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Abstract: Energy system models that consider variable renewable energy sources (VRESs) are com-
putationally complex. The greater spatial scope and level of detail entailed in the models exacerbates
complexity. As a complexity-reduction approach, this paper considers the simultaneous spatial and
technological aggregation of energy system models. To that end, a novel two-step aggregation scheme
is introduced. First, model regions are spatially aggregated to obtain a reduced region set. The aggre-
gation is based on model parameters such as VRES time series, capacities, etc. In addition, spatial
contiguity of regions is considered. Next, technological aggregation is performed on each VRES,
in each region, based on their time series. The aggregations’ impact on accuracy and complexity
of a cost-optimal, European energy system model is analyzed. The model is aggregated to obtain
different combinations of numbers of regions and VRES types. Results are benchmarked against
an initial resolution of 96 regions, with 68 VRES types in each. System cost deviates significantly
when lower numbers of regions and/or VRES types are considered. As spatial and technological
resolutions increase, the cost fluctuates initially and stabilizes eventually, approaching the benchmark.
Optimal combination is determined based on an acceptable cost deviation of <5% and the point of
stabilization. A total of 33 regions with 38 VRES types in each is deemed optimal. Here, the cost is
underestimated by 4.42%, but the run time is reduced by 92.95%.

Keywords: energy system optimization; computational complexity; spatial aggregation; technological
aggregation; time series clustering; contiguity constraints

1. Introduction
1.1. Background: Spatiotemporal Energy System Optimization Models

In the light of international agreements to reduce greenhouse gas (GHG) emissions [1],
participating governments have introduced policies that promote increasing the shares
of renewable energy sources (RES) in energy systems. However, the design and real-
time operation of an energy system with large shares of RES is highly challenging due to
the intermittency of primary energy sources (e.g., wind and solar energy). Additionally,
energy demand sites may sometimes be far away from eligible locations for the installation
of RES [2]. In short, there exists a spatiotemporal gap between electricity demand and
supply. To reduce this, transmission and storage options are necessary. Additionally,
conversion technologies to convert produced electricity into a storable form, and vice
versa, are required. The combination of these technologies makes up a highly complex
energy system.

The deployment and operation of such a system is not straightforward. The long-term
planning and strategic deployment of these technologies is required. For this, it is vital
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to assess the impact of different decisions relating to the technologies’ capacity, operation,
location, combination, etc.

An energy system optimization model (ESOM) that accounts for the spatial and
temporal dependencies of these technologies and the dynamic nature of energy demand
can be employed to support the decision-making process. These spatiotemporal ESOMs
minimize a certain objective by optimizing different technologies’ locations, capacities, and
operation, subject to various system-specific and user-defined constraints [3].

In general, ESOMs are formulated in the following manner:
Given an ESOM, which contains:

• Spatial description: Geographical area and the network of regions within it. Each
region in this network is treated as a single node with transmission connections to
neighboring regions.
Note: Each region is assumed to be a lossless copper plate. Under this assump-
tion, the infrastructure and restrictions of energy transport, within the region, are
disregarded [4].

• A set of technologies within each region:

– Different generation, storage, conversion, and transmission technologies.
– Minimum and maximum capacity of each.
– Capital, operating, maintenance costs, etc.

Subject to constraints such as:

• The energy demand.
• Resource availability and its maximum operation limit.

Determine:

• Capacity and location of different technologies.
• Operation (defined in terms of capacity factor (CF) time series) of each technology.

These are set such that a certain performance criterion is optimized, such as minimiza-
tion of the total cost of the energy system or minimization of GHG emissions.

Although different spatiotemporal ESOMs have been developed that have the same
general formulation as described above, they primarily differ in terms of the optimization
criteria. For instance, Welder et al. [5] developed an ESOM whose optimization criteria
is to reduce the total annual cost (TAC) of the energy system. Meanwhile, Samsatli and
Samsatli [6] developed a multiobjective ESOM that can be optimized to obtain an energy
system with minimal cost, maximal profit, minimal CO2 emissions, or maximal energy
production, or any desired combination of these.

1.2. The Computational Complexity Issue

One of the major challenges concerning ESOMs is their associated computational
complexity [7]. According to Ridha et al. [8], ESOMs have four complexity dimensions.
These are:

1. Mathematical complexity: Mathematical formulation of the model and its ability to
take the stochastic behavior of the system into consideration.

2. Temporal complexity: Temporal resolution and scope of the model.
3. Spatial complexity: Spatial resolution and scope of the model.
4. System scope: System’s parts and level of detail that the model considers.

A steady improvement in the quality and availability of data allows for incorporation
of greater detail in the ESOMs [9]. However, as the level of detail increases, so too does the
complexity along one, a combination, or all the abovementioned complexity dimensions.
Increase in the complexity of ESOMs necessitates more computational power and longer
solving times. Frew and Jacobson [10] show that beyond a certain level of complexity,
ESOMs become computationally intractable.
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1.3. Data Aggregation for Complexity Reduction

Several approaches have been previously taken to address the computational com-
plexity of ESOMs [11]. One approach is to reduce their size by employing data aggregation
techniques as a preprocessing step prior to optimization. Among different data aggregation
approaches, temporal aggregation is especially popular. The basic idea here is to coarsen
the temporal resolution of demand and supply time series [12].

Other forms of data aggregation techniques include spatial and technological aggrega-
tion. Spatial aggregation reduces the ESOM data along the spatial dimension. Here, model
regions are aggregated by merging contiguous regions with similar properties [13]. This
reduces the spatial resolution of the ESOM, thereby reducing its spatial complexity.

On the other hand, technological aggregation involves the aggregation of technologies,
based on similar properties. For instance, all wind turbines present in a region can be
aggregated based on the similarity in their time series to obtain a representative set. In
terms of the aforementioned complexity dimensions, this reduces the system scope by di-
minishing the level of detail considered. A pictorial description of spatial and technological
aggregation is displayed in Figure 1.

Spatial Aggregation of Regions

Type X

Type Y
Type Y

Type X

Type Y

Type X

Type Y
Type X

Type Y
Type X Type X Type Y

Regional Technological Aggregation

Figure 1. Pictorial description of the spatial aggregation of regions and technological aggregation
within each newly-defined region.

1.4. Objective

In the literature, it is seen that the common practice is to simply consider administrative
regions as ESOM regions. For instance, Welder et al. [5] consider the federal states of
Germany. Regarding technological resolution, it is common to simply aggregate each
ESOM technology data within each defined region [5,12,14]. For instance, demand and
generation time series are averaged, and their capacities are summed [5]. Although such
simplifications significantly reduce the computational complexity, the accuracy of the
results can be largely affected.

In this paper, we present novel spatial and technological aggregation techniques
and a two-step aggregation scheme that allows us to combine these aggregations. The
objective then is to apply this scheme to a highly resolved ESOM instance and investigate
their combined impact on its accuracy and computational complexity. The aggregation
procedure is as follows:

1. First, the model regions are aggregated.
2. Next, the CF time series of variable renewable energy source (VRES) (i.e., wind turbine

and photovoltaic) are aggregated within each newly-defined region.

