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[T I N

Abstract: State of charge (SOC) is one of the most important parameters in battery management
systems, and the accurate and stable estimation of battery SOC for real-world electric vehicles remains
a great challenge. This paper proposes a long short-term memory network based on grid search
and cross-validation optimisation to estimate the SOC of real-world battery systems. The real-world
electric vehicle data are divided into parking charging, travel charging, and finish charging cases.
Meanwhile, the parameters associated with the SOC estimation under each operating condition are
extracted by the Pearson correlation analysis. Moreover, the hyperparameters of the long short-term
memory network are optimised by grid search and cross-validation to improve the accuracy of the
model estimation. Moreover, the gaussian noise algorithm is used for data augmentation to improve
the accuracy and robustness of SOC estimation under the working conditions of the small dataset.
The results indicate that the absolute error of SOC estimation is within 4% for the small dataset and
within 2% for the large dataset. More importantly, the robustness and effectiveness of the proposed
method are validated based on operational data from three different real-world electric vehicles, and
the mean square error of SOC estimation does not exceed 0.006. This paper aims to provide guidance
for the SOC estimation of real-world electric vehicles.

Keywords: electric vehicle; battery system; state of charge; grid search and cross-validation; long

short-term memory

1. Introduction

With the energy crisis and environmental issues becoming increasingly prominent,
new energy vehicles are receiving more and more attention. Electric vehicles (EVs) are grad-
ually gaining ground due to their clean, efficient, and pollution-free characteristics [1-3].
However, it is important to have an accurate SOC estimation for EVs when they are driven
under different operating conditions [4]. Battery SOC estimation is one of the key technolo-
gies for EVs, and its accuracy directly affects the EV energy management control strategy
and EV performance. Meanwhile, it is also an important parameter in the battery manage-
ment system (BMS). On the one hand, it provides the driver with important information
about the driving range. On the other hand, it also provides an important basis for pre-
venting overcharging and overdischarging of the battery [5]. However, due to the complex
electrochemical properties of the battery, it exhibits a high degree of non-linearity during
operation. Additionally, it is not possible to measure the battery SOC state parameters
directly. Battery SOC estimation can only be made from externally measurable battery
terminal voltages, charging and discharging currents, etc. In addition, the estimation
process is susceptible to temperature, cycle time, discharge rate, voltage, and other factors,
making it difficult to accurately estimate battery SOC in real time [6]. As discussed above,
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this paper presents grid search and cross-validation (GSCV)-based optimised LSTM neural
network hyperparameters for real-world EV battery system SOC estimation. Therein, the
grid search and cross validation are used to select the optimal hyperparameters of the LSTM
neural network to improve the accuracy of SOC estimation. This optimization method is
more accurate than manually adjusting the hyperparameters of the LSTM neural network.
Currently, most SOC estimation methods are studied in a laboratory environment, and
most have little reference for real-world battery SOC estimation due to the complex oper-
ating conditions of real-world EVs, large data sampling intervals, and low data accuracy.
In this paper, the SOC estimation of the battery system was researched using real-world
EV operation data, and the results show that the absolute error of the SOC estimation is
less than 4%, and this paper aims to provide guidance on the theoretical implications for
real-world EV battery SOC estimation.

1.1. Literature Review

There has been more research on battery SOC estimation. Based on the choice of battery
SOC estimation methods, battery state estimation algorithms can be broadly classified into:
direct measurement methods, SOC estimation methods based on black-box battery models,
and SOC estimation methods based on state-space battery models.

The direct measurement method is based on battery voltage, current, internal resis-
tance, impedance, and other reproducible parameter variables significantly correlated to the
battery. These battery parameter variables should be relatively easily measurable in practice.
Direct measurement methods include the ampere-hour (Ah) integration method, the open
circuit voltage method, the internal resistance method, and special methods adapted for
specific objects. The Ah method is still widely used due to limitations in BMS computing
capabilities. However, the traditional Ah method is sensitive to external environmental
influences and is not precise in its estimation. Introducing a capacity-integrated correction
factor and building an adaptively improved Ah formula and a complete SOC estimation
model can significantly improve the accuracy of SOC estimation [7]. The estimation error of
the enhanced adaptive method is less than 2% under the combined working conditions of
the two operating conditions. In contrast, the estimation error of the traditional approach
is 5%~10%. Open circuit voltage (OCV) is also widely used for battery SOC estimation.
Ren et al. used adaptive Kalman filtering for power cell SOC estimation based on OCV-
SOC curves [8], and the results showed that the SOC estimation method was effective.
In addition, a joint SOC and internal resistance-based estimation algorithm are used for
practical studies [9]. The relationship between internal resistance and battery capacity is
established by linear fitting, and the capacity converted by internal resistance is applied to
SOC estimation, and the estimation results show that the method can effectively improve
the accuracy of SOC estimation regardless of temperature changes and battery degradation.

