = f Ω2 sin Ωτ (11)

where the prime denotes the derivative with respect to τ, and:

2µ1 =
cu√
mk1

; 2µ2 =
cv√
mk1

; λ =
k3v2

st
k1

; ω2
1 = 1 + λ; ω2

2 = 1 + 3λ; f =
ed
vst

; Ω2 =
mω2

k1
(12)

From Equations (10) and (11), we remark that the linear natural frequencies of the
horizontal and vertical directions are slightly different due to the nonlinearity of the
restoring force and the static deflection vst given by Equation (5). Furthermore, the same
effects produce an asymmetric nonlinear quadratic component.

In what follows, an approximate analytical solution will be determined to the asym-
metric system (10) and (11) using the Optimal Auxiliary Functions Method (OAFM).

3. Basics of the OAFM

The nonlinear differential Equations (10) and (11) can be written in a general form
as [22–27]:

L[X(τ)] + N[X(τ)] = 0 (13)

where L is a linear operator, N is a nonlinear operator, and X(τ) is an unknown function. In
our particular case, X(τ) = (u(τ),v(τ)). The corresponding boundary/initial conditions for
Equation (13) are:

B
(
X(τ), X′(τ)

)
= 0 (14)

We suppose that the approximate analytical solution X(τ) of Equation (13) can be
rewritten in the form:

X(τ) = X0(τ) + X1(τ) (15)

where the initial approximation X0(τ) and the first approximation X1(τ) can be determined
as follows. Inserting Equation (15) into Equation (13) we are led to:

L[X0(τ)] + L[X1(τ)] + N[X0(τ) + X1(τ)] = 0 (16)



Energies 2022, 15, 1122 5 of 12

The initial approximation X0(τ) is obtained by solving the linear differential equation:

L[X0(τ)] = 0, B
[

X0(τ),
dX0(τ)

dτ

]
= 0 (17)

and the first approximation X1(τ) follows to be determined from the nonlinear equation:

L[X1(τ)] + N[X0(τ) + X1(τ)] = 0, B
[

X1(τ),
dX1(τ)

dτ

]
= 0 (18)

The nonlinear operator N is expanded in the form:

N[X0(τ) + X1(τ)] = N[X0(τ)] + ∑
k≥1

Xk
1(τ)

k!
N(k)[X0(τ)] (19)

To avoid the difficulties which appear when solving Equation (18), accelerating the
convergence of the approximate solutions needs, instead of the last term from Equation (18),
the employment of another expression. As such, Equation (18) can be rewritten:

L[X1(τ)] =
p

∑
i=1

CiFi(τ), B
[

X1(τ),
dX1(τ)

dτ

]
= 0 (20)

where Fi(τ), i = 1,2, . . . ,p and p are known auxiliary functions depending on the initial
approximation X0(τ), on the functions which appear in the composition of N[X0(τ)], or the
combination of such expressions. We remark that the p and the auxiliary functions Fi(τ)
are not unique. Accordingly, X0(τ) and N[X0(τ)] are sources for the auxiliary functions,
and it should be emphasized that we have a large amount of freedom to choose these
auxiliary functions. In expression (20), Ci, i = 1,2, . . . ,p and p are unknown parameters at
this moment. We remark that the nonlinear differential Equation (13) is reduced to only
two linear differential Equations, namely (17) and (20).

Now, using the results obtained from the theory of differential equations, the varia-
tion of parameters method, Cauchy method, Kantorovich method, or the integral factor
method [28], we have the freedom to choose the first approximation in the form:

X1(τ) =
n

∑
i=1

fi(Fj(τ, Cj)) (21)

where Fj are the auxiliary functions defined in Equation (20) and fi are n functions depend-
ing on the functions Fj, satisfying the boundary/initial conditions:

B
[

fi(Fj),
∂ fi(Fj)

∂τ

]
= 0, i = 1, 2, ..., n (22)

As a consequence, the first approximation X1 can be determined from Equations (21) and (22).
Finally, the unknown parameters Ci are optimally identified via rigorous mathematical
approaches, such as the collocation method, Galerkin method, Ritz method, the least square
method, or by minimizing the residual error. In this way, the approximate solution X(τ)
is well determined after the identification of the optimal values of the initially unknown
convergence-control parameters Ci, i = 1,2, . . . , n.