The remainder of this paper is structured as follows: Section 2 explores previous work
on spatial and technological aggregation and identifies some research gaps and challenges
associated with them. In Section 3, the developed aggregation methods that attempt to
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close these identified gaps and the abovementioned aggregation scheme are introduced.
The experimental results are presented in Section 4. A summary and discussion can be
found in Section 5. The main conclusions of the study are drawn in Section 6. Finally, some
potential areas of future research are discussed in Section 7.

2. State of Research
2.1. Spatial Aggregation of Regions

According to Fischer [15], the aggregation of regions involves forming of homoge-
neous region sets from an initial set of regions. Each homogeneous set consists of spatially
contiguous regions (i.e., neighboring regions) having a high degree of similarity with
respect to an attribute or a set of attributes. In essence, aggregation of regions is a spatially
constrained clustering problem. The four approaches to solving this problem are as follows:
(i) sequentially applying a conventional clustering technique with no regard to geography
and then only grouping similar regions identified if they are contiguous; (ii) adding x and
y coordinates of each region’s centroid as its two additional attributes, thereby encourag-
ing regions to group only with neighboring regions; (iii) explicitly including the spatial
contiguity constraints in the clustering procedure; and (iv) employing graph-theory-based
algorithms which reduce a connected graph into connected subgraphs, maximizing a
similarity criterion within each of them [16].

In the context of energy systems analysis, spatial aggregation is commonly viewed as
a network reduction problem. For instance, Hörsch and Brown [17] considered the Euro-
pean electricity transmission network and applied k-means clustering [18] to reduce this
network. The aim here is to reduce the network while maintaining the major transmission
corridors. The attributes considered for similarity definition are demand and generation
capacities. In addition to these attributes, geographical locations are considered to ensure
spatial contiguity.

According to Biener and Rosas [19], it is important to consider electrical grid charac-
teristics during network reduction as it ensures accurate grid representation in the reduced
ESOM. To that end, they introduced a network reduction method that takes electrical
distances between nodes as the similarity defining attribute. A combination of density-
based graph clustering [20] and agglomerative hierarchical clustering [21] methods were
used to cluster the nodes. Using quality indicators such as the root-mean-square error,
they compared their method with the one developed by Hörsch and Brown [17]. Most of
the quality indicators chosen showed that their method outperformed that developed by
Hörsch and Brown [17].

Cao et al. [4] assessed the German transmission grid. They considered the marginal
costs of the total power supply as the similarity defining attribute and spectral cluster-
ing [22]—a graph-theory-based algorithm was used to cluster the nodes. The number
of clusters was set to 20 and the ESOM was run for both the reduced case and the fully
resolved one. In comparison to the fully resolved case, the reduced case showed a deviation
of 7.4% in the optimization results, but the computing time was drastically reduced to 4.3%.

In the HotMaps Horizon2020 project [23], the European NUTS3 regions [24] are
aggregated based on various energy potentials (e.g., wind, solar, agricultural residues
potentials, etc.), economic (e.g., electricity and gas prices) and sociodemographic (e.g.,
population and GDP) attributes. Additionally, geographic locations are considered. k-
means clustering is used to cluster the regions and the NbClust tool [25] is employed to
identify the optimal number of clusters. The results show that NUTS3 regions can be
reduced to 17 clusters. It is noteworthy that although the geographic locations of the
regions are considered during clustering, not all regions in the clusters are contiguous.

The e-Highway2050 project [26] considers various attributes to define similarity be-
tween regions, such as population, mean wind speed and solar irradiation, installed thermal
and hydro capacity, and agricultural areas and natural grasslands. These attributes are
weighted according to their significance. In addition, geographic locations are considered.
The clustering method employed is from the Python module ClusterPy [27]. The algorithm
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is run for one country at a time to avoid grouping the regions of different countries. Here,
the European NUTS3 regions are reduced to 96 regions.

In contrast to the aforementioned works, Siala and Mahfouz [14] began with high-
resolution raster data. They introduced a spatial aggregation based on k-means++ [28]
and max-p regions [16] algorithms. The aggregation of the data cells was based on wind
potential, photovoltaic potential, or electricity demand at a given time. An ESOM was
run for each of these cases and the results were compared to the case of national borders.
They concluded that region definitions based on any one of these characteristics lead to
better optimization results compared to national borders. The attributes considered during
spatial aggregation in the aforementioned works are summarized in Table 1.

Table 1. The attributes consideredduring spatial aggregation in the previous publications.

Publication Attributes Considered

[17] Demand and generation capacities
Geographic locations of the regions

[19] Electrical distances between regions

[4] Marginal costs of the total power supply

[23]
Energy potentials (e.g., wind, solar, agricultural residues potentials, etc.)
Economic (e.g., electricity and gas prices)
Sociodemographic (e.g., population and GDP)
Geographic locations of the regions

[26]

Population
Mean wind speed and solar irradiation
Installed thermal and hydro capacity
Agricultural areas and natural grasslands, etc.
Geographic locations of the regions

[14] Wind potential or photovoltaic potential or electricity demand

2.2. Technological Aggregation

In the literature, it is common to simply aggregate each ESOM component data
within each defined region [11,12,14]. For instance, demand and generation time series
are averaged and their capacities are summed [5]. However, some works investigate the
clustering of time series applied to energy systems.

The clustering of demand time series is performed in some studies [29–31]. With
respect to generation time series, Joubert and Vermeulen [32] optimized wind farm
locations using mean-variance portfolio optimization method. In a preprocessing step,
wind farms were clustered using agglomerative hierarchical clustering. The optimization
was then run for different numbers of clusters and the results were compared with those
obtained in the case of optimization run with unclustered data to determine the optimal
number of clusters. The authors concluded that even in the case of optimal number
of clusters, there was a marginal deviation in the optimization results compared to the
unclustered solution. However, they noted that clustering of the data had the benefit of
reducing computation times.

Munshi and Yasser [33] clustered photovoltaic time series. They applied various
clustering approaches, ranging from conventional techniques such as k-means and hierar-
chical clustering, to genetic algorithms [34] such as ant colony and bat clustering. The
authors concluded that bat clustering exhibited the best performance but is computation-
ally intensive.

In the context of ESOMs, Caglayan et al. [35] addressed the aggregation of VRES.
Here, the time series of each VRES were grouped based on their respective levelized cost of
electricity (LCOE) and the time series within each group were averaged. This procedure
was then repeated for all defined regions. It was seen that considering more than one VRES
time series, per region, leads to a lower TAC compared to one VRES time series, per region.
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Increasing the VRES resolution makes more available cost-competitive locations to choose
from, thereby bringing the overall system costs down.