Black-box model-based SOC estimation considers the battery as an unknown system,
using the battery current, voltage, and temperature measured online as the model’s input
and the battery SOC as the model’s output. It trains the input and output data through intel-
ligent algorithms and establishes a relationship between the inputs and outputs. Black box
battery models typically use neural networks, support vector machines, and deep learning
to estimate battery SOC values based on input battery state parameters. Chemali et al. [10]
proposed a method for estimating SOC using an LSTM network. The measured voltages,
currents, and temperatures are fed directly into the created network, which learns the input
time series and mapping between the target SOC. In addition, the support vector machine-
based SOC state estimation method is used by mapping samples from the non-linear space
of the battery to the linear space [11]. Experiments show that the joint colourless Kalman
filter and support vector machine algorithm has higher accuracy for SOC estimation, while
the tracking error is lower than 1%. Meanwhile, a deep neural network (DNN)-based SOC
estimation method is proposed [12], using only 10 min of charging voltage and current
data as input to estimate SOC. The method can estimate SOC quickly and accurately with
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an error range of less than 2.03%, and the SOC estimation method based on DNN can also
be transferred to other different types of batteries for SOC estimation.

The state-space battery model is used for battery SOC estimation with filters or ob-
servers. The model inputs are battery current, voltage, and temperature parameters, and
the output is the battery SOC. The equivalent circuit model, parameter identification, and
SOC estimation observer are jointly involved in the state-space model study [13]. An ap-
propriate model is a prerequisite for accurate SOC estimation [14]. A novel SOC estimation
method combining an equivalent circuit model and an adaptive unscented Kalman filter is
carried out, which is demonstrated to have an accuracy advantage in battery system SOC
estimation by comparing the voltage response curves of different n-Resistor-Capacitor (RC)
models and common equivalent circuit models. In addition, SOC estimation combined
with parameter identification also has high accuracy. A variable-length block-wise least-
squares SOC estimation algorithm is proposed [15], which considers the local linear SOC
and open-circuit voltage relationship in operation. The proposed algorithm can accurately
estimate the parameters and track the changes in the parameters. After estimating the
battery parameters, the SOC is calculated directly from the combination of the estimated
parameters and the OCV-SOC relationship. The algorithm is validated by experiments
on real data obtained from laboratory tests. In addition, observer-based SOC estimation
algorithms are also widely used. A SOC estimation method based on the descending order
of unknown input observers is proposed for determining SOC using the OCV-SOC charac-
teristic curve [16]. A set of Sylvester constraint parameters guaranteed the unbiasedness of
the estimation error. Simulation and experiment demonstrate that the proposed observer
has high accuracy in SOC estimation.

As mentioned above, although there are many methods to conduct SOC estimation
for batteries, most of these methods have been studied in laboratory environments. Real-
world EVs operate under complex conditions, so SOC estimation should be conducted for
real-world EV battery systems, and the following are the challenges of conducting SOC
estimation for real-world EVs:

(1) Large sampling interval and low data accuracy for real-world EV data.

(2) Model-based approaches rely on complex mathematical models and have limited
estimation accuracy.

(3) Most machine learning-based SOC estimation methods rely on large amounts of
offline data and are still in the laboratory stage.

1.2. Contributions of this Work

This paper attempts to make several original contributions and improvements to the
current research, as shown in the following:

(1) The EV operating conditions are divided into parking charging, travel charging, and
finish charging. The relevant parameters are extracted under each operating condition
for SOC estimation using Pearson analysis.

(2) Optimizing LSTM neural network hyperparameters based on grid search and cross
validation to improve the accuracy of the proposed method and the absolute error of
SOC estimation within 4% for real-world EVs.

(3) The method’s accuracy is verified by using Gaussian noise to expand the data for
working conditions with small data, and the robustness of the method was verified
by operating data of different EVs.

