
����������
�������

Citation: Chou, S.-Y.; Dewabharata,

A.; Zulvia, F.E.; Fadil, M. Forecasting

Building Energy Consumption Using

Ensemble Empirical Mode

Decomposition, Wavelet

Transformation, and Long

Short-Term Memory Algorithms.

Energies 2022, 15, 1035. https://

doi.org/10.3390/en15031035

Academic Editor: Fabrizio Ascione

Received: 21 November 2021

Accepted: 6 January 2022

Published: 29 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Forecasting Building Energy Consumption Using Ensemble
Empirical Mode Decomposition, Wavelet Transformation,
and Long Short-Term Memory Algorithms
Shuo-Yan Chou 1,2, Anindhita Dewabharata 2, Ferani E. Zulvia 3,* and Mochamad Fadil 3

1 Taiwan Building Technology Center, National Taiwan University of Science and Technology,
Taipei 106, Taiwan; sychou@mail.ntust.edu.tw

2 Department of Industrial Management, National Taiwan University of Science and Technology,
Taipei 106, Taiwan; d10101801@mail.ntust.edu.tw

3 Department of Logistics Engineering, Universitas Pertamina, Jakarta 12220, Indonesia;
mochamadfadildil@gmail.com

* Correspondence: feranieva.z@universitaspertamina.ac.id; Tel.: +62-21-290-44308

Abstract: A building, a central location of human activities, is equipped with many devices that
consume a lot of electricity. Therefore, predicting the energy consumption of a building is essential be-
cause it helps the building management to make better energy management policies. Thus, predicting
energy consumption of a building is very important, and this study proposes a forecasting framework
for energy consumption of a building. The proposed framework combines a decomposition method
with a forecasting algorithm. This study applies two decomposition algorithms, namely the empirical
mode decomposition and wavelet transformation. Furthermore, it applies the long short term mem-
ory algorithm to predict energy consumption. This study applies the proposed framework to predict
the energy consumption of 20 buildings. The buildings are located in different time zones and have
different functionalities. The experiment results reveal that the best forecasting algorithm applies
the long short term memory algorithm with the empirical mode decomposition. In addition to the
proposed framework, this research also provides the recommendation of the forecasting model for
each building. The result of this study could enrich the study about the building energy forecasting
approach. The proposed framework also can be applied to the real case of electricity consumption.

Keywords: energy building; LSTM; decomposition; empirical mode decomposition; wavelet transformation

1. Introduction

Energy is one of the basic needs of human life. In the last few decades, energy con-
sumption has increased significantly due to several factors, such as a population increase,
indoor human activities, an increasing number of buildings, and global climate change. As
most human activities are conducted in buildings, it consumes most of the electricity. In
the US and the European Union, 40% of energy consumption comes from buildings [1].

Buildings can be categorized into several types based on their function: industry,
transportation, housing or residential, commercial, public services, agriculture, fisheries,
and other sectors. Among all of these types, housing/residential buildings such as housing
complexes and apartments consume up to 30% of the total energy buildings worldwide [2].
In some countries, the energy consumption of commercial buildings such as offices, hos-
pitals, shopping centers, restaurants, warehouses, and others is relatively high because
they use many devices continuously [3]. The EIA [4] predicts that energy consumption in
buildings will grow by an average of 1.3% per year from 2018 to 2050.

Although energy consumption is predicted to increase continuously, more accurate
energy demand forecasting is essential. An accurate energy demand forecast will be
essential information to make a decision in many different fields, including scheduling,
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operations, monitoring, and others [5]. Forecasting has an important role in different
perspectives for future energy development regionally, nationally, and globally [6]. From
the perspective of city stakeholders, it is helpful to understand energy consumption and its
variations across types of urban buildings and their user profiles. Energy allocation based
on an accurate prediction can improve building policy [7]. Accurate energy consumption
forecasting can also avoid overestimating and underestimating resource allocation [8].
From the building owner’s or operator’s point of view, energy forecasting is essential
for designing daily operational rules for the building [9]. For the power company and
government, city-scale energy consumption predictions help to optimize the electricity
distribution and production scenario [9]. Therefore, energy management with accurate
forecasting is needed because accuracy allows management to allocate energy needs due
to the significant demand to avoid unexpected power outages and reduce operational
costs [10]. The primary purpose of this study is to propose a forecasting framework for
energy consumption.

Forecasting itself can be classified based on the timespan; short-term, mid-term, and
long-term [11]. For example, short-term forecasting with a time span of hourly data for one
week [12] will have higher accuracy than mid-term and long-term forecasting. It helps the
building management in operation [13]. It also can improve the automation of the energy
system of a building [14] at the management level.

Many studies accommodate this problem to improve an accurate energy analysis
system, one of which is a research work that forecasts electrical energy consumption in
buildings. However, several factors become challenges for researchers in making accurate
forecasts [5]. The challenging factors include the limitation of the physical method which
requires high computational complexity. On the other hand, the statistics methods cannot
perform well for nonlinear hidden feature data.

The proposed forecasting framework combines a time series decomposition method
with recurrent neural network algorithms to obtain an accurate forecasting model. There
are two decomposition algorithms utilized in this study. They are the ensemble empirical
mode decomposition (EEMD) and wavelet transformation (WT). Some previous studies
have applied forecasting energy demand using the long short-term memory (LSTM) al-
gorithm [15–17]. Peng, Wang, Xia, and Gao [15] and Somu, MR, and Ramamritham [17]
applied the LSTM with WT. On the other hand, Gao, Ruan, and Buildings [16] enhanced
the LSTM with a feature attention process. These studies show that the LSTM algorithm is a
promising algorithm for energy consumption prediction. However, further improvements
should be made to get a better result with a high generalization. Thus, this study proposes
a forecasting framework, which consists of data preprocessing, data decomposition using
EEMD and WT, and the aggregation process for the final prediction.

This study evaluates the proposed forecasting framework’s performance using six
benchmark datasets and a real study case of electricity consumption of a university building
in Taiwan. Each dataset consists of several buildings. Thus, a total of 20 buildings are
evaluated in this study.

2. Literature Review

This section reviews some fundamental theories applied in this research. It includes
time series forecasting, decomposition algorithms, and recurrent neural network.

2.1. Time Series Forecasting

Forecasting is the process of predicting future events [11]. Runge and Zmeureanu [18]
define forecasting as the process of estimating a value derived from current values or
historical data to determine the value that will be generated in the future. In forecasting
energy consumption, the data used are time-series data. Electrical energy consumption data
are time-series data observed based on the same time interval [19]. Therefore, forecasting
electrical energy consumption is categorized as time-series data forecasting. Its goal is to
predict events that will occur in the future based on a series of events or history [5].
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Problems in forecasting are generally packaged in the form of a time period, such as
days, weeks, or months [11]. Based on the time horizon, forecasting is divided into several
categories [20], those are:

1. Short-term

The coverage period of this forecast is hours, days, or weeks ahead. This type of
forecasting manages daily operational activities, purchase planning, and evaluation [21].

2. Medium-term

The scope of the forecasting period is 1–2 years in the future [11]. This forecasting
category is very useful for the strategic planning of demand [21].

3. Long-term

The coverage period of this forecast is about 1–50 years in the future. It is commonly
used in a planning system or energy plant installation [21].

Many techniques have been used for forecasting data on electricity consumption in
buildings. To obtain an accurate forecast, the methodology should consider data complexity,
including weather conditions, lighting systems, and other systems that involve the use of
electricity [22]. According to Deb, Zhang, Yang, Lee, and Shah [22], there are two categories
of forecasting techniques: the data-driven technique and the deterministic technique.
Table 1 shows several advantages and disadvantages of both techniques.

Table 1. The Advantages and Disadvantages of Data-Driven and Deterministic Technique.

Techniques Advantages Disadvantages

Data-driven

Faster calculations with
real-time data Historical data are needed

Can be applied for non-linear
problems

Solution for a case may not be
suitable for other cases

Deterministic

Refers to the physical science
of the building

It is difficult to create
scenarios that refer to the

actual model

Does not require historical
data

Requires detail building
properties data

One solution can be applied to
many cases -

Source: [22].

Bourdeau, et al. [23] divide energy forecasting methods in buildings into three cate-
gories, namely physical (white box), data-driven (black box), and hybrid (gray box). The
data-driven (black box) method uses machine learning and statistics to build and model
energy in buildings [23]. The physical method (white box) can be interpreted the same
as the deterministic method above. In contrast, the hybrid method combines knowledge
and information from physical and data-driven methods. Most of the methods used by
researchers are data-driven (black box).

2.2. Recurrent Neural Network

Recurrent neural network (RNN) is a very popular model used to solve forecasting
time series because it can retrieve information obtained from time-series data [24]. The
RNN develops the forecasting model based on the input in the current state and inputs from
the previous states [25]. RNN extends an artificial neural network (ANN) that connects
neurons in the same hidden layer [26] the structure as illustrated in Figure 1.
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Figure 1. Structure of recurrent neural network [26].

The RNN structure consists of a loop that can store information from the past [27].
Although the RNN has good forecasting capabilities, it cannot handle data dimensions
of long-term dependencies [24]. The long short-term memory (LSTM) improves RNN,
overcoming the long-term dependencies problems [28]. The LSTM solves the vanishing
gradient problem due to not overcoming data with long-term dependencies [24]. The LSTM
uses a component called memory blocked [28]. The vanishing gradient problem can be
eliminated by applying the gate mechanism and memory cells that replace the nodes in
it [29] as illustrated in Figure 2.
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Memory blocked is a subnet containing repeatedly connected functional modules
called memory cells and gates [26]. Memory cells are tasked with remembering the state of
the network and the gates formed to regulate information patterns [26]. LSTM is divided
into three parts, namely input gates, output gates, and forget gates. Input gates function
to control the information entering memory cells, forget gates function to remember the
amount of information passing through the network, and output gates function to control
the amount of information used to perform calculations [26].

2.3. Ensemble Empirical Mode Decomposition

The empirical mode decomposition (EMD) is a pre-processing method used for non-
stationary data [30], such as energy-time series data in buildings. Non-stationary data
will be decomposed into several components named intrinsic mode functions (IMF) as
illustrated in Figure 3 [31]. The EMD method shows its superiority in time series data
forecasting [30]. Thus, the ensemble empirical mode decomposition (EEMD) was proposed
to improve the EMD [32]. This method was created to overcome the mixing mode problems
in EMD [32,33]. It also aims to extract the existing oscillation function [30]. Mode mixing
is a problem that arises because one IMF component has a different signal scale or the
same signal scale in different IMFs [34]. To bypass the mixing mode, EEMD follows the
EMD steps on the original time series x(t), (t = 1, 2, . . . , t), to get a set of IMF added by
Gaussian white noises. Then, the average from the IMF applies as the final decomposition
result [30].
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The steps of EEMD as explained below [30]:

1. Add the white noise into the original data x(t) to get the new construction:

xi(t) = x(t) + wi(t), (1)

2. Describes the time series which have been added the white noise into nth IMF
ci

j(t)(j = 1, 2, . . . , n) and a residue EMD, ri(t).
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xi(t) = ∑n
j=1 ci

j(t) + ri(t), (2)

3. Repeat steps 1 and 2 M-times with different white noises until you get the appropriate
decomposition result.

4. Calculate the average of the IMF trials which conducted by M-times as the final IMF.

cj(t) =
1
M ∑n

j=1 ci
j(t), (3)

The result of EEMD can be described as a linear combination of IMF and residuals
formulated by Equation (4).

x(t) =
n

∑
j=1

cj(t) + r(t) (4)

The amount of IMF denoted by n, cj(t)(t = 1, 2, . . . t) is the jth IMF extracted in the jth
decomposition in the interval t and r(t) the final residue. It assumed that the complexity
of the data involves information and noises, while the average of the ensemble data with
different noises approximates the actual signal, white noises are used to capture the true
IMF, and themselves are offset by the ensemble mean. The error of adding white noises can
be controlled by Equation (5).