Radu et al. [36] introduced a two-stage procedure to identify and retain only the
most relevant VRES locations and discard those that have little impact on the results of
optimization. In the first stage, a simplified version of the ESOM was run with a full
set of VRES locations, and the locations chosen during the optimization were deemed
relevant. In the second stage, the full version of the ESOM was run with these VRES
locations. The performance was evaluated by comparing the results with those obtained
when a full version of the ESOM was run with a full set of VRES locations. The results
showed that more than 90% of the relevant VRES locations were correctly identified by the
procedure, and the memory consumption and solver time were reduced by up to 41% and
46%, respectively.

Frysztacki et al. [37] demonstrated the combined effect of spatial and VRES resolution
on the results of the ESOM. The spatial aggregation approach here is similar to the one seen
in Hörsch and Brown [17]. They began with a fine spatial resolution with VRES sites simply
aggregated in each of the regions. They considered a scenario where spatial aggregation
was performed, but the VRES resolution was maintained as is. They compared the results
to a scenario where the spatial aggregation was performed and the VRES sites were simply
aggregated within each newly-defined region. The results showed that system costs are
underestimated at low spatial resolutions, as network bottlenecks are not revealed at lower
resolutions. On the other hand, low VRES resolutions overestimate system costs due to the
unavailability of cost-competitive locations. The authors concluded that both network and
VRES resolution should be sufficiently high to accurately estimate the optimal system costs.
The VRES resolution reduction approaches applied to ESOMs in the aforementioned works
are summarized in Table 2.

Table 2. The VRES resolutionreduction approaches applied to energy system optimization models
(ESOMs) in the previous publications.

Publication VRES Resolution Reduction Approach (within Each Region)

[5,11,12,14] Simply aggregating all the generation sites

[35] Clustering based on levelized cost of electricity (LCOE) of each generation site

[36] Running a simplified version of the ESOM to identify relevant generation sites

[37] Simply aggregating all the generation sites within subregion groups

2.3. Research Gaps and Challenges

An ESOM has several components and corresponding attributes. The attributes could
be (i) one-dimensional regional (region) such as photovoltaic capacity; (ii) two-dimensional
regional (region × time) such as photovoltaic time series; and (iii) two-dimensional con-
nection (region × region) attributes such as electrical distance between regions. A detailed
data structure is given in the next section.

The choice of attributes considered during spatial aggregation of an ESOM depends
on the research question or the aim of the analysis. For instance, if the aim is to determine
optimal VRES capacities based on their potentials and existing transmission grid capacities,
the choice of attributes would be the VRES capacities and time series and the grid capacities.
In this case, the spatial aggregation method should be able to consider attributes with
varying aforementioned dimensions.

Previous works on the spatial aggregation of ESOM consider attributes that are either
one-dimensional regional [4,14,17,23,26,37] or two-dimensional connection [19]. In this
paper, a spatial aggregation method is introduced that can consider the ESOM components’
attributes with varying dimensions. The challenge here is to handle the heterogeneous
dataset. Along with varying dimensions, the attributes can have different data types and
ranges, making it difficult to calculate the similarity between regions based on them.
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Further, considering geographic locations as additional attributes during region group-
ing, to ensure spatial contiguity in the resulting region groups, is seen to be common
in previous works. This, however, does not always ensure spatial contiguity, as seen in
Scaramuzzino et al. [23]. This is especially true if several attributes are considered dur-
ing grouping and all attributes are weighted equally. Therefore, explicitly including the
spatial contiguity constraints during region grouping is more appropriate. The challenge,
though, is to deal with the computational complexity that is involved in imposing these
constraints [38]. Table 3 compares the spatial aggregation approach proposed in this paper
to the aforementioned works.

Table 3. Comparison of the spatial aggregation approach proposed in this paper with the previous works.

Publication
One-Dimensional

Regional Attributes
Considered?

Two-Dimensional
Regional Attributes

Considered?

Two-Dimensional
Connection Attributes

Considered?

Spatial Contiguity
Ensured?

[17,37] 3 7 7 3

[19] 7 7 3 3

[4] 3 7 7 3

[23] 3 7 7 7

[26] 3 7 7 3

[14] 3 7 7 3

This paper 3 3 3 3

In the context of ESOMs, the previous works on technological aggregation do not
consider aggregating based on the VRES time series. In this paper, we consider very
highly resolved VRES data. We cluster each VRES in each region based on the similarity
of VRES time series, and thereby to obtain a representative set. The justification for such
an approach is that the temporal fluctuations present in the time series of VRES play
a crucial role in the design of an energy system. Therefore, technological aggregation
should aim to preserve these.

Finally, the proposed two-step aggregation scheme is data-centric rather than ESOM-
centric. Therefore, the scheme can be applied to any highly resolved ESOM where modelers
face run time issues due to the complexity of the ESOM.

3. Methodology
3.1. Energy System Optimization Model Details

For the analysis, an open-source optimization framework called the Framework for
Integrated Energy System Assessment (FINE) [5] is employed. The mathematical formula-
tion of FINE is given in Appendix A. Setting up an ESOM using FINE essentially involves
adding various energy system components with their corresponding data. Figure 2 displays
various component classes, their components, and data attributes corresponding to each.
These attributes can be classified into two types:

1. Regional attributes:These attributes are region-specific. They can be one-dimensional
(region) or two-dimensional (region × time). Examples of one- and two-dimensional
regional attributes are the maximum capacity and CF time series of a wind turbine,
respectively.

2. Connection attributes: These attributes characterize the connections between regions.
They are always two-dimensional (region × region). An example of a connection
attribute is the capacity of a DC cable between two regions.
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Figure 2. The general data structure of an ESOM.

Several attributes belonging to various system components, with varying dimensions,
data types, and data ranges, make up a highly complex data structure. These data are
stored as a netCDF file. Python’s xarray module [39] is used to read the saved netCDF files.
The computations are then performed on the read-in xarray dataset.

3.2. General Workflow

Figure 3 shows the general workflow adopted in this study. The highly resolved
wind turbine and photovoltaic installations used in this study were obtained using the
open-source tools Renewable Energy Simulation toolkit (RESKit) [40] and Geospatial Land
Availability for Energy Systems (GLAES) [41]. These tools provide wind turbine and
photovoltaic locations (x and y coordinates), capacities, and CF time series. To determine
which of these locations belong to which regions, a geometric operation is performed where
the locations are matched with the region geometries, which are present in a shapefile.
Here, this operation is termed as conversion of locational data into regional data.
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Figure 3. Block diagram depicting the general workflow adopted. The blocks highlighted with a gray
background are the focus of this study.

Initially, an ESOM is set up by adding various system components. In this ESOM, just
one type of each component is present in each region. For instance, there is one photovoltaic
in each region, which is an aggregation of all photovoltaics for that region. The spatial
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aggregation block takes as its input these ESOM data (in the form of a netCDF file) and a
shapefile with the initial region geometries. It results in two outputs—a netCDF file and a
shapefile with aggregated data and region geometries, respectively.