1.3. Organization of the Paper

The remainder of this paper is structured as follows: Section 2 describes the data
details and pre-processing content. In Section 3, the network architecture of the LSTM, the
GSCV algorithm, and the Gaussian noise algorithm content are described. Section 4 carries
out the analysis of the results, and Section 5 draws conclusions.
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2. Data Description and Pre-Processing
2.1. Data Description

The data used in this study is the driving data of an EV from July to December with
a data sampling interval of 10 s. It contains more than 15 data items, such as the total
voltage, current, and charging mode of the battery system. For this paper, the data is
divided into parked charging, travel charging, and end of charge, depending on the SOC
of the battery system.

2.2. Data Preprocessing

For real-world battery systems, the nonlinear coupling of multiple parameters is
evident, making it difficult to identify the correlation between different parameters and
SOC. Data irrelevant to the battery system were removed from the original data. For
different operating conditions, parameters related to the variation of the battery SOC were
extracted based on Pearson correlation analysis. The data were also grouped and cleaned
for different operating conditions. Finally, due to the small amount of data in the charging
condition, gaussian noise enhancement data was carried out for this condition.

3. Methodology
This section presents the architecture of the LSTM and the main elements of the GSCV

method. In this study, the SOC estimation parameters corresponding to the three working
conditions are extracted by Pearson analysis as the input of the LSTM neural network.
The model accuracy is also improved through the GSCV optimisation algorithm, which
optimises the hyperparameters of the LSTM neural network. The flow of this research is
shown in Figure 1.
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Figure 1. The proposed GSCV optimisation-based LSTM network for SOC estimation process.
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3.1. Battery SOC Definition

The SOC of the battery system is used to reflect the remaining capacity of the bat-
tery, which is defined numerically as the ratio of the remaining capacity to the battery
capacity [17], the definition as shown in Equation (1). Where Q. refers to the remaining
available capacity of the battery at a given moment and Q, refers to the rated capacity of
the battery. Q,, decreases as the battery ages, but the rate of change is small. Battery SOC
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cannot be measured directly but can only be estimated by the battery terminal voltage,
charge and discharge current, and internal resistance parameters. These parameters are also
affected by various uncertainties, such as battery ageing, ambient temperature changes, and
the driving status of EVs, so SOC estimation of the battery system based on real-world EV
data is of great importance to improve the EV’s range and optimise battery performance.

SOC = % x 100% 1)

n

3.2. Pearson Related Analysis

In statistics, the Pearson correlation coefficient is adopted to measure the correlation
between two variables, X and Y. The Pearson correlation coefficient between two variables
is defined as the quotient of the covariance and standard deviation between the two
variables [18], as shown in Equation (2).

_cov(X,Y)  E[(X—px)(Y = py)]
XYy = oy X0y ()

The above equation defines the overall correlation coefficient, which is commonly
represented by the p. Estimating the covariance and standard deviation of the sample gives
the sample Pearson correlation coefficient, as shown in the following;:

(Xi =X)(Yi—Y)
r= d ®)

\/i (X; —X)z\/i (Y; - Y)?
= =1

The correlation coefficient is a dimensionless statistical indicator that takes values
in the range —1 < r < 1. A correlation coefficient less than 0 is a negative correlation,
more than 0 is a positive correlation, and equal to 0 indicates no correlation. Wherein, the
correlation coefficients are classified as shown in Table 1. The larger the absolute value of
the correlation coefficient, the closer the correlation between the two variables.

It

Table 1. Classification of correlation coefficients.

r Correlation
0.8~1 Extremely strong
0.6~0.8 Strong
0.4~0.6 Moderate
0.2~0.4 Weak
0.0~0.2 Extremely weak or no

3.3. LSTM Neural Networks

LSTM networks can represent various nonlinear dynamic systems by mapping input
sequences to output sequences. Recently, some studies have used LSTM neural networks
as a research method, such as energy consumption prediction of power systems based on
LSTM neural networks [19]. Since a single LSTM neural network cannot better satisfy the
time-series and nonlinear regression studies, convolutional neural networks are combined
with LSTM to form hybrid neural networks to improve the accuracy of LSTM models,
and they are applied to power system transient stability identification and photovoltaic
system power generation prediction, etc. [20,21]. In addition, the selection of LSTM optimal
hyperparameters for urban electricity price prediction based on a differential evolutionary
algorithm is also investigated [22]. Thus, LSTM neural networks have great application
prospects in nonlinear regression problems and time series forecasting. The schematic
diagram of the LSTM network structure is shown in Figure 2. During model training, the
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input gate, output gate, and forget gate can allow the LSTM network to delete information
or write new information to the memory unit [23].