εne =
ε

M
, (5)

where:

M—number of ensemble members
ε—amplitude of the added noises series amplitude
εne —final standard deviation of error
εne—also interpreted as the difference between the input signal and the relevant IMF [32].

2.4. Wavelet Transformation

Wavelet transformation (WT) is a time-frequency decomposition method that provides
a time series basis, both time and frequency [35]. Time series identical to non-stationary
data. The WT is a wave that moves up and down in space-time periodically [36]. WT
can also be described as a short wave. This model describes the frequency of the signal
timing [37]. This model is also known as pre-processing for the denoising process on time
series data by decomposing the data into several series [38].

WT identifies the signal shifts and then analyzes them. The purpose of the analysis
is to obtain the information and frequency spectrum simultaneously [37]. This model is
considered an effective model in analyzing time-frequency after special Fourier analysis in
signal processing [39].

WT has two types of models, namely Continuous Wavelet Transformation (CWT) and
Discrete Wavelet Transformation (DWT) [39]. CWT is modeled by Equation (6).

CWTy(α, τ) =
1√
|α|

∫
y(t)ψ∗

(
t− τ

α

)
dt, (6)

where α is parameters of scale, τ is translation parameters, ψ∗(x) is conjugation complex
functions, and ψ(x) is mother wavelet.

The Discrete Wavelet Transformation (DWT) is modeled in Equation (7).

DWTy(m, n) = α0
−m

2

∫
y(t)ψ∗(α0

−mt− nτ0)dt, (7)

where m is a constant scale (decomposition level), and n is a constant integer.
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3. Methodology

This study proposes a forecasting framework for electricity consumption. The main
challenge in this problem is the complexity of the data pattern. Therefore, a decomposition
algorithm is applied to understand data characteristics. Afterward, it applies an LSTM
algorithm is to forecast the electricity consumption. Figure 4 illustrates the proposed
forecasting framework. The main contribution of this paper is the forecasting framework,
which consists of decomposition algorithm. The decomposition algorithm divides time-
series into several series. Thus, it needs an additional procedure to make a prediction for
the data. Each series is predicted using neural network-based algorithm. Afterward, the
results need an aggregation process. The proposed forecasting framework also involves
the aggregation step for the data.

Energies 2022, 15, x FOR PEER REVIEW 7 of 34 
 

 

3. Methodology 
This study proposes a forecasting framework for electricity consumption. The main 

challenge in this problem is the complexity of the data pattern. Therefore, a decomposition 
algorithm is applied to understand data characteristics. Afterward, it applies an LSTM 
algorithm is to forecast the electricity consumption. Figure 4 illustrates the proposed fore-
casting framework. The main contribution of this paper is the forecasting framework, 
which consists of decomposition algorithm. The decomposition algorithm divides time-
series into several series. Thus, it needs an additional procedure to make a prediction for 
the data. Each series is predicted using neural network-based algorithm. Afterward, the 
results need an aggregation process. The proposed forecasting framework also involves 
the aggregation step for the data.  

 
Figure 4. The proposed forecasting framework. 

3.1. Data Pre-Processing 
Data pre-processing is a critical part of processing complex time-series data. There-

fore, the proposed framework applies data pre-processing techniques, including normal-
ization, statistics descriptive analysis, and decomposition.  

3.1.1. Data Normalization 
Data normalization aims to avoid a large variety of data values. Normalization is 

carried out using the standard scaler method, as shown in Equation (8). 𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =  𝑥𝑖−𝑥𝑚𝑒𝑎𝑛𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛, (8) 

3.1.2. Statistics Descriptive Analysis 
Data exploration includes analyzing the data distribution by observing the data pat-

terns, performing descriptive statistical tests, and performing stationarity tests using the 
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) and augmented Dickey-Fuller (ADF) to see 
the stationarity of the data to strengthen the theory of the method used. Furthermore, data 

Figure 4. The proposed forecasting framework.

3.1. Data Pre-Processing

Data pre-processing is a critical part of processing complex time-series data. Therefore,
the proposed framework applies data pre-processing techniques, including normalization,
statistics descriptive analysis, and decomposition.

3.1.1. Data Normalization

Data normalization aims to avoid a large variety of data values. Normalization is
carried out using the standard scaler method, as shown in Equation (8).

xscaled =
xi − xmean

standard deviation
, (8)

3.1.2. Statistics Descriptive Analysis

Data exploration includes analyzing the data distribution by observing the data pat-
terns, performing descriptive statistical tests, and performing stationarity tests using the
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) and augmented Dickey-Fuller (ADF) to see the
stationarity of the data to strengthen the theory of the method used. Furthermore, data
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visualization is also applied to analyze the data before forecasting based on the pattern
captured from the data visualization.

3.1.3. Data Decomposition

Decomposition is useful for data that have a high level of complexity and non-
stationary data to improve the performance of the forecasting method that will be used. In
the decomposition, two methods are used. They are WT and EEMD.

1. Wavelet Transformation

This study uses DWT to analyze the data with a time-scale function. WT has a multi-
scale resolution and has time-shifting characteristics. Moreover, scaling operations can
observe signals at different scales [40]. Thus, this method is very suitable for handling
non-stationary time series data.

Based on Figure 4, the data are divided into two parts, training set xtrain(t) = 1, 2, . . . , ntrain
and testing set xtest(t) = 1, 2, . . . , ntest. The training set is used to build the forecasting model
after the WT step. The WT has two components, namely approximation, and detailed series.
The approximation series captures the low-frequency features, while the detailed series captures
the high-frequency features of the original data. The approximation series is a further decom-
posed process with WT. The high-frequency noise representing fluctuations and irregularities is
extracted and filtered [41]. DWT consists of two basic components of wavelet functions, namely
father wavelet ϕ and mother wavelet ψ as shown in Equations (9) and (10) [38].

ϕj,k(x) = 2−
j
2 ϕ
(

2jt− k
)

, (9)

ψj,k(x) = 2−
j
2 ψ
(

2jt− k
)

, (10)

where j = 1, . . . , J is the scaling parameter on the decomposition of each jth level. The k is
the translation parameter. The approximation series is transformed by the father wavelet
from the original data. The detailed series is transformed by the mother wavelet. The
detailed series deals with oscillations of length 2j − 2j+1. The approximation and detail
series are modeled in Equations (11) and (12).

Dj,t =
∫ ∞

−∞
y(x)ϕj,t(x)dx, (11)

Aj,t =
∫ ∞

−∞
y(x)ψj,t(x)dx (12)

Finally, the time-series data on electricity consumptions consists of approximation and
detail series as represented in Equation (13).

y(x) = Aj(x) + Dj(x) + Dj−1(x) + . . . + D1(x), (13)

2. Ensemble Empirical Mode Decomposition

The decomposition using EEMD is conducted as follows [30,42]:

(1) Add the White Gaussian Noise series ε j(t) into the train set xtrain(t) and become the
new series of xtrain j(t).

(2) Decomposed the xtrain j(t) into several IMFs cj(t), j = 1, 2, . . . , ntrain and a residue r(t).
(3) Then, repeated the steps 1 and 2 on each j = 1, 2, . . . , NE by adding the white Gaussian

noise series for every repeated process. NE are the amount of repetition.
(4) Take the average of all IMFs and the average of the residue as the final results.
(5) The time series data after EEMD is the sum of all IMFs components and residues as

shown in Equation (14).
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xtrain(t) =
n

∑
j=1

cj(t) + r(t), (14)

3.2. Forecasting Using LSTM Algorithm

The proposed forecasting framework applies many-to-one RNN structure where each
node in the hidden node uses the LSTM structure. Figure 5 illustrates the framework of
RNN and the LSTM features.
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The LSTM model consists of several stages [43]. It starts by determining the informa-
tion that can pass in the cell state. The decision is controlled by the forget gate for time t, ft,
as shown in Equation (15).

ft = σ(W f xxt + W f hht−1 + b f ), (15)

where xt is the input of time t, ht−1 is the output from the hidden note at time t− 1, W f x is
the weight between nodes in the input layer and forget gate, W f h is the weight between
nodes in the hidden layer and forget gate, and b f is bias in forget gate.

The next step is determining information that must be entered into the cell state using
Equation (16).

it = σ(Wixxt + Wihht−1 + bi), (16)

where the it is the output from input gate at time t, Wix is the weight between nodes in the
input layer and input gate, Wih is the weight between nodes in the hidden layer and input
gate, and bi is bias in the input gate.

In addition, the candidate C̃t is generated using Equation (17).

C̃t = tan h
(

Wcxxt + Wchht−1 + bc

)
, (17)

where Wcx is the weight between nodes in the input layer to the output cell, Wch is the
weight between nodes in the hidden layer to the output cell, and bc is the bias of the cell.

Forget the unwanted information by multiplying the old cell state Ct−1 with ft and
adding some new information to the cell state by itC̃t as shown in Equation (18).

Ct = ftCt−1 + itC̃t, (18)

Calculate the final output by compressing the tanh layer with Ct then multiplying by
the output gate ot as shown by Equations (19) and (20).

ot = σ
(

Woxxt + Wohht−1 + bo

)
, (19)

ht = ot tan h(Ct) (20)
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4. Experimental Result
4.1. Dataset Description

This study applies the proposed forecasting framework to six benchmark datasets
and one dataset taken from an education building in Taiwan. The six benchmark datasets
consist of 16 buildings from different locations with different time zones and building
functionalities. The dataset from Taiwan consists of four buildings data. There are
20 buildings studied in this research. These varieties make the data have different pat-
terns and characteristics. The benchmark dataset consists of industrial buildings, ed-
ucation, commercial building, government, and residential. These data are available
at https://github.com/buds-lab/the-building-data-genome-project [44] (accessed on 13
March 2021) and http://traces.cs.umass.edu/index.php/Smart/Smart [45] (accessed on
13 March 2021). The data were initially collected by using a building electricity meter [44].
First, the data are used to analyze the building in question. Then the data are extracted
every certain period, one of which is the analysis of the energy system of the building [44].
The unit is a kilowatt-hour (kWh), and each dataset is distinguished based on the level
of consumption. Table 2 shows the data specifications. The data are available as hourly
data. The forecasting aims to predict one hour. In managing electricity consumption in a
building, time hour interval is enough to set the devices.

Table 2. Dataset specifications.