Next, conversion of locational data into regional data is performed with the aggregated
region geometries. The output is fed to the technological aggregation block. Here, the
aggregation is performed separately for wind turbines and photovoltaics.

Next, the wind turbines and photovoltaics present in the aggregated ESOM are re-
placed by the datasets resulting from technological aggregation. Further, to keep the
computation time within reasonable limits, temporal aggregation is performed on the
resulting dataset. Finally, optimization is performed on the aggregated ESOM.

3.3. Spatial Aggregation
3.3.1. Algorithm

To aggregate the regions, the Hess model [42], also known as k-medoids clustering, is
employed here. The aim is to partition a given region set V to form k groups.

If the number of regions in V is n and i and j are two arbitrary regions, then the Hess
model uses the following n2 binary variables:

[H]xij =

{
1, if i is assigned to a group with center at j
0, otherwise.

(1)

The Hess model is formulated in the following manner:

min ∑
i∈V

∑
j∈V

D(i, j)xij (2)

where D(i, j) is the distance between the regions i and j.
It is subject to the following constraints:

∑
j∈V

xij = 1 ∀i ∈ V (3)

∑
j∈V

xjj = k (4)

xij ≤ xjj ∀i, j ∈ V (5)

Constraints (3) ensure that each region is assigned to a group and only one group.
Constraint 4 ensures that k groups are formed. Finally, Constraint (5) ensures that a region
i is only assigned to region j if j is chosen to be a group’s center. In order to ensure
spatial contiguity in the resulting region groups, contiguity constraints, first introduced
by Oehrlein and Haunert [43] for spatial aggregation, are employed here. The constraint
formulation is based on the concept of (a, b) − separators. An (a, b) − separator can be
defined as a subset of regions C ⊆ V\{a, b} that, if removed, would destroy all paths
connecting regions a and b. Now, for regions a and b to belong to a group, at least one
of the regions from C should also be present in this group. Otherwise, a and b would be
disconnected. Mathematically, this condition is expressed as follows:

∑
c∈C

xcb ≥ xab ∀C ⊆ V\{a, b} (6)

With the aim of speeding up the calculations, the model is first solved without the con-
tiguity constraints. The resulting region groups are scouted for disconnected region pairs
and, subsequently, contiguity constraints for these region pairs are added and the model
is solved again. This iterative process is stopped once all the regions in each group are
connected (spatial aggregation code is published in the Python package https://github.

https://github.com/FZJ-IEK3-VSA/tsam/blob/master/tsam/utils/k_medoids_contiguity.py
https://github.com/FZJ-IEK3-VSA/tsam/blob/master/tsam/utils/k_medoids_contiguity.py
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com/FZJ-IEK3-VSA/tsam/blob/master/tsam/utils/k_medoids_contiguity.py (accessed
on 4 October 2022)).

3.3.2. Distance Measure

As previously noted, the ESOM dataset has varying dimensions, data types, and
ranges. No well-known distance function is capable of directly calculating the distance
between regions in this case. Therefore, a custom distance is defined to calculate the
distance between region pairs. This distance definition is based on the residual sum of
squares and works on the values normalized across each data attribute. Mathematically,
the distance between two regions a and b is defined as follows:

D(a, b) = Dr_1d(a, b) + Dr_2d(a, b) + Dc_2d(a, b) (7)

where
Dr_1d(a, b) is the cumulative distance of all one-dimensional regional attributes be-

tween the two regions, and is defined by:

Dr_1d(a, b) = ∑
i∈Dr_1d

(i(a)− i(b))2 (8)

Dr_2d(a, b) is the cumulative distance of all two-dimensional regional attributes be-
tween the two regions, and is defined by:

Dr_2d(a, b) = ∑
i∈Dr_2d

t=T

∑
t=1

(i(a, t)− i(b, t))2 (9)

Here, t = 1, 2,. . . ,T are the time steps.
In addition, Dc_2d(a, b) is the cumulative distance of all two-dimensional connection

attributes between the two regions, and is defined by:

Dc_2d(a, b) = ∑
i∈Dc_2d

(1− i(a, b))2 (10)

Connection attributes indicate how strongly two regions are connected, and their
normalized values lie in the range [0,1]. Therefore, these values are converted into a
distance meaning by subtracting from 1, as shown in Equation (10).

3.3.3. Connectivity Matrix

A connectivity matrix indicates which region pairs are connected and is employed
in the algorithm described above to ensure spatial contiguity. In this matrix, the value
corresponding to a region pair is 1 if they are spatially contiguous, otherwise 0. Two regions
are deemed contiguous if:

1. Their borders touch at least at one point;
2. One of the regions is an island and the other its nearest mainland region;
3. There is a transmission line or pipeline running between them.

3.3.4. Data Aggregation

Once the new region set is obtained, the data within each region group are aggregated.
The aggregation method varies depending on the attribute. A list of all attributes and the
aggregation method corresponding to each is presented in Table 4.

https://github.com/FZJ-IEK3-VSA/tsam/blob/master/tsam/utils/k_medoids_contiguity.py
https://github.com/FZJ-IEK3-VSA/tsam/blob/master/tsam/utils/k_medoids_contiguity.py
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Table 4. Aggregation method employed for each data attribute.

Attribute Aggregation Method

Maximum time series Weighted mean
(weights: corresponding maximum capacity)

Fixed time series Sum

Maximum capacity Sum

Fixed capacity Sum

Locational eligibility Boolean OR

Investment per capacity Mean

Investment if built Boolean OR

Opex per operation Mean

Opex per capacity Mean

Opex if built Boolean OR

Interest rate Mean

Economic lifetime Mean

Losses Mean

Distances Mean

Commodity cost Mean

Commodity revenue Mean

Opex per charge operation Mean

Opex per discharge operation Mean

Technical lifetime Sum

Reactances Sum

Note: The introduced spatial aggregation workflow allows the user to choose the
attributes that should be used during region grouping, assign weights to each attribute,
and override the default aggregation methods (shown in Table 4) to be used for each
attribute after the regions are grouped (this spatial aggregation workflow is published
in the Python package https://github.com/FZJ-IEK3-VSA/FINE/blob/master/FINE/
aggregations/spatialAggregation/manager.py (accessed on 4 October 2022)).

3.4. Technological Aggregation

The aggregation of VRES is based on their CF time series. In order to cluster the time
series, different clustering techniques, such as k-means and agglomerative hierarchical clus-
tering with different linkage criteria ([44]), were considered during the initial experimental
phase. Among these techniques, agglomerative hierarchical clustering with average linkage
showed better performance, but only marginally. Therefore, this method is considered here.

The agglomerative hierarchical clustering is a bottom-up approach in which each time
series is initially treated as a cluster. At every iteration, the distance between cluster pairs is
measured and the pair with the least distance is merged. This is repeated until the specified
number of clusters is obtained.