(77T ) ]
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Figure 2. Schematic diagram of the LSTM predictor.

Among them, the memory unit determines what information is stored through the
switch of the door, including the element-by-element multiplication operation of the sig-
moid function, whose output range is all between 0 and 1. The new sequence value InP; is
connected to the unit OutP;_; from the previous output, and this combined input will be
squeezed through the tanh layer and passed through the input gate. The input gate is the
tanh layer, activated by the sigmoid function. The sigmoid function of the input gate can
receive and clear any unwanted input vector elements. Values from 0 to 1 can be output
from the sigmoid function, so values close to 0/1 can be trained by connecting inputs to the
weights of these nodes, while some inputs can be blocked or discarded [24,25]. In addition,
the LSTM memory unit has an internal variable P; that is one time step behind, and the risk
of gradient disappearance can be reduced by adding P;_; to create an effective recursive
layer. This recursive loop is controlled by the forgetting gate, and the compression function
of the output layer tanh is ultimately controlled by the output gate, which determines
which values can ultimately be output from the unit OutPt.

Input Gate: The tanh layer activation function compresses the input and can be
represented as:

gt = tanh(bg + InP;IWg + OutP,_1OWy) 4)

where IWg and OWg represent the weights of the input and previous outputs, respectively,
and bg is the input bias.

Multiply the compressed input by the output units of the input gate, which are the
nodes activated by a series of sigmoid activation functions:

it = o(b; + InPIW; + OutP,_;OW;) ®)

This is the first step in LSTMs, as they decide which information will be discarded.
This decision was made by forgetting the door. It accepts inputs from [nPt and OutP;_
and outputs numbers between 0 and 1, where the output value 1 indicates a fully reserved
state and 0 indicates a fully discarded state [26]. For multiparameter prediction of a battery
system, the discarded information can be redundant information such as outliers, noise, or
unrelated parameters. The forgetting door can be calculated as follows:

fi = O'(bf + ITlPtIWf + OutPt,lOWf) (6)

Therefore, the output of the forgetting gate/state loop will be (where the operation
symbol “°” represents the multiplication of each element):

Pi=P_jofi+goi @)
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The final output information is determined by the output gate, which can be imple-
mented as follows:
O = 0(bo + InPIW, + OutP;_10W,) 8)

OutP; = tanh(P;) o O )

Due to the use of recursive networks to manipulate vector sequences, LSTMs can
have five types of input-output mappings, as shown in Figure 3, including one-to-one,
many-to-one, one-to-many, and many-to-many, including m-m with the same number of
inputs and outputs and m-n with different input-output numbers.

one to one __one to many

many to one many to many (m-m) many to many (m-n)

»
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i
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\
1
1
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Figure 3. Five types of mapping for LSTM.

To evaluate the predictive performance of a model, mean relative error (MRE) and
mean square error (MSE) are the two most commonly used error evaluation methods. The
formulas for MRE and MSE in this study can be expressed as:

1 |P— P
MRE = 7; !le! x 100% (10)

i=1 1

MSE — f (P — B)? 11)
n = 1 1
where 7 is the number of training samples or test samples, P; and P; represents the predicted
and actual values, respectively.

3.4. Grid Search and Cross Validation Optimation

In machine learning models, parameters that need to be manually selected are called
hyperparameters. For example, the number of decision trees in the random forest, the
number of hidden layers and nodes in each layer in the artificial neural network (ANN)
model, and the size of the constant in the regular term need to be specified in advance.
Improper selection of hyperparameters can lead to underfitting or overfitting. When
selecting hyperparameters, there are two ways, one is to fine-tune by experience, and
the other is to select parameters of different sizes, bring them into the model, and select
the parameters with the best performance. The GSCV algorithm is a method to optimise
the model’s performance by traversing a given combination of parameters [27]. This
parameter tuning method cycles through all the candidate parameter choices for each
possibility, with the final result being the best-performing parameter. Grid search is suitable
for three or five hyperparameters. By listing a relatively small range of hyperparameter
values, the cartesian product of these hyperparameters is a set of hyperparameters. The
grid search algorithm trains the model using each set of hyperparameters and picks the
hyperparameter combination with the smallest validation error. The algorithm search
process is shown in Figure 4.
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Figure 4. Data set partitioning and grid search: (a) dividing the data set into a training set and a test
set; (b) grid search and cross-validation Schematic.