Dataset Units Data Start Data End Functionalities Timezone

1

UnivClass_Boyd 2012-01-01 0:00 2012-12-13 23:00 College Classroom America/Los_Angeles

UnivLab_Bethany 2012-01-01 0:00 2012-12-13 23:00 College Laboratory America/Los_Angeles

Office_Evelyn 2012-01-01 0:00 2012-12-13 23:00 Office America/Los_Angeles

Office_Bobbi 2012-01-01 0:00 2012-12-13 23:00 Office America/Los_Angeles

2
UnivDorm_Malachi 2014-05-01 0:00 2015-04-30 23:00 Residential America/Chicago

UnivDorm_Mitch 2014-05-01 0:00 2015-04-30 23:00 Residential America/Chicago

3

UnivClass_Seb 2014-12-01 0:00 2015-11-30 23:00 College Classroom Europe/London

UnivLab_Susan 2014-12-01 0:00 2015-11-30 23:00 College Laboratory Europe/London

Office_Stella 2014-12-01 0:00 2015-11-30 23:00 Office Europe/London

Office_Glenn 2014-12-01 0:00 2015-11-30 23:00 Office Europe/London

4
Apt_Moon 2015-01-01 0:00 2015-12-31 23:00 Apartment America/New_York

Apt_Phobos 2015-01-01 0:00 2015-12-31 23:00 Apartment America/New_York

5

UnivExhibit_Hermes 2019-01-02 0:00 2020-01-31 23:00 Exhibition Asia/Taiwan

UnivDorm_Athena 2019-01-02 0:00 2020-01-31 23:00 Residential Asia/ Taiwan

UnivMulti_Zeus 2019-01-02 0:00 2020-01-31 23:00 Multipurpose Asia/ Taiwan

UnivMulti_Ares 2019-01-02 0:00 2020-01-31 23:00 Multipurpose Asia/ Taiwan

6

PrimClass_Uma 2012-02-02 0:00 2013-01-31 23:00 Primary/Secondary
Classroom Asia/Singapore

PrimClass_Umar 2012-02-02 0:00 2013-01-31 23:00 Primary/Secondary
Classroom Asia/Singapore

UnivDorm_Una 2012-02-02 0:00 2013-01-31 23:00 Residential Asia/Singapore

PrimClass_Ulysses 2012-02-02 0:00 2013-01-31 23:00 Primary/Secondary
Classroom Asia/Singapore

Source: [44,45], and an education building in Taiwan.

https://github.com/buds-lab/the-building-data-genome-project
http://traces.cs.umass.edu/index.php/Smart/Smart
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4.2. Statistic Description Analysis

Data exploration using a statistics description approach is a simple yet effective
way to analyze the data concentration and distribution. Table 3 summarizes the statis-
tics descriptive of the data. Table 3 represents the level of energy consumption of each
building. The average value shows that dataset 5, the education industry, has very high
consumption because it is used for residential in the University, multipurpose buildings,
laboratories, classrooms, and offices. Multipurpose and residential buildings in the Uni-
versity have the highest average energy consumption. On the contrary, the apartment and
primary/secondary class buildings have the lowest energy consumption.

Table 3. Descriptive statistics.

Dataset Units Mean Stdev Variance Min Max

1

UnivClass_Boyd 22.199 1.912 3.655 16.788 28.452

UnivLab_Bethany 72.946 17.247 297.451 43.634 124.788

Office_Evelyn 217.398 85.811 7,363.45 98.444 479.186

Office_Bobbi 74.42 28.538 814.43 33.225 157.675

2
UnivDorm_Malachi 88.061 31.071 965.429 35.25 180.25

UnivDorm_Mitch 62.82 17.281 298.637 32.25 116.25

3

UnivClass_Seb 63.365 25.922 671.973 10 141

UnivLab_Susan 19.157 11.801 139.27 4 56

Office_Stella 66.442 26.473 700.829 20 143

Office_Glenn 34.035 15.484 239.753 5.1 85.26

4
Apt_Moon 1.077 0.93 0.864 0.018 6.872

Apt_Phobos 1.382 1.241 1.539 0.012 8.715

5

UnivExhibit_Hermes 0.293 0.240 0.058 0.044 2.68

UnivDorm_Athena 111.908 46.138 2128.691 26.246 347.304

UnivMulti_Zeus 90.112 33.631 1131.061 35.927 222.969

UnivMulti_Ares 28.454 13.916 193.655 9.055 94.036

6

PrimClass_Uma 12.375 9.01 81.184 1 39

PrimClass_Umar 21.739 17.24 297.221 1 73

UnivDorm_Una 23.535 8.673 75.213 1 49

PrimClass_Ulysses 25.279 26.157 684.207 1 103

Furthermore, a data stationarity test is carried out to show whether each series is
stationary or non-stationary. This study performs the Kwiatkowski-Phillips-Schmidt-Shin
(KPSS) test and the augmented Dickey-Fuller (ADF) test for the stationarity test. The KPSS
test is a unit root test for the stationarity of data on a trend. It is often referred to as a
trend-stationary test [46]. The ADF test is a statistical test that is more popular than the
KPSS test [47]. The ADF test has the same function as the KPSS test, but it tests whether the
data are linear or the difference is stationary. The difference between trend or difference
stationary is that the stationary trend has a deterministic average, or the shocks caused
to the data will return to its path. While difference stationary has a stochastic average
property that has permanent shocks, it has the weakest stationary nature of the data [47].

The hypothesis for the KPSS test is as follows:
H0—The data are stationary (trend stationary)
H1—The data have a unit root. Thus, the data are non-stationary
Table 4 shows the results of the KPSS test, which consists of the p-value and the critical

value using four different settings. If the p-value < 0.05, then we reject H0, which means
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the data are non-stationary. Otherwise, the data are stationary. Based on the KPPS test,
Office_Evelyn, UnivLab_Susan, and PrimClass_Umar are stationary.

Table 4. Results of KPSS and ADF test.

Series
KPSS Test ADF Test Combination

of KPSS and
ADF ResultsTest Statistics p-Value Interpretation Test Statistics p-Value Interpretation

UnivClass_Boyd 1.325 0.01 non-stationary −7.268 1.61 × 10−10 stationary difference
stationary

UnivLab_Bethany 0.319 0.01 non-stationary −10.656 4.54 × 10−19 stationary difference
stationary

Office_Evelyn 0.143 0.055 stationary −13.55 2.42 × 10−25 stationary stationary

Office_Bobbi 0.301 0.01 non-stationary −10.983 7.37 × 10−20 stationary difference
stationary

UnivDorm_Malachi 1.19 0.01 non-stationary −2.511 0.1128005 non-stationary non-stationary

UnivDorm_Mitch 1.091 0.01 non-stationary −3.878 0.0022008 stationary difference
stationary

UnivClass_Seb 0.715 0.01 non-stationary −11.924 4.96 × 10−22 stationary difference
stationary

UnivLab_Susan 0.087 0.1 stationary −11.191 2.36 × 10−20 stationary stationary

Office_Stella 2.471 0.01 non-stationary −5.587 1.36 × 10−6 stationary difference
stationary

Office_Glenn 1.63 0.01 non-stationary −5.76 5.70 × 10−7 stationary difference
stationary

Apt_Moon 3.329 0.01 non-stationary −4.209 0.000635 stationary difference
stationary

Apt_Phobos 3.636 0.01 non-stationary −4.159 0.0007739 stationary difference
stationary

UnivExhibit_Hermes 1.966 0.01 non-stationary −8.045 1.81 × 10−12 stationary difference
stationary

UnivDorm_Athena 1.805 0.01 non-stationary −4.727 7.49 × 10−5 stationary difference
stationary

UnivMulti_Zeus 2.787 0.01 non-stationary −6.364 2.43 × 10−8 stationary difference
stationary

UnivMulti_Ares 1.663 0.01 non-stationary −6.671 4.58 × 10−9 stationary difference
stationary

PrimClass_Uma 0.232 0.01 non-stationary −11.223 2.00 × 10−20 stationary difference
stationary

PrimClass_Umar 0.119 0.1 stationary −12.612 1.65 × 10−23 stationary stationary

UnivDorm_Una 0.577 0.01 non-stationary −3.643 0.0049932 stationary difference
stationary

PrimClass_Ulysses 0.216 0.01 non-stationary −11.645 2.11 × 10−21 stationary difference
stationary

On the other hand, the hypothesis for the SDF test is as follows:
H0—the data have a unit root. Thus, the data are non-stationary
H1—the data are stationary (difference stationary)
Unlike the KPSS test, the hypothesis of the ADF test is the opposite. If the p-value < 0.05,

then reject H0 which means the data are stationary (difference stationary). Otherwise, the
data are non-stationary. The ADF test result in Table 4 shows that only UnivDorm_Malachi
is non-stationary.

To see the level of the stationarity of data based on the KPSS and ADF tests, this study
refers to the possible outputs generated based on:

• Case 1: KPSS and ADF tests are non-stationary, then the series is non-stationary.
• Case 2: KPSS and ADF tests are stationary, so the series is stationary.
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• Case 3: KPSS test is stationary, and ADF is non-stationary, then the series is trend-stationary.
The treatment must be done by eliminating the trend to make the series stationary.

• Case 4: KPSS is non-stationary, and ADF is stationary, so the series the difference
stationary. Differentiation is used to create a stationary series.

The combined result of the KPSS and ADF tests in Table 4 reveals that UnivDorm_Malachi
is non-stationary. The Office_Evelyn, UnivLab_Susan, and PrimeClass_Umar are station-
ary. The other series is the difference stationary category (weak), which is the lowest
stationary category.

Data visualization in Figure 6 presents the pattern of each series. The charts are available
in a span of one year of hourly data resolution. Figure 6 shows that several buildings have
similarities in data patterns. Some buildings have similar consumption patterns as Apt_Moon
and Apt_Phobos buildings, but both buildings have very low consumption levels. In addition,
UnivDorm_Malachi, as the only non-stationary series, has an uneven consumption pattern.
Some buildings have stable consumption patterns such as Office_Bobbi, Office_Evelyn, Univ-
Class_Boyd, UnivLab_Bethany, UnivDorm_Mitch, Office_Glenn, Office_Stella, UnivClass_Seb,
UnivLab_Susan, UnivMulti_Ares, UnivMulti_Zeus, PrimClass_Ulysses, PrimClass_Ulysses.
Buildings UnivDorm_Athena, UnivExhibit_Hermes, UnivMulti_Ares, UnivMulti_Zeus have a
very high consumption rate and the highest among other buildings.
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4.3. Parameter Setting

This study applies the proposed forecasting framework to predict one hour ahead
data based on one-year data for each building. Herein, the data period is hourly. In the
forecasting process, the data are divided into training, validation, and testing data. Training
data are 70% of the data population of each building, validation data are 20%, and testing
data are 10%. The data splitting process is carried out sequentially, accounting for 70% of
the first data for training. Then, after 70% of the training data, 20% of the data is used for
validation, and the remaining 10% of the data for testing data is calculated after 20% of the
validation data until the last data. The validation is the result of the splitting of data testing
carried out to overcome overfitting in the data, and the model does not understand the
character of the data [48].