Now, the linkage criteria help in measuring the distance between cluster pairs with
more than one time series in them. The average linkage criterion measures the distance
between two clusters based on the average of the distances between each member of
one cluster and every member of the other cluster. Here, the basic distance measure is
Euclidean distance.

This clustering technique is at the heart of the technological aggregation algorithm
implemented. The flowchart of the algorithm is given in Figure 4. The regional VRES

https://github.com/FZJ-IEK3-VSA/FINE/blob/master/FINE/aggregations/spatialAggregation/manager.py
https://github.com/FZJ-IEK3-VSA/FINE/blob/master/FINE/aggregations/spatialAggregation/manager.py
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data (capacities and CF time series) of a particular VRES and the desired number (n_ts)
of time series per region are input. The algorithm works on one region at a time. First,
the clustering technique is run. It clusters the time series to obtain n_ts clusters. Next,
aggregation of the data is performed. Within each cluster, the aggregated capacity is the
sum of all capacities belonging to that cluster. The aggregated time series is obtained
by taking the weighted mean of all the time series belonging to the cluster, with the
respective capacities being their weights (technological aggregation code is published
in the Python package https://github.com/FZJ-IEK3-VSA/FINE/blob/master/FINE/
aggregations/technologyAggregation/techAggregation.py (accessed on 4 October 2022)).

Note: As mentioned earlier, each region is assumed to be a lossless copper plate. The
location of the VRES technologies within each region is irrelevant under this assumption.
Since technological aggregation is performed within each region, the spatial contiguity
problem does not arise here.

Regional 

VRES data

netCDF

Regional 

VRES data

netCDF

FOR EVERY REGION

CLUSTERING

Data: CF_TS

Method: Sklearn’s agglomerative 

hierarchical clustering, with average linkage

Resulting number of clusters: n_ts

AGGREGATION

Within each cluster in n_ts clusters:

Agg. CAP = Sum of all CAPs 

Agg. TS  = ∑ (CAP * CF_TS ) / Agg. CAP

CF_TS  – Capacity factor time series

CAP – Capacity

n_ts – Number of clusters/time series

Agg. – Aggregated 

Aggregated 

VRES data

netCDF

Aggregated 

VRES data

netCDF

n_ts

Figure 4. Flowchart of technological aggregation algorithm.

3.5. Experimental Design
3.5.1. Attributes Chosen for Spatial Aggregation

As mentioned before, the user can choose the attributes and their corresponding
weights for spatial aggregation. For the analysis carried out in this paper, all the compo-
nents’ attributes are used and all the attributes are weighted equally. The list of attributes
is given in Table 4.

3.5.2. Spatial, Technological, and Temporal Scopes and Resolutions of ESOM

1. Spatial scope and resolution: A European energy system scenario [35] is considered
in this paper. The ESOM is set up for the same. As for the spatial resolution, the
region definition suggested in the e-highway study is considered. In this study, the
geographical area of Europe is divided into 96 regions.

2. Technological scope and resolution: The wind turbines and photovoltaics are simu-
lated for all of Europe. The result contains approximately 840,000 wind turbines and
photovoltaics.

3. Temporal scope and resolution: The data of one year are considered. They have an
hourly temporal resolution, with 8760 time steps for one year. Prior to optimization,

https://github.com/FZJ-IEK3-VSA/FINE/blob/master/FINE/aggregations/technologyAggregation/techAggregation.py
https://github.com/FZJ-IEK3-VSA/FINE/blob/master/FINE/aggregations/technologyAggregation/techAggregation.py
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temporal aggregation is performed. The resolution is reduced to 40 typical days with
eight segments within each typical day. For this purpose, the method developed by
Hoffmann et al. [45] is employed.
In order to accurately assess the impact of spatial and technological aggregations on
the optimization results, the effects of temporal aggregation should be nullified across
all experimental runs. Here, it is accomplished by performing temporal aggregation
only for the highest spatial and technological resolution. The resulting temporal
clusters are saved and in all the successive runs, the data are temporally aggregated
to obtain the same clusters. This ensures that, in each case, the time series are reduced
temporally to obtain the same set of typical days, with the same segments in each
typical day.

3.5.3. Evaluation Method

In our analysis, the effects of the aggregations are evaluated based on two indicators—
complexity and accuracy of the ESOM. The complexity indicator is the run time of opti-
mization, and the accuracy indicator the optimization objective, i.e., the TAC.

Ideally, the results of the initial ESOM should be considered as a benchmark. How-
ever, considering 840,000 wind turbines and photovoltaics renders this ESOM instance
computationally intractable.

The initial 96 regions consist of varying number of VRES time series. The lowest
number of regional VRES time series is found to be 68. Therefore, initially the VRES
time series in each region are aggregated to 68 VRES time series, such that this number is
maintained in all the regions.

This combination of 96 regions and 68 VRES time series in each region forms the bench-
mark setting. The ESOM is optimized for this setting. Successively, various combinations
of the number of aggregated regions and VRES time series per region are chosen and the
procedure shown in Figure 3 is repeated. In each case, the TAC and run time are recorded
and compared.

4. Results
4.1. Spatial Aggregation

For the purpose of comparison, the initial 96 regions are aggregated to obtain six
region groups without and with the contiguity constrains. The results are shown in Figure 5
along with the connectivity of the regions, as per the obtained connectivity matrix.

When aggregation is performed without the contiguity constraints, the resulting region
groups are not fully connected. For instance, the northernmost region in Norway is only
connected to its immediate neighbors in Norway and Finland; however, it is grouped with
some southern regions. A similar observation can be made with regard to other region
groups too.

The plot on the right in Figure 5 indicates that aggregating the regions with contiguity
constraints ensures the formation of region groups that are fully connected. Here, all the
regions are compact except the one shown in pink, which has some fragmented parts.
Nonetheless, the original regions present in this group are connected, and therefore the
contiguity constraints are not violated here.

It is noteworthy that the time taken to aggregate the regions without and with conti-
guity constraints is 0.15 and 1.33 min, respectively. This indicates that imposing contiguity
constraints, although necessary, is computationally taxing.
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Figure 5. (Left) The initial 96 e-highway regions. The blue lines indicate connectivity between
regions, as per the obtained connectivity matrix; (middle) the 6 region groups obtained when spatial
aggregation is performed without contiguity constraints; (right) the 6 region groups obtained when
spatial aggregation is performed with contiguity constraints.

4.2. Technological Aggregation

Here, the results of technological aggregation are analyzed using the capacity distri-
bution curves. An example capacity distribution curve is shown in Figure 6. The y-axis
indicates the mean of each VRES time series. The width of the curve, corresponding to each
y-value, shows the capacity corresponding to the VRES time series.
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Figure 6. An example capacity distribution curve.