3.5. Gaussian Noise

Gaussian noise is a class whose probability density function follows a gaussian dis-
tribution, commonly known as Gaussian white noise [28]. The amplitude distribution of
Gaussian white noise obeys the Gaussian distribution, while the power spectral density is
also uniformly distributed. The second-order moments of gaussian white noise are uncorre-
lated, and the first-order moments are constant, which refers to the correlation of successive
signals in time. Gaussian white noise includes thermal noise and scattered particle noise.
In this paper, the amount of data is increased to improve the robustness and accuracy of the
model through Gaussian noise with a Gaussian distribution, as shown in Equation (12).

N2
F(x) = —a—exp(~ 1 1)

N
Q
S

where x is the random variable, y is the position parameter, and ¢ is the scale parameter.

4. Results and Discussion
4.1. Pearson and Heat Map Analysis of SOC Estimation Related Parameters

In this section, the real-world EV data is divided into: parking charging, travel charg-
ing, and finishing charging. Therein, the Pearson correlation analysis is used to extract
the correlation parameters from the real-world EV battery SOC estimation. The results
are shown in Table 2, where Pearson correlation coefficients r}, for the parking charging,
rr for the traveling charging condition, and rr for the finish charging are indicated. The
table shows that the standard SOC variation is related to the total voltage for three operating
conditions. Therefore, the total voltage can be used as one of the input parameters for the
SOC estimation under three operating conditions. Similarly, the maximum cell voltage and
the minimum cell voltage can also be used as one of the input parameters. For the parking
charging condition, speed, charging status, single temperature number, etc. are independent of
SOC variation. At the same time, the correlation coefficient for total current is 0.5501, which
is moderately positive and can therefore be used as an input parameter for the parked
charging condition. In addition, the maximum cell voltage number correlation coefficient
of —0.5286 is moderately negatively correlated and can be used as an input parameter in
the parked condition. In the uncharged condition, the charging status, single temperature
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number, and single voltage number are independent of the standard SOC variation. Finally,
the standard SOC variation is independent of the speed, total voltage, total current, and single
temperature number in the charging completion condition. The next section will show a heat
map analysis of the correlation between specific correlation coefficients.

Table 2. Pearson analysis with parameters related to the SOC for working conditions.

Parameters rp rT rF

Speed NAN —0.0300 NAN

Charging status NAN NAN NAN

Total voltage 0.9673 0.9561 0.9736

Total Current 0.5501 —0.0227 NAN
Mileage —0.1967 —0.2587 —0.1295

Maximum cell voltage 0.9579 0.9657 0.9752
Maximum cell voltage number —0.5286 —0.1829 —0.0228

Minimum cell voltage 0.9661 0.9665 0.9754
Minimum cell voltage number —0.268 —0.2797 —0.2254
Maximum temperature —0.1938 0.2884 —0.2567

Maximum temperature probe number 0.0750 —0.0685 0.0805
Minimum temperature —0.1549 0.2711 —0.2037
Minimum temperature probe number —0.1507 0.0103 —0.2108
Insulation resistance 0.0890 —0.0501 —0.0186
DCDC status 0.0050 0.0417 —0.0356

Single temperature number NAN NAN NAN

Single voltage number NAN NAN NAN

Gear NAN —0.0396 NAN

The analysis of the parking charging condition is illustrated in Figure 5. After elim-
inating the parameters that are not related to the real-world battery SOC variation for
heat map analysis, it can be seen that the parameters related to the parked condition SOC
estimation are mainly total voltage, total current, maximum cell voltage, maximum cell voltage
number, and minimum cell voltage. The analysis of the travel charging condition is shown in
Figure 6, where it can be seen that the real-world battery SOC variation is related to the total
voltage, maximum cell voltage number, and minimum cell voltage number. These parameters
can therefore be used as input parameters for the SOC estimation. Similarly, according
to Figure 7, it can be seen that the SOC estimation for the charge completion condition is
related to the total voltage, maximum cell voltage number, and minimum cell voltage number,
and can also be used as input parameters for SOC estimation.