The LSTM involves several parameters, including the number of hidden nodes, look-
back periods, activation function, and recurrent activation. To get the best parameter setting
for the forecasting model, this study evaluates several parameter settings as listed in Table 5.
Each parameter set is used for all buildings, with five replications for each building.
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Table 5. Trial of parameter combinations.

Combinations Hidden Nodes Look Back Activation Recurrent Activation

1 64 24 sigmoid sigmoid

2 64 24 sigmoid relu

3 64 24 sigmoid tanh

4 64 24 tanh Sigmoid

5 64 24 tanh relu

6 64 24 tanh tanh

7 64 24 relu sigmoid

8 64 24 relu tanh

9 64 168 sigmoid sigmoid

10 64 168 sigmoid tanh

11 64 168 tanh Sigmoid

12 64 168 tanh tanh

13 128 24 sigmoid sigmoid

14 128 24 sigmoid relu

15 128 24 sigmoid tanh

16 128 24 tanh Sigmoid

17 128 24 tanh relu

18 128 24 tanh tanh

19 128 24 relu sigmoid

20 128 24 relu tanh

21 128 168 sigmoid sigmoid

22 128 168 sigmoid tanh

23 128 168 tanh Sigmoid

24 128 168 tanh tanh

Table 6 shows the best parameter setting for LSTM. This parameter is used of forecast-
ing without decomposition, with EEMD-LSTM, and WT-LSTM. According to Table 6, the
forecasting is conducted using 24 h of look back data. It means that predicting the next one
hour requires the previous 24 h of historical data. The number of hidden nodes indicates
the number of nodes contained in the hidden layers of the LSTM network. The optimizer is
Nadam. Nadam is one of the adaptive movement estimations (Adam) that added momen-
tum to the Nesterov accelerated gradient (NAG). This optimizer works for the gradient
descent process in the process of finding the minimum function by increasing the speed of
convergence and the quality of the studied model. Epoch is number of iterations used for
the forward and backward process on developing the model based on the training dataset.
Activation is used in the cell state of the LSTM structure, while recurrent activation is used
for the gates in the LSTM including input gate, forget gate and output gate.

The forecasting model with EEMD-LSTM involves more parameters. They are the
noise width (white noise’s standard deviation) and ensemble member (trial). This study
uses 0.05 as the noise width and 100 for the ensemble member [32]. Furthermore, the
WT-LSTM is set using a single level of decomposition, symmetric signal extension model,
and Daubechies (db1) wavelet object.
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Table 6. Best parameters setting for the LSTM.

Parameters Values

Layers 1 layer

Hidden nodes 64 nodes

Look back 24 h

Epochs 50 epochs

Optimizer Nadam

Activation Tanh

Recurrent activation Sigmoid

4.4. Forecasting Results Analysis

To evaluate the robustness of the proposed forecasting framework, each forecasting
method is run ten times for each data series. This study evaluates the results based on the
mean absolute percentage error (MAPE), mean squared error (MSE), and mean absolute
error (MAE). These parameters are calculated using Equations (21)–(23).

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (21)

MSE =
∑n

i=1(yi − ŷi)
2

n
(22)

MAE =
∑n

i=1|yi − ŷi|
n

(23)

where yi is the actual value of the period i, ŷi is the predicted value of the period i, and n is
the number of periods. To evaluate the performance of the LSTM, this study also compares
the LSTM with the recurrent neural network (RNN) algorithm.

Tables 7–10 shows the average and standard deviation value of the results. Table 11
shows the comparison of the three approaches based on the MAPE value. These results
reveal that the eight different buildings, including office buildings, lecture laboratories,
lecture classrooms, dormitory or residential in university areas, apartments, multipurpose,
and secondary classrooms, have very error rates. The training error of the EEMD-LSTM
method has the lowest average MAPE value compared to the LSTM and WT-LSTM. It
is followed by the testing error of the EEMD-LSTM, which is still the lowest among the
other methods. It can be caused by the decomposition method itself, which helps in the
denoising process of the time-series data used.

Figure 7 shows the comparison between the actual and predicted value of the energy
consumption. It reveals that for most of the buildings, the predicted value is very close
to the actual value. Furthermore, the standard deviation of the EEMD-LSTM algorithm
shown in Table 9 is relatively small. It indicates that the EEMD-LSTM algorithm has a
stable result.
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Table 7. The MAPE, MSE, and MAE of forecasting using LSTM without decomposition.

Dataset
MAPE (%) MAE MSE

Metrics Train Val Test Train Val Test Train Val Test

Univclass_Boyd
mean 1.95 1.89 2.08 0.44 0.43 0.43 0.34 0.31 0.32

std 0.02 0.02 0.10 0.00 0.01 0.02 0.00 0.01 0.02

Univlab_Bethany
mean 2.78 3.00 2.80 2.11 2.19 2.05 9.14 9.67 8.58

std 0.04 0.04 0.04 0.03 0.03 0.03 0.20 0.42 0.31

Office_Evelyn
mean 4.61 4.63 6.01 10.05 10.10 13.12 438.18 352.39 674.85

std 0.14 0.32 0.12 0.28 0.71 0.23 17.13 48.76 17.05

Office_Bobbi
mean 5.72 7.87 7.83 4.29 5.18 5.40 36.75 48.39 53.76

std 0.08 0.25 0.17 0.05 0.13 0.11 0.90 2.03 2.06

Univdorm_Malachi
mean 4.76 4.71 5.77 3.78 4.86 6.32 35.43 47.07 68.26

std 0.08 0.11 0.12 0.05 0.08 0.10 0.55 0.85 1.99

Univdorm_Mitch
mean 8.10 7.98 7.85 5.74 4.55 4.53 63.85 39.92 38.46

std 0.08 0.31 0.19 0.04 0.18 0.12 0.85 2.65 2.42

Univclass_Seb
mean 3.64 4.75 3.97 2.18 2.40 2.58 8.64 11.63 12.99

std 0.09 0.25 0.11 0.05 0.12 0.07 0.39 1.02 0.86

Univlab_Susan
mean 7.60 13.65 11.11 1.68 2.60 1.97 9.89 21.04 11.58

std 0.58 0.67 0.85 0.07 0.09 0.12 0.46 0.92 0.71

Office_Stella
mean 3.49 5.32 4.07 2.36 2.26 3.12 12.39 11.29 19.02

std 0.07 0.27 0.12 0.05 0.07 0.10 0.63 0.44 1.11

Office_Glenn
mean 6.77 6.71 7.71 2.84 1.63 2.09 16.74 5.80 8.60

std 0.10 0.36 0.16 0.03 0.07 0.03 0.18 0.31 0.20

Apt_Moon
mean 34.31 128.03 39.38 0.21 0.34 0.54 0.16 0.43 0.73

std 2.32 10.51 0.93 0.00 0.00 0.01 0.00 0.01 0.01

Apt_Phobos
mean 47.92 116.12 49.06 0.42 0.38 0.76 0.58 0.40 1.09

std 5.82 13.42 1.26 0.00 0.00 0.00 0.01 0.01 0.01

Univexhibit_Hermes
mean 5.95 9.27 4.98 0.02 0.05 0.01 0.01 0.02 0.00

std 0.12 0.27 0.16 0.00 0.00 0.00 0.00 0.00 0.00

Univdorm_Athena
mean 8.05 8.35 9.69 8.40 9.33 8.32 120.67 155.49 117.45

std 0.12 0.19 0.24 0.12 0.24 0.13 3.35 7.31 3.10

Univmulti_Zeus
mean 5.29 5.66 8.02 5.15 5.18 5.42 53.82 57.52 66.14

std 0.10 0.20 0.68 0.05 0.13 0.32 0.54 2.40 2.78

Univmulti_Ares
mean 7.36 11.21 15.42 1.74 4.01 5.38 9.30 34.07 57.41

std 0.17 0.19 0.25 0.03 0.05 0.07 0.20 1.02 1.33

Primclass_Uma
mean 19.69 17.90 17.27 1.53 1.58 1.56 10.11 8.45 9.41

std 0.45 0.64 0.56 0.03 0.04 0.04 0.28 0.41 0.46

Primclass_Umar
mean 20.59 14.96 24.42 2.67 2.73 3.84 29.92 24.17 41.45

std 0.73 0.60 0.71 0.07 0.07 0.07 0.79 1.40 1.16

Univdorm_Una
mean 18.33 15.33 16.71 2.29 3.64 3.35 15.76 28.33 25.60

std 0.43 0.69 0.36 0.04 0.19 0.10 0.49 3.15 1.63

Primclass_Ulysses
mean 27.09 22.96 28.85 3.33 4.67 5.24 66.45 88.19 99.04

std 0.91 0.77 0.65 0.09 0.19 0.12 1.44 4.82 2.22
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Table 8. The MAPE, MSE, and MAE of forecasting using RNN without decomposition.