For the 96 regions, the technological aggregation algorithm is run to obtain different
number of VRES time series per region. The capacity distribution curves in each case are
depicted in Figure 7. In both the distributions, at lower numbers of VRES time series the
extreme values are not captured well. As the number of VRES time series is increased,
the extreme values appear. At 38 VRES time series, all of the extreme values seem to be
captured, as a further increase in the number of VRES time series does not change the
distribution of both photovoltaic and wind turbine data.
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Figure 7. Distribution of installable capacities in all 96 e-highway regions, for different number of
VRES time series per region.

4.3. Impact of Spatial and Technological Aggregation on Optimization Results

The lowest and highest numbers of regions considered in this study are 6 and 96,
respectively. The lowest and highest numbers of VRES time series per region considered
are 1 and 68, respectively. Initially, the optimization results obtained for these extreme
combinations are analyzed. Figure 8 shows the optimization results for these parameter
combinations. For each parameter setting, a bar plot on the left shows TAC for different
technologies, and on the right, distribution of installed VRES capacities (i.e., the distribution
of optimal capacity and operational time series chosen during optimization).

Figure 8. The results of optimization for the extreme parameter combinations (i.e., 6 and 96 regions
and 1 and 68 VRES time series per region). For each of these combinations, TAC for different
technologies is seen on the left, and the distribution of installed VRES capacities on the right.

The top-right cell in this figure shows the benchmark results, i.e., the results for
96 regions with 68 VRES time series per region. With this setting, the overall TAC is
approximately EUR 210 billion/annum. The wind turbine’s capacity distribution curve
starts with a needle-like shape around 0.52 mean CF and slowly widens for lower mean
CFs and narrows again at a mean CF around 0.1. The photovoltaic’s capacity distribution
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curve also has a similar shape. It starts at around 0.2 mean CF and slowly widens and
narrows again at a mean CF around 0.1.

The top-left cell shows the optimization results when the number of regions is kept
the same but the number of VRES time series is reduced to one per region. It can be
observed that reducing the number of VRES time series, while keeping the number of
regions constant, leads to an increase in the TAC. The capacity distributions of VRES help
explain this behavior. It is seen in Figure 7 that the extreme values are not well captured
when one VRES time series per region is considered. Due to the fact that wind turbines
with high mean CFs are not available to choose from, most wind turbines that are installed
have mean CFs around 0.3. In comparison to the benchmark, fewer wind turbines are
installed, bringing the TAC of wind turbines down. As an alternative, more photovoltaics
and other source technologies are installed, thereby increasing their TACs. Increases in the
installation of these technologies requires an increase in the installation of conversion and
storage technologies. Therefore, the TAC of these technologies also increases.

In the bottom-right cell, the optimization results obtained when the number of regions
is reduced to six and the number of VRES time series per region is 68 are shown. It can
be observed that reducing the number of regions leads to a decrease in the TAC. As each
region is considered a single node under the copper plate assumption, the size of these
regions does not play a role during optimization. In other words, it does not matter if these
regions are spread across Europe or just a single country. The spatial details within these
regions is also limited, as each component is aggregated within them. These factors give
it the effect of the energy system being small with a network of six regions, leading to an
underestimation of the overall TAC.

In this setting, each of the six regions now has 68 VRES time series, as opposed to the
benchmark setting, where each of the 96 regions have 68 VRES time series. In comparison
to the benchmark, the wind turbine’s capacity distribution shows that the peaks are not
captured well in this setting, thereby installing more wind turbines with mean CFs around
0.4. When good locations for wind turbine installation are found in each region, owing
to the size of these and the copper plate assumption, there is less of a need for alternative
sources. Therefore, in comparison to the benchmark, more wind turbines and fewer
photovoltaics and other sources are installed here. Owing to the decrease in the installation
of these technologies, a decrease in the installation of conversion and storage technologies
is observed.

Finally, the bottom-left cell displays the effect of reducing both the number of regions
and the number of VRES time series per region. In comparison to the benchmark, both
the overestimation of the TAC due to the decrease in the number of VRES time series and
the underestimation due to the decrease in the number of regions are apparent here. The
overall TAC is approximately EUR 220 billion/annum. It comes close to the benchmark
value. However, individual TACs and associated capacity distributions differ.

The wind turbine’s capacity distribution shows that only those with mean CFs between
0.2 and 0.4 are installed in this setting. Due to the unavailability of better locations for wind
turbines, more photovoltaics with mean CFs around 0.2 are installed. Other sources are
installed less when compared to the benchmark, leading to a decrease in the installation of
conversion technologies. On the other hand, increases in photovoltaic installation have led
to the increased installation of storage technologies.

Figure 9 shows the TAC obtained and the associated run time for each parameter
setting considered in this study. The general observation made earlier—that decreasing the
number of regions leads to a decrease in the TAC, and reducing the number of VRES time
series per region increases it—holds true overall. The run time is high for the benchmark
setting and reduces in both the directions.



Energies 2022, 15, 9517 17 of 26

Figure 9. TAC obtained and the associated run time for each combination of parameters considered
in this study.

It is noteworthy that in both the TAC and run time matrices, some exceptions to the
general observations are visible. For instance, in the case of 33 aggregated regions, reducing
the VRES time series from 58 to 48 leads to an increase in the TAC, but further reducing it
to 38 VRES time series decreases the TAC. Furthermore, the run time for 96 regions and 58
VRES time series is 337.21 min. However, when the model is optimized for 96 regions and
48 VRES time series, the run time increases to 385.24 min. The reason for such exceptions
could be that it is more challenging to find a global minimum in the case of certain region
groups and the set of representative VRES time series within these.

In addition to the different number of aggregated regions, the results for 33 national
regions can also be seen in Figure 9. Comparing the TACs obtained for 33 nations and 33 ag-
gregated regions with the benchmark values, it can be observed that the TACs obtained for
33 nations deviate further from the benchmark. This shows that considering administrative
boarders while designing an optimal energy system does not yield the best results.

Figure 10 shows the TAC for different technologies when the number of regions is
varied while considering 68 VRES time series within each region in each case. It can
be observed that as the number of regions is increased, the overall TAC shows a drastic
increase at first and reaches a point of stabilization, whereas a further increase in the number
of regions seems to have no significant effect on the TACs. Here, the optimal number of
regions can be determined using the elbow criterion, i.e., the number of regions where a
further increase would not significantly change the TACs. Similarly, in Figure 11 where
the number of VRES time series is varied for 96 regions, the optimal number of VRES time
series per region would be the number of VRES time series where the TACs stabilize.

Figure 10. TAC obtained for different technologies in the case of differing numbers of aggregated
regions, while considering 68 VRES time series per region.
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Figure 11. TAC obtained for different technologies in the case of 96 regions, when different numbers
of aggregated VRES times series per region are considered.

