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Abstract: The dye-sensitized solar cell (DSSC) has been on the market as a permanent power source
for indoor IoT edge devices. In recent years, indoor illumination technology has been experiencing
a drastic transition from incandescent and fluorescent lamps toward solid-state lighting devices
with light-emitting diodes (LEDs). In addition to the high power efficiency, a virtue of LEDs is
their prompt response, which enables precise change of the illumination level using pulse-width
modulation (PWM) of the current source, and thus PWM illumination is commonly installed in
society. The light intensity change from off to on states of an LED under PWM driving is literally
infinity, which causes the lighting to flicker. The lighting flicker induces not only an optical illusion
but also biological effects, including serious health problems, which can be mitigated by raising
the modulation frequency. Because the peak intensity of a PWM illumination can be 100 times
that of the average intensity, the indoor solar cell, which has a relatively high series resistance, is
expected to underperform. In this paper, the characteristics of a commercial indoor DSSC under
PWM illumination are studied. It is found that while PWM illumination at low frequency seriously
deteriorates the performance of the DSSC, it recovers at high frequency. The latter feature is not found
in indoor amorphous-Si solar cells, and the electrochemical impedance spectroscopy revealed that
it stems from the electrochemical nature of some components of the series impedance in the DSSC,
offering a key piece of evidence of the superiority for use in the modern indoor application of the
DSSC over traditional amorphous-Si solar cells.

Keywords: dye-sensitized solar cell; indoor light-energy harvesting; pulse width modulation;
solid-state lighting; lighting flicker

1. Introduction

The collection of big data through the Internet of Things (IoT) network consisting of
wireless sensor nodes is becoming an essential tool for the medical, agricultural, manu-
facturing, infrastructure, building management, and energy industries [1]. Because the
peak intensity of a PWM illumination can be 100 times that of the average intensity, the
indoor solar cell, which has a relatively high series resistance, is expected to underperform.
Among them, indoor light-energy harvesting technology using solar cells is one of the most
attractive choices in a silent and comfortable living/working environment where neither a
large thermal gradient nor a strong mechanical vibration exists [2–7].

Organic solar cells, including dye-sensitized solar cells (DSSCs), have been recognized
as one of the most essential key elements of the permanent power source for indoor IoT
devices [5–21]. Compared with the Pb-halide perovskite solar cells, the DSSCs have less
potential hazardousness due to the exclusion of toxic elements such as Pb. This makes them
much more attractive, especially when we bear in mind that the devices, including the solar
cells, are not always disposed of in a correct manner. Research on DSSC, including the de-
velopment of semi-transparent solar cells as decorative power sources and the development
of photocathodes to replace precious Pt electrodes, has been actively conducted [22–26].
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While the commercialization of DSSCs for indoor use has already been achieved [27,28],
the lack of a standard evaluation method for indoor solar cells, which has been repeatedly
pointed out, makes it difficult to compare the performance of different indoor solar cells [6,7].
For example, although fluorescent lamps and light-emitting diodes (LEDs) are used for mod-
ern indoor lighting, their emission spectra vary from product to product. Therefore, any
standard light source with specified spectral irradiance for indoor solar cell evaluation, equiv-
alent to the AM1.5G 1 sun (100 mW/cm2) solar simulator for outdoor solar cell evaluation,
has not been established yet.

Aside from the previously mentioned known problem, the author recently pointed out
that the instantaneous temporal variation of illumination intensity of modern solid-state
lighting devices, known as “light flicker,” may cause another problem in indoor solar
cells [29]. In recent years, indoor illumination technology has been experiencing a drastic
transition from incandescent and fluorescent lamps toward solid-state lighting devices
with LEDs. In addition to the high power efficiency, a virtue of LEDs is their prompt
and linear response, which enables precise change of the illumination level using pulse-
width modulation (PWM) of the current source, and thus PWM illumination is commonly
installed in society.