We will prove that our approach is a very powerful tool for solving nonlinear prob-
lems without the presence of small or large parameters in the initial Equation (13) or the
boundary/initial conditions (14).
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4. Application of OAFM to Nonlinear Oscillations of Jeffcott Rotor

We will use the basic ideas of the OAFM, considering Equations (20) and (21) with the
initial conditions:

u(0) = A, v(0) = B, u′(0) = 0, v′(0) = 0 (23)

By setting:
u(τ) = Ax(τ), v(τ) = By(τ) (24)

the initial conditions (23) can be rewritten as:

x(0) = 1, y(0) = 1, x′(0) = 0, y′(0) = 0, (25)

inserting Equation (24) into Equations (10) and (11) yields:

x′′ + 2µ1x′ +ω2
1x + 2λBxy + λ(A2x3 + B2xy2)− f

A
Ω2 cos Ωτ = 0, (26)

y′′ + 2µ2y′ +ω2
2y + λ(

A2

B
x2 + 3By2) + λ(A2x2y + B2y3)− f

B
Ω2 sin Ωτ = 0 (27)

The linear and nonlinear operators for the last equations are respectively:

L[x(τ)] = x′′ + 2µ1x′ +ω2
1x; L[y(τ)] = y′′ + 2µ2y′ +ω2

2y, (28)

N1(x, y) = 2λBxy + λ(A2x3 + B2xy2)− f
A

Ω2 cos Ωτ, (29)

N2(x, y) = λ(
A2

B
x2 + 3By2) + λ(A2x2y + B2y3)− f

B
Ω2 sin Ωτ, (30)

In accordance with the OAFM algorithm, the approximate solution of Equations (26)
and (27) is:

X(τ) = x0(τ) + x1(τ); y(τ) = y0(τ) + y1(τ), (31)

The initial approximations can be determined from Equations (17) and (28):

x′′ 0 + 2µ1x′0 +ω2
1x0 = 0, x0(0) = 1, x′0(0) =0, (32)

y′′ 0 + 2µ2y′0 +ω
2
2y0 = 0, y0(0) = 1, y′0(0) =0, (33)

The above equations have the solutions:

x0(τ) = e−µ1τ

(
cos p1τ+

µ1
p1

sin p1τ

)
, (34)

y0(τ) = e−µ2τ

(
cos p2τ+

µ2
p2

sin p2τ

)
, (35)

where:
p2

1 = ω2
1 − µ2

1, p2
2 =ω2

2 − µ2
2. (36)

Inserting Equation (34) into Equation (29) and then Equation (35) into Equation (30),
we obtain:

N1(x0, y0) = M1e−3µ1τ cos p1τ+ M2e−3µ1τ sin p1τ+ M3e−(µ1+2µ2)τ sin p1τ+

+M4e−3µ1τ cos 3p1τ+ M5e−3µ1τ sin 3p1τ+ M6e−(µ1+µ2)τ[cos(p1 + p2)τ+

+ cos(p1 − p2)τ] + M7e−(µ1+µ2)τ sin(p1 + p2)τ+ M8e−(µ1+µ2)τ sin(p1 − p2)τ+

+M9e−(µ1+2µ2)τ[cos(2p2 − p1)τ− cos(2p2 + p1)τ]+

+M10e−(µ1+2µ2)τ[sin(p1 + 2p2)τ+ sin(p1 − 2p2)τ]− f
A Ω2 cos Ωτ

(37)
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N2(x0, y0) = Q1e−(2µ1+µ2)τ cos p2τ+ Q2e−(2µ1+µ2)τ sin p2τ+ Q3e−(2µ1+µ2)τ cos(2p1 − p2)τ+

+Q4e−(2µ1+µ2)τ sin(2p1 − p2)τ+ Q5e−(2µ1+µ2)τ cos(2p1 − p2)τ+ Q6e−(2µ1+µ2)τ sin(2p1 + p2)τ+
+Q7e−3µ2τ cos 3p2τ+ Q8e−3µ2τ sin 3p2τ+ Q9e−2µ2τ cos 2p1τ+
+Q10e−2µ1τ sin p1τ+ Q11e−2µ1τ + Q12e−2µ2τ cos 2p2τ+ Q13e−2µ2τ sin 2p2τ+ Q14

(38)

where the values of the parameters Mi and Qi are given in the Appendix A.
In the study we will consider two possible cases:

(1) Simultaneous resonance Ω =ω1 ≈ ω2;
(2) Internal resonanceω1 ≈ ω2, Ω 6= ω1.