In order to determine the optimal combination of the number of aggregated regions
and VRES time series within each of them, it is necessary to apply the elbow criterion in
both the directions of increase. In Figure 12, the run time (represented on a logarithmic
scale on the x-axis) and TAC deviation from the benchmark (represented on the y-axis in
EUR billion/annum on the left and in % on the right) for each parameter setting can be
seen. Each dot represents a particular parameter setting. The darker the shade of blue,
the greater the number of VRES time series considered, and the lines connecting the dots
represent a particular number of regions.

From the figure, it can be observed that for each region set, as the number of VRES
time series is increased, the deviation is drastically reduced at first and seems to stabilize
after a certain number of VRES time series. On the other hand, keeping the number of
VRES time series per region constant, if the number of regions is increased, the deviation
stabilizes, approaching 0 in each case. Another noteworthy observation is that although the
run time increases when the number of regions is increased or the number of VRES time
series per region is increased, this increase is relatively more drastic in the case of increase
in the number of regions.

Figure 12. TAC deviation from the benchmark (represented on the y-axis in EUR billion/annum on
the left and in % on the right) versus the run time (represented on a logarithmic scale on the x-axis)
for each parameter setting. Each dot represents a particular parameter setting. The darker the shade
of blue, the greater the number of VRES time series considered, with the lines connecting the dots
representing a particular number of regions.
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With the aim of determining an optimal parameter combination, a matrix containing
TAC for each parameter combination is traversed. For each combination, the TACs in both
the directions of increase are compared with the benchmark value. If the percentage error
between the benchmark TAC and each of the candidate TACs is below an acceptable error
threshold, then the parameter combination is deemed to be optimal and the search is termi-
nated. Here, an error threshold of ±5% is assumed. In terms of absolute value, the error
threshold is approximately EUR ±10 billion/annum. Using this method, 33 aggregated
regions and 38 VRES types in each region are deemed to be optimal. With this setting, the
TAC obtained and the run time are EUR 200.62 billion/annum and 33.04 min, respectively.
In comparison to the benchmark, the TAC is underestimated by EUR 9.29 billion/annum
and the run time is reduced by 435.79 min in this case. The optimal 33 region groups
formed are shown in Figure 13.

Figure 13. The 33 regions groups obtained when spatial aggregation is performed. According to the
elbow criterion employed, 33 aggregated regions are optimal.

5. Summary and Discussion

For different combinations of numbers of regions and VRES within each, the objective
TAC resulting from model optimization and the run time were compared to the benchmark
setting of 96 regions and 68 VRES types in each region.

Furthermore, as it is common to consider administrative regions such as national
borders when designing an optimal energy system, the study also considered 33 national
regions. Moreover, it is standard practice to aggregate all system components, including
VRES, within each model region to obtain just one representative type. This setting was
also considered in this study.
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The TACs obtained in the case of 33 national regions and 33 aggregated ones were
compared to the benchmark. It was observed that the TAC obtained in the case of 33
national regions deviated further from the benchmark, compared to the case of the 33
aggregated regions. As each model region is assumed to be a copper plate and the system
components are aggregated in each, it is important to pay attention to the region definitions.
The defined regions should have similar component characteristics such that an aggregation
of these components would not lead to a loss of information, which in turn leads to high
TAC deviations.

To that end, considering a very low number of aggregated regions (for, e.g., six
regions in Europe) would also result in high TAC deviations, even though the VRES
resolution is maintained sufficiently high in each of these regions. In such cases, there is an
oversimplification of the region network. In other words, the geographical gaps between
generation and demand sites are largely ignored. This leads to an underestimation of
the TAC.

Even when 96 regions were considered, considering one representative VRES per
region led to a large deviation in the objective TAC. Here, the temporal fluctuations present
in the original set of VRES time series are not well captured. Furthermore, the TAC is
overestimated because cost-competitive locations are not identified at such a low VRES
resolution. Therefore, irrespective of the spatial resolution of a model, the VRES resolution
should be maintained sufficiently high in each region.

The elbow criterion shows that beyond a particular number of regions, a further
increase in this number does not lead to a significant gain in accuracy, and yet the run time
increases. Therefore, it is only logical that beyond a certain spatial resolution, a further gain
in the accuracy can only be achieved by increasing the technological details, such as the
number of VRES time series, within regions.

Regarding the optimal combination of spatial and technological resolution, it is seen
that at 33 aggregated regions and 38 representative VRES in each, the system cost is
underestimated by 4.42% and the run time reduced by 92.95%, compared to the benchmark.
A further increase in the spatial resolution does not significantly improve the results, thereby
making this setting optimal for a European energy scenario considered in this study.

6. Conclusions

In this study, new spatial and technological aggregation methods were introduced. The
spatial aggregation method can consider all or a subset of energy system model parameters
to find and group homogeneous regions. The modeler can also assign weights to these
attributes. Considering several attributes during region grouping runs the risk of resulting
in spatially fragmented regions. However, our method allows only spatially contiguous
regions to be grouped, irrespective of the number of attributes considered during region
grouping. Such a method allows the modeler to base the spatial aggregation on a certain
set of attributes, depending on the aim of the analysis.

Regarding the introduced technological aggregation method, a time series aggregation
technique was employed to cluster variable renewable technologies, such as wind turbines
and photovoltaics, based on the similarity of their time series, to obtain a representative
set. Such a method reduces computational complexity while capturing the temporal
fluctuations that are crucial for an accurate energy system design. Furthermore, the study
introduced a scheme that facilitates simultaneous spatial and technological aggregation of
energy system models as a complexity-reduction technique. This scheme is model-agnostic,
i.e., it can be easily applied to any energy system model.

The introduced scheme was applied to a highly resolved European energy scenario.
Here, the spatial aggregation was performed based on all the model parameters. Our results
show that both spatial and technological resolutions should be maintained sufficiently
high in order to obtain accurate optimization results. However, beyond a certain spatial
resolution, a further increase does not significantly improve the accuracy. Therefore, we
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recommend that the modelers should choose an appropriate spatial resolution and further
increase the technological details within the regions.

Although the introduced scheme is model-agnostic, the identification of the optimal
combination of spatial and technological resolution is model-dependent. An optimal
combination depends on the spatial and temporal scope of the model. Furthermore, when
aggregated system states are linked—either in space or time—by transmission or storage,
or have nonlinear relations, the inherent system behavior cannot be easily predicted. In
consequence, the aggregation scheme needs to be applied to the target model and run some
tests. This, however, does not necessarily require the model to be run with full resolution
to determine the target accuracy. One could begin with a low resolution and increase it
further. If the results do not vary significantly, it is an indication that a saturation has been
reached in terms of accuracy.

7. Outlook

Some future areas of research:

1. In our analysis, we consider all the model parameters for spatial aggregation. In
Appendix B, we show how the region groups differ when different sets of attributes
are chosen for spatial aggregation. However, it would be interesting to perform a
detailed sensitivity analysis.

2. Our focus in this paper was to sufficiently represent variable renewable energy sources
in each region. It would also be interesting to increase the spatial details of other
components, such as storage technologies, and investigate the extent of their influence
on energy system design.