Figure 1 illustrates various waveforms of PWM illumination, realizing a certain aver-
age illumination intensity of LAVG. The duty cycle D is the ratio of the pulse width TON
at which the LED is powered to the total period T, which is equal to the inverse of the
PWM frequency f PWM of the waveform. As illustrated in the figure, the peak illumination
intensity LON during the time the LED is powered equals LAvg/D. D = 1 corresponds
to the continuous wave (CW), and LON = LAvg in this case. The light intensity change
from off to on states of an LED under PWM driving is literally infinity, and it induces not
only an optical illusion but also biological effects, including serious health problems if the
modulation frequency f PWM is not appropriately high. The f PWM is typically chosen to be
higher than 120 Hz to make the flicker invisible [30,31].
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Figure 1. Various PWM waveforms produce an average illumination intensity, LAvg.

Because the peak intensity of a PWM illumination can be 100 times that of the average
intensity, the indoor solar cell, which has a relatively high series resistance, is expected to
underperform. This paper addresses the impact of lighting flicker on the performance of a
commercial DSSC.

2. Experimental

In this study, a DSSC FDSC-FSC6FG [32] from Fujikura was used as a sample. The
current-voltage characteristics of the sample were measured by a Keithley 2400 source
meter under the illumination of blue light (λ = 470 nm) from a high-power LED driven by
a programmable current source. The reason for choosing the monochromatic LED over a
white LED is that the emission spectrum of the phosphor changes due to the heating of
the LED chip inside a white LED, resulting in a remarkable emission spectrum modulation
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of the white LED [33,34]. In order to maintain the uniformity of the illumination, the LED
was equipped with optical devices to deliver uniform illumination, and the active area of
the sample was covered by a metal mask with a 1 cm × 1 cm square aperture at the center
of the sample.

The illumination intensity of the LED, which is referred to as L0 in this study, was
determined to be 57 mW/cm2 since the current-voltage curve of the sample under the
illumination mimics that under AM1.5G 1 sun illumination produced by an Asahi Spectra
HAL-C100 solar simulator as shown in Figure 2. The power conversion efficiency (PCE) of
the sample under illumination is calculated as 3.6 (6.3)% if we assume the input illumination
power is 100 (57) mW/cm2. In order to maintain the average illumination light intensity L0
regardless of the modulation condition, it was measured by a Thorlabs PM100USB light
power meter equipped with an S405C thermal power sensor head. The use of a thermal
power sensor with a relatively slow response is key to the correct measurement of the
average light intensity of modulated light.
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Figure 2. Current density-voltage characteristics of the DSSC under dark conditions with AM1.5G 1 sun
CW illumination from the solar simulator and 57 mW/cm2 (L0) CW illumination from the blue LED.
The inset shows a photograph of the sample with a metal mask.

The f PWM changed from 50 to 794 Hz, and the D changed within a range of 0.05–1,
as illustrated in Figure 1. The “power-line cycle” parameter of the Keithley 2400 was
set to 50 Hz in order to reject the measurement fluctuation as reported in detail in a
previous paper [35].

The electrochemical impedance spectrum of the DSSC sample was taken by a BioLogic
SP-150 potentiostat at open-circuit voltage under CW L0 illumination. The magnitude of
the sinusoidal voltage was 10 mV. The circuit parameters were extracted by using the solver
function in Microsoft Excel.

3. Results and Discussion

Figure 3 shows the current density-voltage characteristics of the DSSC under various
CW illumination intensities. The fill-factor (FF) of the device rapidly decreased with in-
creasing illumination intensity. The overall phenomenon, which stems from the high series
resistance of the solar cell, is qualitatively the same as that observed in the amorphous-Si
solar cell reported in the previous paper [29]. The photocurrent at a low illumination level
is small, and the voltage loss and thus the power loss caused by the series resistance are
also limited, even if the series resistance is relatively high. However, the loss becomes
high enough to skew the current-voltage curve to lower the FF of the device at a high
illumination level and eventually limit the short-circuit photocurrent.
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Figure 3. Current density-voltage characteristics of the DSSC under CW illumination from the blue
LED with various illumination intensities.