4.1. Application of OAFM to Nonlinear Oscillations of Jeffcott Rotor in the Case of
Simultaneous Resonance

In this subcase from Equation (37), the auxiliary functions can be chosen as:

F1(τ) = e−µ1τ; F2(τ) = e−µ1τ sin Ωτ, F3(τ) = e−2µ1τ cos Ωτ;
F4(τ) = e−2µ1τ sin Ωτ; F5(τ) = e−3µ1τ cos Ωτ; F6(τ) = e−3µ1τ sin Ωτ

(39)

or:
F1(τ) = e−µ1τ cos 2Ωτ; F2(τ) = e−µ1τ sin 2Ωτ, F3(τ) = e−2µ1τ cos 3Ωτ;
F4(τ) = e−3µ1τ sin 3ΩτF5(τ) = e−4µ1τ cos 4Ωτ; F6(τ) = e−4µ1τ sin 4Ωτ

(40)

or even:

f1(τ) = (e−µ1τ − e−2µ1τ) cos Ωτ− µ1
Ω e−µ1τ sin Ωτ, f2(τ) = (e−µ1τ − e−3µ1τ) cos Ωτ

− 2µ1
Ω e−µ1τ sin Ωτ, f3(τ) = (e−µ1τ − e−4µ1τ) cos Ωτ− 3µ1

Ω e−µ1τ sin Ωτ
(41)

and so on.
Considering only the auxiliary functions (39) from Equations (21) and (22), we can

choose the functions f1, such as fi(0) = f ′ i(0) = 0. It follows that:

f1(τ) = (e−µ1τ − e−2µ1τ) cos Ωτ− µ1
Ω e−µ1τ sin Ωτ, f2(τ) = (e−µ1τ − e−3µ1τ) cos Ωτ−

− 2µ1
Ω e−µ1τ sin Ωτ, f3(τ) = (e−µ1τ − e−4µ1τ) cos Ωτ− 3µ1

Ω e−µ1τ sin Ωτ
(42)

The first approximation (21) for Equation (26) becomes:

x1(τ) = C1 f1(τ) + C2 f2(τ) + C3 f3(τ) (43)

The auxiliary functions from Equation (27) can be chosen in the same manner as for
Equation (37), and it follows that:

g1(τ) = (e−µ2τ − e−2µ2τ) cos Ωτ− µ2
Ω e−µ2τ sin Ωτ, g2(τ) = (e−µ2τ − e−3µ2τ) cos Ωτ−

− 2µ2
Ω e−µ2τ sin Ωτ, g3(τ) = (e−µ2τ − e−4µ2τ) cos Ωτ− 3µ2

Ω e−µ2τ sin Ωτ
(44)

The first approximation (21) for Equation (27) is:

y1(τ) = C4g1(τ) + C5g2(τ) + C6g3(τ) (45)

where Ci, i = 1,2, . . . , 6 are unknown parameters at this moment.
The approximate solutions for Equations (26) and (27) are obtained from Equations

(31), (34), (35), (43), and (45) as:

x(τ) = e−µ1τ(cos Ωτ+ µ1
Ω sin Ωτ) + C1[(e−µ1τ − e−2µ1τ) cos Ωτ− µ1

Ω e−µ1τ sin Ωτ]+
+C2[(e−µ1τ − e−3µ1τ) cos Ωτ− 2µ1

Ω e−µ1t sin Ωt] + C3[(e−µ1τ − e−4µ1τ) cos Ωτ− 3µ1
Ω e−µ1τ sin Ωt]

(46)

y(τ) = e−µ2τ(cos Ωτ+ µ2
Ω sin Ωτ) + C4[(e−µ2τ − e−2µ2τ) cos Ωτ− µ2

Ω e−µ2τ sin Ωτ]+
+C5[(e−µ2τ − e−3µ2τ) cos Ωτ− 2µ2

Ω e−µ2t sin Ωt] + C6[(e−µ2τ − e−4µ2τ) cos Ωτ− 3µ2
Ω e−µ2τ sin Ωt]

(47)
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4.2. Application of OAFM to Nonlinear Oscillations of Jeffcott Rotor in the Case of
Internal Resonance