4.2. SOC Estimation by LSTM Network Based on GSCV Optimization

This section is based on the LSTM network with GSCV optimization for real-world
EV battery SOC estimation. As shown in Figure 8 and Table 3, (a), (c) and (e) indicate the
results of SOC estimation under three different operating conditions. Additionally, (b),
(d) and (f) illustrated the absolute error for SOC estimation results. It can be seen that
under three different working conditions, the absolute error of SOC estimation is controlled
within 4%. This is because the sampling accuracy and interval are relatively low under
real-world EV working conditions, leading to a decline in estimation accuracy. However,
for Figure 8c,d, the absolute error can be well controlled within 2% because of the large
amount of data. Meanwhile, the MSE is kept within a small range. As shown in Table 4,
the errors of various SOC estimation studies are compared. The results of this study are
acceptable due to the low data accuracy and large sampling interval of the real-world EV
data. Therefore, it can be seen that this method greatly affects the large amount of data
generated by the operation of real-world EVs and can be applied to the SOC estimation of
real-world EVs. However, due to the limited finish charging data, this study adopts the
Gaussian noise algorithm to enhance the data, where y = 0 and ¢ = 0.12. Every piece of
fifth data in the original data is grouped, and the noise data is added at the end of each
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group. Nevertheless, some operating points still exist where the SOC estimation cannot
be estimated well after data enhancement by the Gaussian noise algorithm. Therefore, the
proposed method in this paper can achieve accurate SOC estimation for real-world EVs.
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Figure 6. Heat map analysis of the correlation coefficient of the uncharged state.
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Figure 8. SOC estimation results and absolute errors under three different working conditions.
(a) SOC estimation results under parking charging; (b) SOC estimation absolute error under parking
charging; (c) SOC estimation results under travel charging; (d) SOC estimation absolute error under
travel charging; (e) SOC estimation results under finish charging; (f) SOC estimation absolute error

under finish charging.
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Table 3. SOC estimation result error in three different operating conditions.

ire Maximum Minimum
Condition/Error Absolute Error Absolute Error MSE
Parking charging 3.61 -3.35 0.0042
Travel charging 1.54 —1.49 0.0031
Finish charging 1.64 —3.85 0.0067

Table 4. Comparison of errors for various studies.

Method Battery Chemistry Estimated Target Research Environment Precision
. . MAE < 0.2%
PSO-LSTM [1] Li-ion battery SOC Laboratory experiment RMSE < 0.3%
LSTM-RNN [4] Li-ion battery SOC Laboratory experiment RMSE < 1.5%
. . RMSE < 1%
CNN-LSTM [5] Li-ion battery SOC Laboratory experiment MAE < 1%
LSTM [29] Li-sulfur battery SOC Laboratory experiment RMSE < 6%
. . RMSE < 1%
NARX-LSTM [30] Li-ion battery SOC Laboratory experiment MAE < 1%

At the same time, in order to verify the robustness and effectiveness of this method,
this study selects the operation data of three other real-world EVs and divides them
into three different operating conditions. Figures 9 and 10 are the results and MSE of
SOC estimation under different validation conditions, respectively. (a-1), (a-2), and (a-3)
indicated the SOC estimation results for vehicle A. (b-1), (b-2), and (b-3) show the SOC
estimation results for vehicle B. Moreover, (c-1), (c-2), and (c-3) show the SOC estimation
results for vehicle C. It can be seen that the SOC estimation results for different EVs verify
the effectiveness and accuracy of the proposed method. Wherein the MSE does not exceed
0.006 in any case. Therefore, this method has excellent performance for the SOC estimation
of real-world EVs.
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Figure 9. SOC estimation results under different validation cases. (a-1, a-2, a-3) SOC estimation
results of vehicle a under three different working conditions; (b-1, b-2, b-3) SOC estimation results of
vehicle b under three different working conditions; (c-1, ¢-2, ¢-3) SOC estimation results of vehicle ¢
under three different working conditions.
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Figure 10. MSEs of SOC estimation results under different validation cases.

5. Conclusions

Battery SOC is one of the main parameters for the battery management system, but its
inability to be measured directly poses a great challenge for the real-world electric vehicle.
Currently, most SOC estimation methods are still in the laboratory stage. Therefore, it is
critical to investigate the SOC estimation methods for real-world electric vehicles. This
paper indicates a novel grid search and cross-validation optimised long and short-term
memory network hyperparameter approach to conduct battery SOC estimation based on
real-world electric vehicle data. The results showed that optimised hyperparameters of the
long and short-term memory networks could achieve a high accuracy of SOC estimation
with an absolute error of SOC estimation of less than 4%. Wherein the absolute error
accuracy of SOC estimation is less than 2% under the conditions of the large dataset.

In this study, the model’s applicability could not be verified due to the limited data.
However, it is possible to achieve a high accuracy state of charge estimation for features
such as large intervals and low sampling frequency of the sampled data from real-world
electric vehicles, so it can be inferred that the method is equally applicable to data with
similar features.
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