The dependences of the photovoltaic parameters extracted from Figure 3 on the
illumination intensity are summarized in Figure 4. The slope in the double logarithmic
plot of the short-circuit current density (JSC) versus the illumination intensity keeps unity
until the illumination intensity is up to 2L0 and then starts to decline seriously. The slope
in the semi-logarithmic plot of the VOC versus the illumination intensity is not constant
in contrast to the amorphous-Si [29] and organic thin-film [14] solar cells. A significant
reduction in the FF, as well as the PCE, due to the effect of the series resistance of the
photovoltaic cell is also observed. The PCEs at 10L0 and 20L0 are only 16% and 8% of the
PCE at L0, respectively.
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The current density-voltage curves of the DSSC under PWM illumination at f PWM = 50 Hz
with various D are shown in Figure 5. Although the average illumination intensity LAvg is
kept at L0, the JSC, the VOC, the FF, and thus the PCE monotonically decrease by decreasing
D. The decrease mainly comes from the higher LON under the smaller D, which increases the
photocurrent under LON and increases the voltage and power loss due to the series resistance of
the solar cell. In the case of the amorphous-Si solar cell, a simple superposition of the curves
corresponding to the LON illumination and the dark conditions reasonably reproduces the
curves under PWM illumination [29]. That is, the current density J at voltage V under the
PWM illumination at the duty cycle D can be expressed as:

J(V) = D × JLON (V) + (1 − D)× JDark(V), (1)

where JLON and JDark denote the current densities under the CW LON illumination and
the dark conditions, respectively. On the other hand, as shown in Figure 5, the symbols
calculated by Equation (1) seriously deviate from the experimental curves in the case of
the DSSC.
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Figure 5. Current density-voltage characteristics of the DSSC under 50 Hz-PWM illumination from
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in Figure 3.

Figure 6 shows the current density-voltage characteristics of the DSSC under PWM
illumination with varying f PWM and D. Figure 7 summarizes the dependences of the photo-
voltaic parameters extracted from Figure 6 on the f PWM. In contrast to the amorphous-Si
solar cell, in which f PWM does not cause any effect on the photovoltaic parameters [29], the
effect of illumination modulation on the DSSC is mitigated, similar to the biological effects
of lighting flicker, which can be avoided by using properly high f PWM [30,31], providing a
key piece of evidence of the DSSC’s superiority for use in modern indoor applications over
traditional amorphous-Si solar cells [29]. The mitigation of PWM illumination effects on
the photovoltaic performance at higher f PWM corresponds to the reduction of the effective
series resistance at higher f PWM.
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Figure 6. Current density-voltage characteristics of the DSSC under PWM illumination with various
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Figure 7. Dependences of JSC, VOC, FF, and PCE/PCE (L0, CW) of the DSSC on f PWM.

Figure 8a shows an equivalent circuit model of a DSSC. [36] The series impedance
component ZEC represents the electrochemical nature of a DSSC. As shown in the elec-



Energies 2022, 15, 9553 7 of 11

trochemical impedance spectrum in Figure 8b, the effective series resistance, or the real
part of the electrochemical impedance, becomes lower at a higher frequency. The observed
electrochemical impedance clearly consists of three frequency-dependent components and
a pure resistor, R0. The hemispherical nature of the spectrum requires the constant phase
elements (CPEs), which are denoted by Q1–Q3 in the inset, in the equivalent circuit model
of the electrochemical impedance of the DSSC. Each component is attributed as follows [37]:

• R0: The electrical resistance of the transparent electrode;
• R1 || Q1: Charge transfer at the counter electrode (above 1 kHz);
• R2 || Q2: Electron transport in the TiO2 layer and electron-hole recombination (be-

tween 1 Hz and 1 kHz);
• R3 || Q3: Electrolyte diffusion (for frequencies lower than 1 Hz).
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Figure 8. (a) The equivalent circuit model of a DSSC. (b) Nyquist plot of the electrochemical
impedance spectrum of the DSSC at open-circuit voltage conditions under CW L0 illumination.

The circuit parameters extracted by the curve fitting are listed in Table 1. As shown in
Figure 9, the extracted parameters reasonably reproduced the experimental data. Although
these results may provide useful insights into the operating mechanism of the device, we
will not go any further into this. Instead, we will examine the results from an electrical
engineering perspective, which has rarely been considered. In the viewpoint of electrical
circuit theory, an imaginary part of the electrochemical impedance provides a “short-cut”
path for sinusoidal current components with sufficiently high frequency [38].