Taking into account that Ω 6=ω1 ≈ω2, the functions fi from Equation (42) and gi from
Equation (44) will depend on the p1, p2, and Ω, as follows:

f1(τ) = (e−µ1τ − e−2µ1τ) cos p1τ− µ1
p1

e−µ1τ sin p1τ, f2(τ) = (e−µ1τ − e−3µ1τ) cos p1τ−
− 2µ1

p1
e−µ1τ sin p1τ, f3(τ) = (e−µ1τ − e−2µ1τ) cos Ωτ− µ1

Ω sin Ωτ
(48)

g1(τ) = (e−µ2τ − e−2µ2τ) cos p2τ− µ2
p2

e−µ2τ sin p2τ, g2(τ) = (e−µ2τ − e−3µ2τ) cos p2τ−
− 2µ2

p2
e−µ2τ sin p2τ, g3(τ) = (e−µ2τ − e−3µ2τ) cos Ωτ− 2µ2

Ω sin Ωτ
(49)

so that the approximate analytical solution for Equations (26) and (27) obtained from
Equations (31), (34), (35), (48), and (49) are:

x(τ) = e−µ1τ(cos p1τ−
µ1
p1

sin p1τ) + C7 f1(τ) + C8 f2(τ) + C9 f3(τ) (50)

y(τ) = e−µ2τ(cos p2τ−
µ2
p2

sin p2τ) + C10g1(τ) + C11g2(τ) + C12g3(τ) (51)

where Ci, i = 7,8, . . . 12 are unknown parameters and fi, gi are given by Equations (48) and
(49), respectively.

5. Numerical Example

In order to prove the accuracy of our approach, we consider that the data for Equations
(25)–(27) for every case (simultaneous resonance and internal resonance) are as follows:

5.1. The Case of Simultaneous Resonance

For the simultaneous resonance (Ω =ω1 =ω2), the parameters are:

µ1 = 0.0077, µ2 = 0.10735, λ = 0.01, Ω = ω1 = 1.004987,
ω2 = 1.01489, f = 0.025, A = 1, B = 2

(52)

The optimal values of the convergence-control parameters Ci, i = 1,2, . . . .,6 are ob-
tained by means of a collocation approach [23], such as:

C1 = −2.417585842221364, C2 = 1.3698671035721188, C3 = 0.0113075348472 (53)

C4 = −0.9146640575257668, C5 = 0.5504407549657382, C6 = 0.0210144382104 (54)

The approximate solutions of Equations (10), (11), and (13) in the case of the simulta-
neous resonance are:

u(τ) = e−µ1τ(cos Ωτ+ µ1
Ω sin Ωτ)− 2.417585842221364[(e−µ1τ − e−2µ1τ) cos Ωτ− µ1

Ω e−µ1τ sin Ωτ]+
+1.3698671035721188[(e−µ1τ − e−3µ1τ) cos Ωτ− 2µ1

Ω e−µ1t sin Ωt]+
+0.0113075348472[(e−µ1τ − e−4µ1τ) cos Ωτ− 3µ1

Ω e−µ1τ sin Ωt]
(55)

v(τ) = 2e−µ2τ(cos Ωτ+ µ2
Ω sin Ωτ) −0.9146640575257668[(e−µ2τ − e−2µ2τ) cos Ωτ−

−µ2
Ω e−µ2τ sin Ωτ] + 0.550440754965738[(e−µ2τ − e−3µ2τ) cos Ωτ− 2µ2

Ω e−µ2t sin Ωt]+
+0.021014438210[(e−µ2τ − e−4µ2τ) cos Ωτ− 3µ2

Ω e−µ2τ sin Ωt]
(56)

In Figures 2 and 3, the approximate analytical solutions, u and v, are graphically
presented, as given by Equations (55) and (56), in comparison with the corresponding
numerical integration results obtained from Equations (10), (11), (23), and (52) in the case
of simultaneous resonance.



Energies 2022, 15, 1122 9 of 12

Energies 2021, 14, x FOR PEER REVIEW 9 of 13 
 

 

where Ci, i = 7,8,…12 are unknown parameters and fi, gi are given by Equations (48) and 
(49), respectively. 