Dataset
MAPE (%) MAE MSE

Metrics Train Val Test Train Val Test Train Val Test

Univclass_Boyd
mean 1.76 2.05 2.20 0.40 0.47 0.46 0.29 0.36 0.35

std 0.03 0.02 0.05 0.01 0.01 0.01 0.01 0.00 0.01

Univlab_Bethany
mean 2.73 3.03 2.94 2.06 2.21 2.15 8.77 9.51 8.99

std 0.08 0.08 0.07 0.05 0.05 0.05 0.31 0.41 0.53

Office_Evelyn
mean 4.54 4.07 6.40 9.69 8.70 13.80 401.08 192.37 692.24

std 0.10 0.25 0.14 0.24 0.64 0.25 13.18 24.36 27.48

Office_Bobbi
mean 5.47 8.10 8.02 4.07 5.27 5.50 33.29 48.61 54.71

std 0.13 0.47 0.32 0.07 0.20 0.15 0.90 2.75 2.25

Univdorm_Malachi
mean 4.75 4.94 6.05 3.71 5.12 6.65 33.93 51.35 75.23

std 0.16 0.15 0.14 0.08 0.13 0.14 1.05 1.79 2.95

Univdorm_Mitch
mean 7.51 8.51 8.39 5.27 4.83 4.81 56.00 44.73 42.79

std 0.14 0.28 0.11 0.09 0.15 0.07 1.52 2.30 1.23

Univclass_Seb
mean 3.69 4.93 4.11 2.23 2.51 2.68 8.97 12.88 14.04

std 0.27 0.26 0.26 0.15 0.12 0.15 0.94 0.98 1.09

Univlab_Susan
mean 7.76 13.98 10.54 1.66 2.59 1.88 9.15 20.25 10.53

std 0.35 0.81 0.66 0.04 0.07 0.06 0.35 0.64 0.46

Office_Stella
mean 3.33 5.37 4.02 2.24 2.25 3.09 10.67 10.93 18.45

std 0.08 0.32 0.10 0.04 0.11 0.08 0.38 0.77 0.72

Office_Glenn
mean 6.54 7.52 8.34 2.69 1.77 2.23 15.33 6.48 9.48

std 0.33 1.09 0.58 0.10 0.18 0.11 0.75 0.68 0.50

Apt_Moon
mean 36.55 159.74 42.12 0.21 0.36 0.55 0.15 0.43 0.74

std 2.59 16.61 0.85 0.01 0.01 0.01 0.01 0.01 0.01

Apt_Phobos
mean 54.35 151.33 52.99 0.41 0.39 0.80 0.53 0.39 1.13

std 8.97 23.68 1.77 0.01 0.01 0.01 0.02 0.02 0.03

Univexhibit_Hermes
mean 6.15 9.73 5.44 0.03 0.05 0.01 0.01 0.02 0.00

std 0.11 0.15 0.17 0.00 0.00 0.00 0.00 0.00 0.00

Univdorm_Athena
mean 7.63 8.48 10.13 7.87 9.46 8.73 108.82 159.33 127.89

std 0.34 0.29 0.47 0.22 0.31 0.26 4.32 9.61 7.01

Univmulti_Zeus
mean 5.21 5.79 7.84 5.04 5.30 5.21 52.10 58.06 63.32

std 0.13 0.22 0.57 0.12 0.16 0.27 1.91 2.34 2.67

Univmulti_Ares
mean 7.35 11.59 15.58 1.70 4.12 5.44 8.73 34.78 57.09

std 0.41 0.23 0.23 0.07 0.07 0.08 0.29 0.91 1.47

Primclass_Uma
mean 18.71 18.13 17.58 1.49 1.66 1.62 9.68 9.39 9.71

std 0.66 0.86 0.60 0.05 0.05 0.04 0.38 0.40 0.39

Primclass_Umar
mean 19.80 15.31 26.64 2.56 2.78 3.94 28.12 24.25 42.46

std 1.02 0.73 1.23 0.10 0.11 0.13 0.56 1.09 1.24

Univdorm_Una
mean 16.60 15.87 18.10 2.00 3.78 3.63 12.95 28.49 28.56

std 0.55 0.64 0.45 0.05 0.18 0.11 0.57 2.29 1.50

Primclass_Ulysses
mean 26.55 23.11 31.51 3.22 4.71 5.32 62.17 88.43 98.03

std 1.62 0.90 1.17 0.12 0.20 0.18 1.93 3.71 3.50
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Table 9. The MAPE, MSE, and MAE of forecasting using EEMD-LSTM model.

Dataset
MAPE (%) MAE MSE

Metrics Train Val Test Train Val Test Train Val Test

Univclass_Boyd
mean 0.63 0.71 1.66 0.14 0.16 0.34 0.04 0.04 0.19

std 0.01 0.04 0.12 0.00 0.01 0.02 0.00 0.00 0.03

Univlab_Bethany
mean 1.00 1.09 1.05 0.74 0.78 0.76 1.02 1.06 1.00

std 0.02 0.01 0.01 0.01 0.00 0.00 0.04 0.01 0.01

Office_Evelyn
mean 1.99 1.47 2.65 4.01 3.08 5.56 49.55 17.35 113.79

std 0.04 0.01 0.02 0.08 0.03 0.02 3.20 0.24 1.50

Office_Bobbi
mean 1.90 2.30 2.43 1.36 1.50 1.65 3.25 3.85 4.90

std 0.04 0.02 0.01 0.03 0.02 0.01 0.14 0.07 0.06

Univdorm_Malachi
mean 1.95 2.36 4.80 1.43 2.22 4.97 4.22 7.71 31.57

std 0.17 0.45 1.15 0.11 0.35 1.18 0.51 1.83 12.41

Univdorm_Mitch
mean 2.75 3.00 3.52 1.89 1.64 1.95 7.58 4.96 6.12

std 0.04 0.18 0.22 0.04 0.09 0.12 0.29 0.47 0.50

Univclass_Seb
mean 1.41 1.72 1.56 0.83 0.83 0.98 1.16 1.17 1.98

std 0.02 0.02 0.02 0.01 0.01 0.01 0.04 0.02 0.07

Univlab_Susan
mean 4.40 7.02 9.23 0.84 1.23 1.29 1.94 4.70 2.79

std 0.26 0.37 0.95 0.06 0.05 0.12 0.26 0.07 0.34

Office_Stella
mean 1.33 2.04 1.50 0.91 0.82 1.14 1.40 1.18 2.20

std 0.07 0.07 0.10 0.05 0.02 0.08 0.18 0.05 0.28

Office_Glenn
mean 2.38 2.98 3.24 0.94 0.68 0.85 1.69 0.75 1.12

std 0.07 0.15 0.53 0.03 0.03 0.13 0.19 0.07 0.30

Apt_Moon
mean 23.93 118.99 21.52 0.08 0.16 0.24 0.02 0.07 0.13

std 1.26 0.86 0.36 0.00 0.00 0.00 0.00 0.00 0.00

Apt_Phobos
mean 34.12 70.89 19.59 0.17 0.14 0.30 0.07 0.04 0.18

std 1.14 1.72 0.11 0.00 0.00 0.01 0.00 0.00 0.01

Univexhibit_Hermes
mean 5.24 7.91 5.20 0.01 0.02 0.01 0.00 0.00 0.00

std 0.15 0.12 0.23 0.00 0.00 0.00 0.00 0.00 0.00

Univdorm_Athena
mean 2.79 2.58 5.25 2.85 2.88 4.40 13.05 13.86 28.51

std 0.05 0.02 1.15 0.06 0.04 0.86 0.47 0.44 10.02

Univmulti_Zeus
mean 1.83 2.53 3.11 1.71 2.20 1.98 5.26 7.98 8.44

std 0.01 0.16 0.22 0.02 0.12 0.16 0.15 0.70 0.54

Univmulti_Ares
mean 3.39 4.52 6.22 0.73 1.55 1.98 1.19 5.00 7.10

std 0.08 0.10 0.33 0.02 0.02 0.07 0.07 0.08 0.38

Primclass_Uma
mean 7.03 6.76 6.84 0.65 0.67 0.69 1.67 1.49 1.48

std 0.10 0.09 0.11 0.00 0.01 0.02 0.02 0.06 0.09

Primclass_Umar
mean 8.30 6.84 9.60 1.08 1.09 1.52 3.73 3.72 6.72

std 0.21 0.14 0.18 0.03 0.01 0.01 0.23 0.08 0.10

Univdorm_Una
mean 5.30 4.99 5.52 0.88 1.32 1.28 2.42 4.18 4.51

std 0.12 0.06 0.25 0.02 0.01 0.04 0.09 0.25 0.22

Primclass_Ulysses
mean 11.97 10.66 15.31 1.41 1.75 2.08 7.87 10.13 13.39

std 0.31 0.62 1.60 0.03 0.08 0.18 0.34 0.52 1.06
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Table 10. The MAPE, MSE, and MAE of forecasting using WT-LSTM model.

Dataset
MAPE (%) MAE MSE

Metrics Train Val Test Train Val Test Train Val Test

Univclass_Boyd
mean 2.27 2.13 2.32 0.52 0.49 0.49 0.45 0.41 0.43

std 0.03 0.03 0.15 0.01 0.01 0.03 0.01 0.01 0.04

Univlab_Bethany
mean 3.67 3.77 3.72 2.79 2.78 2.71 17.40 16.80 15.66

std 0.13 0.06 0.08 0.09 0.04 0.02 1.40 0.64 0.61

Office_Evelyn
mean 6.93 6.46 8.52 14.94 13.87 18.26 778.93 577.21 1101.00

std 0.28 0.14 0.35 0.12 0.18 0.26 27.29 48.76 16.85

Office_Bobbi
mean 7.13 8.96 9.24 5.31 5.87 6.36 53.01 64.22 76.37

std 0.50 0.52 0.51 0.30 0.17 0.17 4.16 1.83 2.95

Univdorm_Malachi
mean 5.69 5.37 6.70 4.48 5.52 7.32 46.42 59.43 92.47

std 0.12 0.04 0.11 0.11 0.02 0.16 1.74 0.43 4.79

Univdorm_Mitch
mean 8.95 8.18 8.12 6.22 4.63 4.64 71.12 40.07 39.44

std 0.05 0.09 0.09 0.04 0.03 0.04 0.77 0.32 0.23

Univclass_Seb
mean 4.95 6.38 5.58 2.93 3.27 3.58 17.13 23.83 26.35

std 0.29 0.07 0.15 0.16 0.03 0.12 1.90 0.56 2.36

Univlab_Susan
mean 9.11 16.59 14.42 2.04 3.22 2.57 13.30 29.66 17.03

std 0.18 0.32 0.29 0.05 0.05 0.07 0.34 0.88 0.51

Office_Stella
mean 4.93 6.94 5.58 3.28 2.95 4.24 21.66 19.04 32.83

std 0.27 0.20 0.15 0.19 0.06 0.12 1.56 0.28 1.34

Office_Glenn
mean 7.91 8.01 8.89 3.31 1.98 2.44 22.41 9.12 12.21

std 0.01 0.15 0.05 0.01 0.01 0.01 0.10 0.07 0.05

Apt_Moon
mean 40.73 192.76 46.55 0.23 0.38 0.57 0.18 0.46 0.77

std 0.44 3.32 0.48 0.00 0.00 0.00 0.00 0.00 0.00

Apt_Phobos
mean 67.95 184.62 59.32 0.48 0.40 0.82 0.68 0.40 1.17

std 4.94 15.60 1.25 0.00 0.00 0.01 0.01 0.01 0.02

Univexhibit_Hermes
mean 10.06 15.13 7.55 0.04 0.07 0.02 0.01 0.03 0.00

std 0.25 0.06 0.04 0.00 0.00 0.00 0.00 0.00 0.00

Univdorm_Athena
mean 9.68 10.20 12.47 9.92 11.25 10.68 163.75 229.93 189.17

std 0.24 0.08 0.37 0.17 0.11 0.24 4.29 3.24 8.39

Univmulti_Zeus
mean 6.12 6.72 8.39 6.04 6.33 5.83 76.16 93.89 80.47

std 0.07 0.05 0.04 0.06 0.03 0.05 0.92 0.90 1.85

Univmulti_Ares
mean 11.57 15.12 19.66 2.60 5.32 6.81 17.10 54.41 90.39

std 0.27 0.14 0.50 0.05 0.02 0.13 0.43 0.58 3.07

Primclass_Uma
mean 19.61 18.80 18.36 1.69 1.77 1.81 11.61 12.21 12.83

std 0.36 0.34 0.32 0.04 0.03 0.03 0.26 0.33 0.23

Primclass_Umar
mean 22.26 17.09 28.61 3.13 3.10 4.45 32.27 29.29 47.92

std 0.81 0.43 0.49 0.08 0.03 0.01 1.14 0.72 0.16

Univdorm_Una
mean 21.54 17.96 18.51 2.92 4.31 3.82 19.63 33.75 28.21

std 1.52 0.90 1.09 0.29 0.20 0.31 2.04 2.44 3.73

Primclass_Ulysses
mean 28.72 22.05 29.78 3.65 4.59 5.38 71.42 92.63 109.26

std 0.98 0.50 0.38 0.18 0.11 0.10 1.13 2.14 2.52



Energies 2022, 15, 1035 21 of 35

Table 11. Comparison of algorithms based on MAPE (%).