Table 1. Circuit parameters of the equivalent circuit model extracted by the least-squares curve fitting
from the electrochemical impedance spectrum in Figure 8b.

Circuit Parameter Value

R0 [Ω] 8.12
R1 [Ω] 2.34

Q1 [F·s(a
1
−1)] 1.55 × 10−4

a1 0.783
R2 [Ω] 4.37

Q2 [F·s(a
2
−1)] 2.89 × 10−3

a2 0.925
R3 [Ω] 0.361

Q3[F·s(a
3
−1)] 0.339

a3 1
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Figure 9. Bode plots of the experimental data and fitting curves of (a) real and (b) imaginary parts
of the electrochemical impedance spectra of the DSSC. The frequency dependences of individual
electrochemical components are also shown.

Figure 10a shows the waveform of the photocurrent i(t) generated by the PWM
illumination. For simplicity, assume that the ZEC is a simple circuit consisting of R0, R1,
and Q1, as shown in Figure 10b. The real part of the ZEC at DC is R0 + R1. If the series
resistance, or the real part of the series impedance, of a solar cell does not have any
frequency dependence like an amorphous-Si solar cell, the average power dissipated in the
ZEC is expressed as follows:

P1 = (R0 + R1)ION
2D, (2)

where ION corresponds to the photocurrent under LON = LAVG/D.
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Figure 10. (a) Waveform of the photocurrent i(t) generated by the PWM illumination. (b) Simplified
electrochemical impedance of a DSSC.
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The waveform of the photocurrent generated by PWM illumination with principal
angular frequency ω0 can be expressed by the following Fourier series:

i(t) = ION

(
D + ∑∞

n=1
2

nπ
sin(nDπ) cos(nω0t)

)
, (3)

with Equation (3), P1 can also be expressed as,

P1 = (R0 + R1)ION
2

(
D2 + 2 ∑∞

n=1

(
1

nπ
sin(nDπ)

)2
)

. (4)

On the other hand, Q1 is short-circuited if ω0 is high enough, so the real part of the
ZEC can be approximated as R0. In this case, the average power dissipated in the ZEC is

P2 = (R0 + R1)(IOND)2 + 2R0 ION
2 ∑∞

n=1

(
1

nπ
sin(nDπ)

)2
. (5)

By comparing Equations (2) and (5), we can see that the power loss due to R0 + R1 has
decreased by a factor of D. In this case, the power loss is determined solely by LAVG = LOND,
regardless of D.

From Equations (2) and (4):

2 ∑∞
n=1

(
1

nπ
sin(nDπ)

)2
= D(1 − D), (6)

thus, we obtain the following.

P2 = (R0 + R1)(IOND)2 + R0 ION
2D(1 − D) (7)

P2

P1
=

R0 + R1D
R0 + R1

. (8)

These equations predict that the power loss inside a DSSC is reduced more under
a high-frequency PWM modulation with a smaller D, thanks to the unique frequency-
dependent electrochemical impedance of a DSSC.

4. Conclusions

In recent years, indoor light-energy harvesting has been recognized as one of the key
potential applications of organic solar cells like DSSCs. Previous studies have paid attention
only to the characteristics of low-intensity CW light irradiation. PWM modulation, on the
other hand, with short-time intensity variation that humans cannot perceive, is widely
used in modern solid-state indoor lighting. Such intensity modulation has been a blind
spot in conventional research on the indoor application of solar cells. One of the main
reasons some solar cells are considered suitable for indoor rather than outdoor use is their
relatively high series resistance. For this reason, under PWM light irradiation that gives
a momentarily high light intensity to cover the dark period, there is a possibility that
the electric power under PWM illumination does not achieve the level expected from the
average illumination intensity.

In this paper, the characteristics of a commercial indoor DSSC under PWM illumination
have been studied. It has been found that while PWM illumination at low frequency
seriously deteriorates the performance of the DSSC, it recovers at high frequency. The latter
feature is not found in indoor amorphous-Si solar cells, and the electrochemical impedance
spectroscopy revealed that it stems from the electrochemical nature of some components of
the series impedance in the DSSC, offering a key piece of evidence of the superiority for
use in the indoor application of the DSSC over traditional amorphous-Si solar cells in the
modern solid-state lighting era.
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