3. Certain combinations of spatial and technological aggregations would also be worth
investigating. For example, spatial aggregation based on electricity grid, and main-
taining the spatial resolution of both source and storage technologies sufficiently high
in each region.

4. We performed a spatial and technological aggregation and then a temporal aggrega-
tion in our experiments reported herein. It would be worth investigating the effect of a
switch in this order and to determine an optimal combination of spatial, technological,
and temporal resolutions.

8. Code Availability

The workflow introduced in this paper is published in the Python package https:
//github.com/FZJ-IEK3-VSA/FINE/tree/master/FINE/aggregations (accessed on 4 Oc-
tober 2022). These methodologies can be easily applied and extended. For a demo of the
workflow, please refer to the https://github.com/FZJ-IEK3-VSA/FINE/tree/master/
examples/Spatial_and_technology_aggregation (accessed on 4 October 2022).
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RES Renewable energy source
VRES Variable renewable energy source
ESOM Energy system optimization model
TAC Total annual cost
FINE Framework for Integrated Energy System Assessment
RESKit Renewable Energy Simulation toolkit
GLAES Geospatial Land Availability for Energy Systems
CF Capacity factor
LCOE Levelized cost of electricity
GHG Greenhouse gas

Appendix A. Optimization Formulation

In the following, the optimization formulation within the Framework for Integrated
Energy System Assessment (FINE) [5] is given. FINE uses a mixed-integer linear program
to design an optimal energy system. The objective here is to minimize the total annual cost
(TAC) of the system under investigation. It is mathematically expressed as follows:

min(TAC) = min( ∑
r∈R

∑
p∈P

TACr,p + ∑
r∈R

∑
c∈C

TACr,c

+ ∑
r∈R

∑
s∈S

TACr,s + 1/2 ∑
r∈R

∑
r̂∈R

∑
l∈L

TACr,r̂,l)
(A1)

where P , C, S , and L indicate different power generation, conversion, storage, and trans-
mission technologies, respectively, that are considered in or between all regions R. The
TACs include the annuities as well as the operation and maintenance costs.

This objective is subject to the following constraints:

1. Energy balance constraints: These constraints ensure that the electricity demand is
satisfied at all time steps T in all regionsR. The energy balance for a region r during
a time step t is given by:

Dr,t = Pr,t + ∑
c∈C

γcCr,t,c ∀r ∈ R, t ∈ T (A2)

where Dr,t is the demand, Pr,t is the generated power, Cr,t,c is the operation of a
conversion technology, and γc represents the conversion factor.

2. Power generation constraints: These constraints ensure that the quantity of built renew-
able technology does not exceed the maximum permitted quantity. If Nr,p and Nmax

r,p
are the built and permissible quantities, respectively, of a renewable technology p in a
region r, then this is mathematically expressed as follows:

Nr,p ≤ Nmax
r,p ∀r ∈ R, p ∈ P (A3)

Furthermore, in a region r during a time step t, the amount of generated power Pr,t is
limited by:

Pr,t ≤ ∑
p∈P

pp,tNr,p ∀r ∈ R, p ∈ P (A4)

where pp,t is the power output of a single unit of the technology during a time step t.
3. Conversion technologies constraints: The maximum operation Cr,t,c of a conversion

technology c in a region r during a time step t is limited by:

Cr,t,c ≤ cmax
c Nr,c ∀r ∈ R, t ∈ T , c ∈ C (A5)

where cmax
c is the maximum operating limit of a single unit of the technology and Nr,c

is the quantity of technology built in the region.
4. Storage technologies constraints: There are three types of constraints that are imposed

on storage technologies. These are:
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• Constraints related to availability and placement capacity: If Ŝ represents a set of
placement-restricted storage technologies, then these constraints are represented
by:

Nr,ŝ ≤ Nmax
r,ŝ ∀r ∈ R, ŝ ∈ Ŝ ⊆ S (A6)

where Nr,ŝ and Nmax
r,ŝ are the built and permissible quantities, respectively, of a

placement-restricted storage technology ŝ in a region r.
• Constraints related to storage inventories: The inventory of a storage technology

s, during any given time t, in a region r is limited by the maximum possible
inventory imax

s of a single unit and the number of built units Nr,s, in the region.
This is mathematically expressed as follows:

Ir,t,s ≤ imax
s Nr,s ∀r ∈ R, t ∈ T , s ∈ S (A7)

• Constraints related to injection and withdrawal rates: The injection and withdrawal
rates of a storage technology s in a given region r are limited by the permissible
injection and withdrawal rates iinjection

s (≥ 0) and iwithdrawal
s (≤ 0) for a single

unit of the technology. If Nr,s is the quantity of the technology built in region r,
then the difference in inventory levels between any two consecutive time steps is
limited by:

Ir,s,t − Ir,s,t−1 ≤ iinjection
s Nr,s

∀r ∈ R, s ∈ S , t ∈ T
(A8)

Ir,s,t − Ir,s,t−1 ≥ iwithdrawal
s Nr,s

∀r ∈ R, s ∈ S , t ∈ T
(A9)

5. Transmission technologies constraints: Energy flow is only permitted between adjacent
regions. Further, energy flow cannot exceed the maximum operating limit of a
transmission technology. The energy flow Lr,r̂,l,t between regions r and r̂ using a
transmission technology l during time step t is constrained by:

Lr,r̂,l,t ≤ lmax
l ar,r̂,l Nr,r̂,l ∀r, r̂ ∈ R, l ∈ L, t ∈ T (A10)

where ar,r̂,l is 1 if the two regions are connected, and 0 otherwise. Nr,r̂,l is 1 if the
technology is built, and 0 otherwise. Finally, lmax

l is the maximum operating limit.
Furthermore, the transmission technologies are assumed to be bidirectional. Therefore,
Nr,r̂,l is the same as Nr̂,r,l and is formulated as follows:

Nr,r̂,l = Nr̂,r,l ∀r, r̂ ∈ R, l ∈ L (A11)

Appendix B. Impact of the Chosen Set of Attributes on Spatial Grouping Result

Here, spatial aggregation is performed to obtain six region groups based on different
sets of attributes to demonstrate the impact of the chosen attributes on the resulting
region groups. Figure A1 shows the six region groups formed when the original regions
are aggregated based on all of the components’ attributes, specific components with all
their corresponding attributes, a combination of components with all their corresponding
attributes, and a particular attribute of a component (capacity of AC cables). Certainly, the
region definitions in each case vary. However, it is interesting to note that when the regions
are aggregated based on both wind turbines and photovoltaics, they look very similar to
those obtained when aggregation is performed based on wind turbines. This indicates that
certain model components have a bigger influence on the region definitions than others. A
detailed sensitivity analysis is required to understand the effects of the chosen attributes
and also their assigned weights on the resulting region groups.
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Figure A1. Region groups obtained when the 96 regions are spatially aggregated, to obtain 6 regions
based on different sets of attributes.
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