Dataset
Training Validation Testing

RNN LSTM EEMD
LSTM

WT
LSTM RNN LSTM

EEMD
LSTM

WT
LSTM RNN LSTM

EEMD
LSTM

WT
LSTM

Univclass_Boyd 1.76 1.95 0.63 * 2.27 2.05 1.89 0.71 * 2.13 2.2 2.08 1.66 * 2.32

Univlab_Bethany 2.73 2.78 1 * 3.67 3.03 3 1.09 * 3.77 2.94 2.8 1.05 * 3.72

Office_Evelyn 4.54 4.61 1.99 * 6.93 4.07 4.63 1.47 * 6.46 6.4 6.01 2.65 * 8.52

Office_Bobbi 5.47 5.72 1.9 * 7.13 8.1 7.87 2.3 * 8.96 8.02 7.83 2.43 * 9.24

Univdorm_Malachi 4.75 4.76 1.95 * 5.69 4.94 4.71 2.36 * 5.37 6.05 5.77 4.8 * 6.7

Univdorm_Mitch 7.51 8.1 2.75 * 8.95 8.51 7.98 3 * 8.18 8.39 7.85 3.52 * 8.12

Univclass_Seb 3.69 3.64 1.41 * 4.95 4.93 4.75 1.72 * 6.38 4.11 3.97 1.56 * 5.58

Univlab_Susan 7.76 7.6 4.4 * 9.11 13.98 13.65 7.02 * 16.59 10.54 11.11 9.23 * 14.42

Office_Stella 3.33 3.49 1.33 * 4.93 5.37 5.32 2.04 * 6.94 4.02 4.07 1.5 * 5.58

Office_Glenn 6.54 6.77 2.38 * 7.91 7.52 6.71 2.98 * 8.01 8.34 7.71 3.24 * 8.89

Apt_Moon 36.55 34.31 23.93 * 40.73 159.74 128.03 118.9 * 192.76 42.12 39.38 21.52 * 46.55

Apt_Phobos 54.35 47.92 34.12 * 67.95 151.33 116.12 70.89 * 184.62 52.99 49.06 19.59 * 59.32

Univexhibit_Hermes 6.15 5.95 5.24 * 10.06 9.73 9.27 7.91 * 15.13 5.44 4.98 * 5.2 7.55

Univdorm_Athena 7.63 8.05 2.79 * 9.68 8.48 8.35 2.58 * 10.2 10.13 9.69 5.25 * 12.47

Univmulti_Zeus 5.21 5.29 1.83 * 6.12 5.79 5.66 2.53 * 6.72 7.84 8.02 3.11 * 8.39

Univmulti_Ares 7.35 7.36 3.39 * 11.57 11.59 11.21 4.52 * 15.12 15.58 15.42 6.22 * 19.66

Primclass_Uma 18.71 19.69 7.03 * 19.61 18.13 17.9 6.76 * 18.8 17.58 17.27 6.84 * 18.36

Primclass_Umar 19.8 20.59 8.3 * 22.26 15.31 14.96 6.84 * 17.09 26.64 24.42 9.6 * 28.61

Univdorm_Una 16.6 18.33 5.3 * 21.54 15.87 15.33 4.99 * 17.96 18.1 16.71 5.52 * 18.51

Primclass_Ulysses 26.55 27.09 11.97 * 28.72 23.11 22.96 10.66 * 22.05 31.51 28.85 15.31 * 29.78

*: best value.
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Figure 7 shows the comparison between the actual and predicted value of the energy 
consumption. It reveals that for most of the buildings, the predicted value is very close to 
the actual value. Furthermore, the standard deviation of the EEMD-LSTM algorithm 
shown in Table 9 is relatively small. It indicates that the EEMD-LSTM algorithm has a 
stable result.  
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Furthermore, this study also applies a time-series cross-validation to evaluate the
forecasting result. Figure 8 shows the framework of the time-series cross-validation applied
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in this study. Tables 12–15 summarize the results of the time-series cross-validation using
five-fold cross-validation. In addition, Table 16 shows the comparison of all algorithms.
These tables show that the EEMD-LSTM algorithm obtains the best result for most of the
buildings in terms of the average of MAPE, MSE, and MAE.
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The EEMD decomposition is carried out to the maximum decomposition based on
the amount of data used on its implementation. Meanwhile, the LSTM method has the
lower error rates than the WT-LSTM because the wavelet object selection uses Daubechies
1 (db1). The db1 is the same as the oldest wavelet object, namely Haar. This object is the
most commonly used object to simplify the implementation, and db1 only has two filters.
Each filter is used to catch the low pass filter and high pass filter. The low pass filter is used
to decompose the signal that is close to the original data. It is called the approximation
series. The high pass filter contains noise named as detail series. The decomposition level
used single or one level. Therefore, it only produces an approximation series and a detailed
series which causes the signal decomposition to be less smooth and results in a fairly high
error compared to the LSTM.

Based on the forecasting results, the apartments buildings consisting of Apt_Moon
and Apt_Phobos have the highest error percentage rates in training, validation, and testing.
This is caused by the raw data of the two buildings having an extreme slope, touching
below 1 kWh. Those two buildings have the lowest level of consumption among the other
two buildings in the same category. The uneven distribution of the raw data causes high
errors during the forecasting process. Both buildings have significantly different data
ranges in several periods. For several periods, the data are relatively stable, while at other
periods significantly decreases. The forecasting model is generated based on the training
set, which is relatively stable data, while the validation and testing set has a significantly
different pattern. Therefore, the validation and testing errors are significantly higher than
the training error. The result of five-fold cross-validation also shows that the average MAPE
of the third fold has the highest value. At the third fold, the training and test set has a
significantly different pattern as illustrated in Figure 9.
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Table 12. The cross-validation result of forecasting using LSTM without decomposition.

Dataset
MAPE (%) MAE MSE

Metrics Train Val Test Training Metrics Train Val Test Testing

Univclass_Boyd
mean 1.98 1.98 1.99 0.45 0.46 0.44 0.34 0.35 0.33

std 0.07 0.13 0.13 0.01 0.04 0.04 0.02 0.05 0.06

Univlab_Bethany
mean 2.96 3.06 3.08 2.24 2.32 2.28 10.52 10.84 10.39

std 0.23 0.16 0.29 0.17 0.18 0.30 1.74 2.17 2.75

Office_Evelyn
mean 5.63 4.80 5.37 12.82 10.55 11.57 669.14 437.24 468.07

std 1.30 2.40 1.68 3.55 5.98 3.80 296.19 523.21 320.99

Office_Bobbi
mean 5.79 6.87 7.22 4.34 5.04 5.07 38.45 48.06 47.68

std 0.13 0.91 0.81 0.16 0.71 0.53 3.48 13.67 8.96

Univdorm_Malachi
mean 4.86 5.29 5.88 3.55 4.63 5.91 30.76 45.01 72.17

std 0.52 0.80 1.18 0.68 1.72 2.15 9.96 27.51 48.69

Univdorm_Mitch
mean 8.13 8.09 8.39 5.50 5.58 5.43 60.91 58.41 56.46

std 0.61 1.08 0.92 0.24 0.99 1.08 3.79 17.42 21.47

Univclass_Seb
mean 4.28 4.53 4.64 2.55 2.72 2.71 11.97 14.12 13.77

std 0.82 0.68 0.64 0.44 0.58 0.41 4.46 6.71 4.08

Univlab_Susan
mean 9.63 12.22 12.63 2.08 2.50 2.38 13.45 18.08 16.36

std 2.95 2.93 2.30 0.49 0.73 0.59 5.24 10.41 8.70

Office_Stella
mean 3.89 4.66 5.73 2.66 2.72 3.19 15.49 14.90 19.74

std 0.52 1.25 2.37 0.42 0.55 0.59 4.56 5.22 5.80

Office_Glenn
mean 7.19 7.30 8.49 3.19 2.54 2.47 20.13 13.62 12.25

std 0.66 1.02 1.76 0.49 1.05 0.82 4.86 10.11 8.00

Apt_Moon
mean 28.05 82.00 110.99 0.23 0.31 0.38 0.15 0.32 0.43

std 16.15 58.70 79.86 0.01 0.08 0.11 0.05 0.19 0.23

Apt_Phobos
mean 42.10 78.63 130.29 0.50 0.45 0.53 0.71 0.60 0.65

std 17.11 48.48 117.08 0.09 0.16 0.16 0.16 0.33 0.30

Univexhibit_Hermes
mean 5.45 8.01 9.19 0.02 0.03 0.05 0.01 0.01 0.02

std 1.34 2.83 4.45 0.01 0.03 0.04 0.01 0.01 0.02

Univdorm_Athena
mean 8.77 9.75 10.53 8.41 10.52 11.53 121.42 184.66 255.98

std 1.10 2.13 1.29 0.44 1.22 2.94 11.49 36.83 165.99

Univmulti_Zeus
mean 5.77 5.63 6.23 5.24 5.39 5.59 57.62 58.09 67.20

std 0.57 0.52 1.13 0.25 0.56 0.53 6.04 11.55 15.04

Univmulti_Ares
mean 7.59 10.44 12.37 1.62 3.22 3.99 7.68 25.13 35.01

std 0.83 2.34 2.29 0.38 1.36 1.25 3.36 17.99 17.34

Primclass_Uma
mean 20.35 24.15 20.05 1.74 2.05 1.72 11.91 16.02 10.39

std 1.92 12.26 3.63 0.27 0.98 0.38 2.76 14.37 4.17

Primclass_Umar
mean 19.94 23.81 22.26 2.77 3.56 3.38 29.92 45.42 36.31

std 2.05 10.09 5.26 0.27 1.20 0.47 4.99 31.71 9.52

Univdorm_Una
mean 15.99 24.26 21.37 2.32 3.46 3.45 15.69 30.04 26.86

std 3.19 12.87 7.79 0.27 0.78 0.49 3.52 15.26 8.09

Primclass_Ulysses
mean 28.54 32.62 30.10 3.95 4.90 4.75 79.57 103.86 88.49

std 2.34 16.08 6.46 0.45 1.84 0.80 8.32 62.30 21.51
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Table 13. The cross-validation result of forecasting using RNN without decomposition.