5. Numerical Example 
In order to prove the accuracy of our approach, we consider that the data for 

Equations (25)–(27) for every case (simultaneous resonance and internal resonance) are as 
follows: 

5.1. The Case of Simultaneous Resonance 
For the simultaneous resonance (Ω = ω1 = ω2), the parameters are: 

2,1,025.0,01489.1
,004987.1,01.0,10735.0,0077.0

2

121
====ω

=ω=Ω=λ=μ=μ
BAf  (52)

The optimal values of the convergence-control parameters Ci, i = 1,2,….,6 are 
obtained by means of a collocation approach [23], such as: 

1 2 3C  2.417585842221364, C 1.3698671035721188, C  0.0113075348472= − = =  (53)

4 5 6C  0.9146640575257668, C 0.5504407549657382, C  0.0210144382104= − = =  (54)

The approximate solutions of Equations (10), (11), and (13) in the case of the 
simultaneous resonance are: 

]sin3cos)[(

]sin2cos)[(

]sincos)[()sin(cos)(

111

111

1111

14

13

121

teee484720.01130753

teee357211881.36986710

eee22213642.41758584-eu

t

Ω
Ω
μ−τΩ−+

+Ω
Ω
μ−τΩ−+

+τΩ
Ω
μ−τΩ−τΩ

Ω
μ+τΩ=τ

τμ−τμ−τμ−

μ−τμ−τμ−

τμ−τμ−τμ−τμ−

 (55)

]sin
3

cos)[(

]sin2cos)[(]sin

cos)[()sin(cos2)(

222

2222

222

24

232

22

teee82100.02101443

teee49657380.55044075e

ee752576680.91466405- ev

t

Ω
Ω
μ

−τΩ−+

+Ω
Ω
μ

−τΩ−+τΩ
Ω
μ

−

−τΩ−τΩ
Ω
μ

+τΩ=τ

τμ−τμ−τμ−

μ−τμ−τμ−τμ−

τμ−τμ−τμ−

 (56)

In Figures 2 and 3, the approximate analytical solutions, u  and v , are graphically 
presented, as given by Equations (55) and (56), in comparison with the corresponding 
numerical integration results obtained from Equations (10), (11), (23), and (52) in the case 
of simultaneous resonance. 

 

5 10 15 20


1.0

0.5

0.5

1.0
u

Figure 2. Comparison between the numerical solution of Equations (10) and (23) at simultaneous res-
onance and approximate solution (55): ____ numerical integration solution; _ _ _ analytical solution.

Energies 2021, 14, x FOR PEER REVIEW 10 of 13 
 

 

Figure 2. Comparison between the numerical solution of Equations (10) and (23) at simultaneous 
resonance and approximate solution (55): ____ numerical integration solution; _ _ _ analytical 
solution  

 
Figure 3. Comparison between the numerical solution of Equations (11) and (23) at simultaneous 
resonance and approximate solution (56): ____ numerical integration solution; _ _ _ analytical 
solution. 

5.2. The Case of Internal Resonance. 
In the case of internal resonance, the parameters are chosen as: 

00919.1;004958.1,1,025.0,01489.1
0049.1,5.0,01.0,10735.0,0077.0

212

121
======ω

=ω=Ω=λ=μ=μ
ppBAf

 (57)

The optimal values of the convergence-control parameters in this case are: 

7 8 9C 0.402383803986711, C 0.174367028869554, C 0.172699630062805= − = =  (58) 

10 11 12C 0.002619502362916, C 0.007970571212564, C 0.005892786988971= − = = − (59) 

The approximate solution in the case of the internal resonance of Equations (10), (11), 
and (23) becomes: 

]sin3cos)[(

]sin
2

cos)[(

]sincos)[()sin(cos)(

111

111

1111

14

1
1

1
1

3

1
1

1
1

2
1

1

1
1

τΩ
Ω
μ

−τΩ−+

+τ
μ

−τ−+

+τ
μ

−τ−τ
μ

+τ=τ

τμ−τμ−τμ−

τμ−τμ−τμ−

τμ−τμ−τμ−τμ−

eee00628050.17269963

pe
p

pee88695540.17436702

pe
p

pee39867110.40238380-p
p

peu

 (60)

]sin2cos)[(

]sin
2

cos)[(]sin

cos)[()sin(cos)(

222

2222

222

23

2
2

2
2

3
2

2

2

2
2

2
2

2
2

τΩ
Ω
μ

−τΩ−

+τ
μ

−τ−+τ
μ

−

−τ−τ
μ

+τ=τ

τμ−τμ−τμ−

τμ−τμ−τμ−τμ−

τμ−τμ−τμ−

eee69889710.00589278-

pe
p

pee12125640.00797057pe
p

pee23629160.00261950- p
p

pev

 (61)

In Figures 4 and 5, we compared the numerical solutions of Equations (10) and (11), 
and the approximate solutions (60) and (61), respectively, for the case of internal 
resonance. 