Dataset
MAPE (%) MAE MSE

Metrics Train Val Test Train Val Test Train Val Test

Univclass_Boyd
mean 1.77 2.15 2.19 0.40 0.49 0.49 0.29 0.40 0.40

std 0.07 0.14 0.19 0.02 0.04 0.06 0.02 0.07 0.09

Univlab_Bethany
mean 2.89 3.16 3.25 2.17 2.38 2.40 9.93 11.15 11.05

std 0.35 0.33 0.45 0.23 0.31 0.41 1.98 3.22 3.55

Office_Evelyn
mean 5.47 5.29 5.70 11.98 11.16 11.90 543.37 413.15 453.10

std 1.19 2.95 2.08 2.97 6.88 4.49 198.38 495.12 346.28

Office_Bobbi
mean 5.56 7.09 7.43 4.14 5.17 5.22 35.50 49.38 49.74

std 0.20 0.91 0.69 0.14 0.78 0.50 2.45 14.41 8.89

Univdorm_Malachi
mean 5.68 6.07 6.65 3.87 5.01 6.46 31.97 47.91 84.84

std 1.54 2.03 1.75 1.01 1.46 2.29 11.43 24.32 65.81

Univdorm_Mitch
mean 7.81 9.26 9.50 5.24 6.33 6.07 55.59 70.74 67.28

std 0.71 1.35 1.07 0.41 1.26 1.15 5.36 23.63 24.65

Univclass_Seb
mean 4.40 4.94 5.05 2.64 2.97 2.97 13.01 16.84 16.74

std 0.82 0.78 1.02 0.51 0.74 0.63 5.50 9.19 7.23

Univlab_Susan
mean 9.90 12.93 13.14 1.96 2.47 2.31 10.95 16.45 14.57

std 2.87 3.40 3.41 0.33 0.68 0.58 2.39 8.78 7.26

Office_Stella
mean 3.92 5.04 6.28 2.63 2.86 3.36 13.88 14.99 20.39

std 0.72 1.68 3.36 0.45 0.74 0.85 3.94 6.17 7.30

Office_Glenn
mean 7.11 8.38 9.45 3.08 2.80 2.73 18.68 15.37 14.02

std 0.95 2.06 2.11 0.41 0.97 0.83 3.58 9.64 8.07

Apt_Moon
mean 34.71 106.15 130.17 0.22 0.34 0.40 0.15 0.33 0.44

std 28.48 78.76 104.87 0.03 0.09 0.11 0.05 0.19 0.22

Apt_Phobos
mean 47.12 116.85 163.98 0.45 0.49 0.57 0.60 0.62 0.67

std 25.02 86.25 137.74 0.05 0.17 0.15 0.09 0.38 0.31

Univexhibit_Hermes
mean 5.91 8.42 9.81 0.02 0.04 0.05 0.01 0.01 0.02

std 1.75 2.84 4.80 0.01 0.03 0.05 0.01 0.01 0.03

Univdorm_Athena
mean 8.70 9.45 10.87 8.21 10.40 12.28 118.95 178.36 312.43

std 1.44 1.47 2.04 1.05 0.85 4.13 28.96 24.06 274.21

Univmulti_Zeus
mean 5.99 6.06 6.69 5.38 5.78 6.13 58.70 65.71 82.24

std 0.78 0.63 0.96 0.52 0.68 0.96 9.33 12.72 28.88

Univmulti_Ares
mean 7.82 10.74 12.56 1.62 3.33 4.05 7.40 26.69 36.11

std 1.56 2.53 2.39 0.48 1.46 1.30 3.66 19.51 17.74

Primclass_Uma
mean 20.94 27.52 21.81 1.77 2.23 1.84 11.34 16.59 10.79

std 2.64 14.96 4.16 0.24 1.01 0.37 2.09 14.08 3.30

Primclass_Umar
mean 21.26 27.60 25.24 2.78 3.83 3.56 27.92 49.36 37.78

std 3.59 14.09 6.78 0.32 1.37 0.47 4.66 35.83 9.91

Univdorm_Una
mean 14.31 25.33 20.67 1.98 3.46 3.37 12.10 29.67 25.06

std 3.51 14.22 5.94 0.32 0.82 0.19 3.46 16.16 2.29

Primclass_Ulysses
mean 33.94 42.54 37.12 4.05 5.48 5.11 77.71 116.37 90.65

std 6.53 26.52 11.83 0.67 2.33 1.03 15.01 83.52 27.24
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Table 14. The cross-validation result of forecasting using EEMD-LSTM.

Dataset
MAPE (%) MAE MSE

Metrics Train Val Test Train Val Test Train Val Test

Univclass_Boyd
mean 0.63 0.71 0.88 0.14 0.16 0.19 0.03 0.04 0.06

std 0.03 0.13 0.30 0.01 0.03 0.06 0.00 0.01 0.03

Univlab_Bethany
mean 1.05 1.07 1.23 0.79 0.80 0.89 1.18 1.16 1.39

std 0.07 0.06 0.32 0.06 0.09 0.21 0.20 0.32 0.58

Office_Evelyn
mean 2.47 2.01 2.42 5.16 4.25 4.92 85.82 69.47 64.00

std 0.74 1.30 1.23 1.68 3.08 2.42 51.94 115.69 59.93

Office_Bobbi
mean 1.96 2.17 2.43 1.40 1.56 1.65 3.46 4.21 4.71

std 0.08 0.18 0.24 0.07 0.23 0.18 0.35 1.22 0.85

Univdorm_Malachi
mean 2.07 1.78 5.79 1.36 1.50 5.13 3.59 4.45 47.03

std 0.42 0.26 3.18 0.31 0.58 2.94 1.41 3.06 44.22

Univdorm_Mitch
mean 2.87 2.85 5.97 1.86 1.89 3.70 7.32 7.07 24.62

std 0.31 0.59 2.70 0.09 0.37 2.00 0.59 2.52 21.42

Univclass_Seb
mean 1.50 1.59 2.27 0.88 0.91 1.26 1.30 1.40 2.78

std 0.09 0.10 0.90 0.05 0.11 0.45 0.15 0.37 1.69

Univlab_Susan
mean 4.54 5.53 6.19 0.85 1.04 1.05 1.86 3.22 3.16

std 0.62 1.18 1.15 0.09 0.33 0.25 0.25 2.24 1.94

Office_Stella
mean 1.37 2.61 11.09 0.93 1.30 4.76 1.44 3.93 50.78

std 0.12 2.32 12.87 0.10 0.85 4.55 0.29 5.54 64.65

Office_Glenn
mean 2.31 2.34 8.09 1.00 0.77 2.35 1.94 1.20 12.21

std 0.15 0.32 6.12 0.12 0.23 1.94 0.45 0.80 14.86

Apt_Moon
mean 17.63 59.03 77.37 0.08 0.13 0.25 0.02 0.05 0.13

std 14.99 48.50 38.83 0.01 0.05 0.13 0.01 0.03 0.10

Apt_Phobos
mean 26.91 49.46 77.26 0.21 0.19 0.34 0.10 0.10 0.28

std 14.49 31.34 44.27 0.05 0.09 0.29 0.04 0.09 0.39

Univexhibit_Hermes
mean 5.18 6.93 15.17 0.01 0.02 0.05 0.00 0.00 0.01

std 0.55 1.63 8.85 0.00 0.01 0.04 0.00 0.00 0.01

Univdorm_Athena
mean 3.14 2.84 4.94 2.94 3.09 5.28 13.88 15.47 57.58

std 0.38 0.41 2.77 0.22 0.27 3.44 2.04 2.52 75.26

Univmulti_Zeus
mean 2.06 2.14 3.90 1.79 1.93 3.33 5.83 6.34 22.32

std 0.25 0.44 2.18 0.12 0.19 2.03 0.79 1.11 26.55

Univmulti_Ares
mean 3.54 3.96 7.39 0.67 1.15 2.00 0.91 3.22 7.38

std 0.42 0.78 3.80 0.15 0.48 0.43 0.46 2.53 2.59

Primclass_Uma
mean 7.74 11.87 10.41 0.72 1.00 0.88 1.82 3.83 2.32

std 1.01 9.63 4.44 0.10 0.66 0.26 0.40 4.30 1.42

Primclass_Umar
mean 8.32 11.38 10.39 1.08 1.57 1.43 3.89 9.90 6.80

std 0.90 6.47 3.01 0.10 0.72 0.27 0.76 9.33 2.96

Univdorm_Una
mean 5.21 9.43 7.85 0.92 1.48 1.48 2.44 6.41 5.02

std 0.68 8.07 3.61 0.09 0.69 0.39 0.55 6.02 1.85

Primclass_Ulysses
mean 13.42 17.74 18.04 1.64 2.29 2.14 9.61 20.13 13.61

std 1.49 11.35 7.26 0.20 1.26 0.64 1.61 19.11 6.44
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Table 15. The cross-validation result of forecasting using WT-LSTM.

Dataset
MAPE (%) MAE MSE

Metrics Train Val Test Train Val Test Train Val Test

Univclass_Boyd
mean 2.30 2.24 2.27 0.52 0.52 0.51 0.46 0.46 0.44

std 0.06 0.14 0.15 0.01 0.04 0.05 0.02 0.06 0.08

Univlab_Bethany
mean 4.04 4.07 4.31 3.06 3.12 3.17 20.75 21.13 20.06

std 0.42 0.24 0.45 0.34 0.35 0.41 5.21 6.86 4.97

Office_Evelyn
mean 8.64 7.17 8.50 19.34 15.36 17.99 1159.95 742.98 961.04

std 1.57 2.00 1.90 4.38 5.63 4.44 421.95 513.37 404.27

Office_Bobbi
mean 7.76 8.37 8.94 5.73 6.11 6.18 62.40 71.40 70.87

std 0.26 1.13 0.95 0.21 1.05 0.69 4.88 24.61 16.28

Univdorm_Malachi
mean 5.88 5.83 6.54 4.16 5.10 6.57 38.91 53.32 87.12

std 0.39 0.66 1.41 0.61 1.98 2.52 11.40 32.06 58.59

Univdorm_Mitch
mean 9.70 8.50 9.21 6.27 5.74 5.80 72.26 58.66 61.10

std 1.13 1.38 1.69 0.24 0.95 1.32 4.71 15.52 24.02

Univclass_Seb
mean 5.60 6.12 6.47 3.35 3.67 3.77 23.80 29.28 29.66

std 0.99 1.06 0.85 0.63 0.73 0.34 8.79 13.46 6.30

Univlab_Susan
mean 12.18 14.85 15.93 2.53 3.00 2.90 16.77 23.83 21.88

std 2.00 3.73 2.79 0.30 0.83 0.54 2.49 12.17 10.01

Office_Stella
mean 5.79 6.06 7.41 3.96 3.64 4.36 31.26 26.88 36.13

std 0.57 0.58 1.35 0.58 0.74 0.63 8.41 9.87 10.53

Office_Glenn
mean 8.39 8.13 9.23 3.77 2.87 2.80 28.07 18.35 16.85

std 0.31 1.05 1.09 0.49 1.13 0.92 5.63 12.81 11.52

Apt_Moon
mean 37.94 114.79 131.96 0.26 0.33 0.41 0.18 0.34 0.46

std 27.42 89.40 95.90 0.02 0.10 0.12 0.04 0.21 0.25

Apt_Phobos
mean 58.37 100.42 134.13 0.60 0.47 0.58 0.92 0.62 0.69

std 22.89 58.93 63.67 0.14 0.19 0.21 0.30 0.40 0.34

Univexhibit_Hermes
mean 8.43 12.06 13.58 0.03 0.05 0.06 0.01 0.02 0.03

std 2.17 5.10 6.91 0.02 0.03 0.05 0.01 0.02 0.03

Univdorm_Athena
mean 11.68 11.10 13.30 11.12 12.07 14.95 210.67 245.96 432.71

std 2.33 2.11 1.94 2.28 1.15 4.76 91.05 43.07 312.91

Univmulti_Zeus
mean 6.70 6.49 7.29 6.13 6.38 6.80 77.49 89.44 106.63

std 0.61 0.38 0.72 0.25 0.82 0.87 3.99 24.35 26.57

Univmulti_Ares
mean 12.62 14.36 16.27 2.52 4.35 5.22 15.05 42.18 57.08

std 0.65 2.45 2.16 0.51 1.69 1.47 6.16 28.26 26.77

Primclass_Uma
mean 21.32 24.95 21.78 2.06 2.21 2.04 15.09 17.83 13.81

std 2.69 13.29 2.99 0.34 0.98 0.37 3.30 13.89 4.91

Primclass_Umar
mean 23.74 25.86 26.54 3.50 3.96 4.15 37.80 45.52 45.54

std 4.30 9.47 5.03 0.49 0.99 0.32 7.91 23.52 7.67

Univdorm_Una
mean 17.37 22.50 23.06 2.59 3.37 3.94 16.29 26.25 30.73

std 4.03 9.72 6.84 0.34 0.61 0.89 4.34 12.45 12.21

Primclass_Ulysses
mean 34.30 37.13 34.27 5.02 5.57 5.52 103.54 118.14 109.34

std 4.40 17.17 7.33 0.70 1.72 0.81 16.75 57.71 30.24



Energies 2022, 15, 1035 30 of 35

Table 16. Comparison of algorithms based on MAPE (%) using time series cross-validation.

Dataset
Training Validation Testing

RNN LSTM EEMD
LSTM

WT
LSTM RNN LSTM EEMD

LSTM
WT

LSTM RNN LSTM EEMD
LSTM

WT
LSTM

Univclass_Boyd 1.77 1.98 0.63 * 2.3 2.15 1.98 0.71 * 2.24 2.19 1.99 0.88 * 2.27

Univlab_Bethany 2.89 2.96 1.05 * 4.04 3.16 3.06 1.07 * 4.07 3.25 3.08 1.23 * 4.31

Office_Evelyn 5.47 5.63 2.47 * 8.64 5.29 4.8 2.01 * 7.17 5.7 5.37 2.42 * 8.5

Office_Bobbi 5.56 5.79 1.96 * 7.76 7.09 6.87 2.17 * 8.37 7.43 7.22 2.43 * 8.94

Univdorm_Malachi 5.68 4.86 2.07 * 5.88 6.07 5.29 1.78 * 5.83 6.65 5.88 5.79 * 6.54

Univdorm_Mitch 7.81 8.13 2.87 * 9.7 9.26 8.09 2.85 * 8.5 9.5 8.39 5.97 * 9.21

Univclass_Seb 4.4 4.28 1.5 * 5.6 4.94 4.53 1.59 * 6.12 5.05 4.64 2.27 * 6.47

Univlab_Susan 9.9 9.63 4.54 * 12.18 12.93 12.22 5.53 * 14.85 13.14 12.63 6.19 * 15.93

Office_Stella 3.92 3.89 1.37 * 5.79 5.04 4.66 2.61 * 6.06 6.28 5.73 * 11.09 7.41

Office_Glenn 7.11 7.19 2.31 * 8.39 8.38 7.3 2.34 * 8.13 9.45 8.49 8.09 * 9.23

Apt_Moon 34.71 28.05 17.63 * 37.94 106.15 82 59.03 * 114.79 130.2 110.99 77.37 * 131.96

Apt_Phobos 47.12 42.1 26.91 * 58.37 116.85 78.63 49.46 * 100.42 163.9 130.29 77.26 * 134.13

Univexhibit_Hermes 5.91 5.45 5.18 * 8.43 8.42 8.01 6.93 * 12.06 9.81 9.19 * 15.17 13.58

Univdorm_Athena 8.7 8.77 3.14 * 11.68 9.45 9.75 2.84 * 11.1 10.87 10.53 4.94 * 13.3

Univmulti_Zeus 5.99 5.77 2.06 * 6.7 6.06 5.63 2.14 * 6.49 6.69 6.23 3.9 * 7.29

Univmulti_Ares 7.82 7.59 3.54 * 12.62 10.74 10.44 3.96 * 14.36 12.56 12.37 7.39 * 16.27

Primclass_Uma 20.94 20.35 7.74 * 21.32 27.52 24.15 11.87 * 24.95 21.81 20.05 10.41 * 21.78

Primclass_Umar 21.26 19.94 8.32 * 23.74 27.6 23.81 11.38 * 25.86 25.24 22.26 10.39 * 26.54

Univdorm_Una 14.31 15.99 5.21 * 17.37 25.33 24.26 9.43 * 22.5 20.67 21.37 7.85 * 23.06

Primclass_Ulysses 33.94 28.54 13.42 * 34.3 42.54 32.62 17.74 * 37.13 37.12 30.1 18.04 * 34.27

*: best value

Buildings such as college classrooms and laboratories have more stable forecasting
results with small errors than other buildings, followed by offices. Another building that
has a high error is the primary/secondary classroom. It is caused by the fairly high dis-
tribution of data based on the buildings in that category. Stationary buildings such as
UnivClass_Boyd, Office_Stella and PrimClass_Uma tend to have small and stable errors
based on data stationarity. The UnivClass_Boyd has the smallest error among other build-
ings. Likewise, UnivDorm_Malachi is the only non-stationary building that has very small
and stable errors in training, validation, and testing.

Further comparison is conducted using statistics Levene’s test and T-test to evaluate
how significant the differences are between the LSTM without decomposition and with
decomposition. The statistics test uses MAPE results as the data. This study runs the
statistical tests using SPSS.

Levene’s test checks whether the variance of the two samples is the same or not with
the following hypothesis below.

H0—both samples have the same variance
H1—both samples have different variances
If the p-value (sig.) is less than 0.05, then reject H0 meaning that the results from the

two methods have different variances. Otherwise, they have the same variances.
The T-test compares the results based on their means with the following hypothesis.
H0—both samples have the similar means
H1—both samples have different means
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If the p-value (sig.) is less than 0.05, then reject H0 meaning that the results from
the two methods are significantly different. Otherwise, their results are not significantly
different.
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The statistics test results summarized in Table 17 reveal that the LSTM and EEMD-
LSTM methods have significantly different variance and average. However, LSTM and
WT-LSTM do not significantly differ in terms of the variance and average. Furthermore,
the results of EEMD-LSTM and WT-LSTM are significantly different in terms of variance
and average.

Table 17. Statistics’ test results.

Comparison Mean Std. Deviation p-Value of Levene’s Test p-Value of T-Test

LSTM 0.153 0.145

-EEMD-LSTM 0.076 0.062

WT-LSTM 0.164 0.135

LSTM vs. EEMD-LSTM - 0.008 Reject H0 0.037 Reject H0

LSTM vs. WT-LSTM - 0.852 Accept H0 0.813 Accept H0

EEMD-LSTM vs.
WT-LSTM - 0.008 Reject H0 0.013 Reject H0
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The test results conclude that the EEMD-LSTM method has a significant difference
compared with the LSTM and WT-LSTM methods. On the other hand, the LSTM method
is not significantly different from the WT-LSTM method. This conclusion is also supported
by the comparison of the average MAPE Test for each method, where the MAPE test
for the EEMD-LSTM method tends to be lower. However, the MAPE of LSTM and WT-
LSTM methods are not significantly different. The results also reveal that the EEMD-LSTM
method obtains better results than the LSTM and WT-LSTM methods.

Based on the previous studies conducted by Imani and Ghassemian [49] and Fang,
Gao, and Ruan [14], the error of LSTM without decomposition is between 3% to 16%.
Meanwhile, for this research, the forecasting results using the LSTM method has an average
error of 15.3%. The results show that EEMD has successfully improved the forecasting
accuracy of the LSTM method.

Finally, this research also provides the recommendation of the forecasting method for
each building, as listed in Table 18. However, for the APT-Moon and APT_Phobos, other
algorithms should be considered because the MAPE of the EEMD-LSTM is still above 20%.

Table 18. Recommendation of the forecasting method.

Units Functionalities Time Zones Recommendation

Office_Bobbi Office America/Los_Angeles EEMD-LSTM

Office_Evelyn Office America/Los_Angeles EEMD-LSTM

UnivClass_Boyd College Classroom America/Los_Angeles EEMD-LSTM

UnivLab_Bethany College Laboratory America/Los_Angeles EEMD-LSTM

UnivDorm_Malachi Residential America/Chicago EEMD-LSTM

UnivDorm_Mitch Residential America/Chicago EEMD-LSTM

Office_Glenn Office Europe/London EEMD-LSTM

Office_Stella Office Europe/London EEMD-LSTM

UnivClass_Seb College Classroom Europe/London EEMD-LSTM

UnivLab_Susan College Laboratory Europe/London EEMD-LSTM

Apt_Moon Apartment America/New_York EEMD-LSTM

Apt_Phobos Apartment America/New_York EEMD-LSTM

UnivDorm_Athena Residential Asia/Taiwan EEMD-LSTM

UnivExhibit_Hermes Exhibition Asia/Taiwan EEMD-LSTM

UnivMulti_Ares Multipurpose Asia/Taiwan EEMD-LSTM

UnivMulti_Zeus Multipurpose Asia/Taiwan EEMD-LSTM

PrimClass_Ulysses Secondary Classroom Asia/Singapore EEMD-LSTM

PrimClass_Uma Secondary Classroom Asia/Singapore EEMD-LSTM

PrimClass_Umar Secondary Classroom Asia/Singapore EEMD-LSTM

UnivDorm_Una Residential Asia/Singapore EEMD-LSTM

5. Conclusions

Energy consumption is predicted to increase continuously. Building as a facility where
most of the human activities happen consumes energy, especially electricity. Without
proper energy management, energy consumption of a building might be inefficient. On
the other hand, managing energy consumption needs information on the future energy
demand. Therefore, this study proposes a forecasting framework to predict the energy
consumption of a building.

The proposed forecasting framework is developed based on LSTM with decomposi-
tion methods to improve the performance of the LSTM. There are three methods evaluated
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in this study. They are the LSTM without decomposition, LSTM with EEMD as the de-
composition, and the LSTM with WT as the decomposition method. The LSTM without
decomposition is the baseline for both EEMD-LSTM and WT-LSTM.

This study applies the proposed forecasting methods on 20 series of energy consump-
tion data from 20 different buildings located in many different countries and different
functions. The experiment shows that the EEMD-LSTM method obtains the smallest error
for 85% of the series. While 15% of the series obtained the smallest error when using the
LSTM method. The average error for LSTM, EEMD-LSTM and WT-LSTM are 15.31%,
7.57%, and 16.36%, respectively. The statistics T-test also reveals that the EEMD-LSTM
method is significantly better than the other two methods.

Meanwhile, the results of the LSTM and WT-LSTM are not significantly different. The
EEMD and WT methods have significantly different values because the EEMD decomposed
the data based on the sample data used. On the other hand, the WT decomposition only
uses a single-level decomposition, and the object wavelets only have two filters. Further
study should increase the decomposition level and the number of filters to improve the
performance of WT. Other hybrid forecasting methods and differences also should be
considered. In addition to the forecasting algorithm, further research should consider
more datasets from different types and locations of the building to get a more general
forecasting framework.
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