5 10 15 20

1.5

1.0

0.5

0.5

1.0

1.5

2.0
v

Figure 3. Comparison between the numerical solution of Equations (11) and (23) at simultaneous res-
onance and approximate solution (56): ____ numerical integration solution; _ _ _ analytical solution.

5.2. The Case of Internal Resonance

In the case of internal resonance, the parameters are chosen as:

µ1 = 0.0077 , µ2 = 0.10735 , λ = 0.01, Ω = 0.5,ω1 = 1.0049
ω2 = 1.01489 , f = 0.025 , A = B = 1, p1 = 1.004958 ; p2 = 1.00919

(57)

The optimal values of the convergence-control parameters in this case are:

C7 = −0.402383803986711, C8 = 0.174367028869554, C9 = 0.172699630062805 (58)

C10 = −0.002619502362916, C11 = 0.007970571212564, C12 = −0.005892786988971 (59)

The approximate solution in the case of the internal resonance of Equations (10), (11),
and (23) becomes:

u(τ) = e−µ1τ(cos p1τ+
µ1
p1

sin p1τ)−0.402383803986711[(e−µ1τ − e−2µ1τ) cos p1τ− µ1
p1

e−µ1τ sin p1τ]+

+0.174367028869554[(e−µ1τ − e−3µ1τ) cos p1τ− 2µ1
p1

e−µ1τ sin p1τ]+

+0.172699630062805[(e−µ1τ − e−4µ1τ) cos Ωτ− 3µ1
Ω e−µ1τ sin Ωτ]

(60)

v(τ) = e−µ2τ(cos p2τ+
µ2
p2

sin p2τ) −0.002619502362916[(e−µ2τ − e−2µ2τ) cos p2τ−
−µ2

p2
e−µ2τ sin p2τ] + 0.007970571212564[(e−µ2τ − e−3µ2τ) cos p2τ− 2µ2

p2
e−µ2τ sin p2τ]+

−0.005892786988971[(e−µ2τ − e−3µ2τ) cos Ωτ− 2µ2
Ω e−µ2τ sin Ωτ]

(61)

In Figures 4 and 5, we compared the numerical solutions of Equations (10) and (11),
and the approximate solutions (60) and (61), respectively, for the case of internal resonance.
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From Figures 2–5, a very good agreement can be observed between the approxi-
mate solutions and numerical integration results, which confirms the great potential of
the OAFM.

6. Conclusions

The objective of this research is the study of the nonlinear vibration of a horizontally
supported Jeffcott rotor with quadratic and cubic nonlinearity, where the nonlinear restoring
force, due to the bearing clearance and the rotor weight, is considered. The linear natural
frequencies in the horizontal and vertical directions have small differences due to the
nonlinearity of the restoring force and disk weight.

The nonlinear vibrations of the horizontally supported Jeffcott rotor are generated by
the rotor eccentricity.

Explicit analytical solutions for the two cases are established using our original Op-
timal Auxiliary Functions Method (OAFM). Our approach considerably simplifies cal-
culations because any nonlinear differential equation is reduced to two linear ordinary
differential equations using the so-called auxiliary functions. This idea does not appear in
any other methods known in the scientific literature. Our technique is different from other
traditional procedures, especially concerning the optimal auxiliary functions that depend
on some initially unknown parameters. We have a large degree of freedom to choose the
auxiliary functions and the number of convergence-control parameters.

The obtained approximate analytical solutions are in excellent agreement with the
numerical integration results in all cases. Our technique is valid, even if the nonlinear
governing equations do not contain small or large parameters. The construction of the
first iterations is completely different from other known methods. The optimal values of
the convergence-control parameters are identified by means of a rigorous mathematical
procedure, providing a fast convergence of the approximate analytical solutions using only
the first iteration.
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It is proved that the OAFM is very effective and efficient in practice. This research
provides helpful guidance to solve dynamic problems, and may help to design and manu-
facture more reliable engineering products.
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