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Abstract: This study investigated the effect of initially set anodic potentials (−0.3, −0.2, −0.1 and
+0.1 V) on voltage production and microbial community in electroactive biofilm reactors (EBRs)
treating synthetic and domestic wastewater (WW). In phase 1, EBRs were acclimated with different
anodic potentials for synthetic and domestic WW. EBR (SE4) poised with +0.1 V showed the highest
maximum power density (420 mW/m2) for synthetic WW, while EBR (DE3) poised with −0.1 V
showed the highest maximum power density (235 mW/m2) for domestic WW. In phase 2, the EBRs
were operated with a fixed external resistance (100 Ω for synthetic WW and 500 Ω for domestic WW)
after the applied potentials were stopped. The EBRs showed slightly different voltage productions
depending on the WW type and the initial anodic potential, but both EBRs applied with +0.1 V
for synthetic (SE4) and domestic (DE4) WW showed the highest voltage production. Principal
component analysis results based on denaturing gel gradient electrophoresis band profiles showed
that the microbial community was completely different depending on the WW type. Nevertheless, it
was found that the microbial community of EBRs applied with a negative potential (−0.3, −0.2, and
−0.1 V) seemed to shift to those of EBRs applied with a positive potential (+0.1 V) regardless of WW
type. Therefore, positive anodic potential is an important operating factor in electroactive biofilm
development and voltage generation for rapid start-up.

Keywords: anode; applied potential; synthetic wastewater; domestic wastewater; microbial community

1. Introduction

Electroactive biofilm reactor (EBR) has received considerable attention as a process that
can produce electric energy or useful substances from organic matter in wastewater (WW)
using bacteria as catalysts [1]. However, the electricity generation performance of the EBR
is very low compared to that of general chemical fuel cells using hydrogen. Accordingly,
the goal of the EBR is to expand from the laboratory scale to the real scale, which can be
applied to the field and produce stable power when operated for a long period [2,3].

Various factors, including reactor configuration, material (anode, cathode, and sep-
arator), operating conditions, substrate type, and electroactive bacteria, affect the EBR
performance [3]. In addition, the electricity generation of EBR is affected by the interaction
between the electrode surface area and bacteria; therefore, it is important to understand the
electroactive bacteria in electroactive biofilms [4,5].

In particular, the anode potential is a very important factor because it is related to the
energy that bacteria can theoretically obtain [6]. The higher the anode potential in the total
cell voltage, the more energy the bacteria use for metabolism, and consequently, the less
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the energy that can be recovered from the EBR. Therefore, when the lower anode potential
is set, the power recovery rate that can be obtained from the EBR can be increased [5].

However, although various studies on the anode potential have been reported, it
has not been clearly determined which potential (negative or positive potential) is better
for EBR performance. When a high anode potential was applied, the start-up period was
shortened, and a higher power density could be produced compared to the low potential [7].
Among EBR poised with 0, +0.2, +0.35 and +0.5 V (vs. Ag/AgCl), EBR poised with +0.5 V
showed the highest current production, but EBR poised with above 0.75 V did not generate
current [8]. An EBR applied with a positive anode potential showed rapid start-up [9]
and higher current production [10], while among EBR poised with 0, −0.2, and −0.4 V
(vs. Ag/AgCl), voltage and current increased at −0.2 V [6]. In another study in which
different potential (−0.42, −0.36, −0.25, and +0.1 V vs. Ag/AgCl) were applied, EBR
with the lowest potential, −0.42 and −0.36 V, showed high currents and a thick biofilm.
In addition, Geobacter sulfurreduces known as electroactive bacteria were predominant in
EBR applied −0.42 and −0.36 V [11]. Most recently, the negative potential accelerated the
start-up speed and enhanced the EBR performance [12].

Most studies have used a single carbon source such as acetate, which is easy to use
by electroactive bacteria, and there is still a lack of research on the effect of applied anode
potential on electricity generation and the microbial community when used actual WW
are still lacking. Therefore, in this study, the voltage production and microbial community
according to initially applied anode potential (−0.3, −0.2, −0.1 and +0.1 V vs. Ag/AgCl)
were compared for synthetic and actual WW.

2. Materials and Methods
2.1. EBR Construction

Eight cubic-typed single-chamber EBRs (working volume 260 mL) were constructed
as previously described [13]. Graphite felt (30 mm × 30 mm) was used as the anode, a
same-sized 30% wet-proof carbon cloth (E-Tek, BASF Fuel Cell Inc., College Station, TX,
USA) treated with a Pt/C catalyst (0.5 mg/cm2, anode side) and a Nafion solution (5%,
air side) was utilized as the cathode, and a polypropylene non-woven fabric (Korea Non-
Woven Tech. Co., Ltd., Busan, Republic of Korea) was used as separator [14]. The anode
and cathode were connected with a titanium wire.

2.2. Batch Test

The anode chamber was inoculated with anaerobic digested sludge (3000 mg/L) ob-
tained from an anaerobic digester of a domestic WW treatment plant (Suyoung Wastewater
Treatment Plant, Busan, Republic of Korea) and acclimated under anaerobic conditions.
To investigate the effect of the initially applied potential on voltage generation and the
microbial community, the experiment was conducted in two phases (Table 1 and Figure 1).
In phase 1, the EBRs were operated according to initially applied potential (−0.3, −0.2,
−0.1 and +0.1 V) for 50 days and then operated with an external resistance of 100 Ω in
phase 2. Synthetic and domestic WW (Haeundae Wastewater Treatment Plant, Busan,
Republic of Korea) were used as substrates. The substrate was changed when the voltage
generation decreased to less than 50 mV. All experiments were performed in duplicate,
at room temperature (25 ± 2 ◦C), in fed-batch mode. The synthetic WW consisted of
CH3COONa, 0.18 g/L (as COD 150 mg/L) K2HPO4, 4.35 g/L; KH2PO4, 3.38 g/L; NH4Cl,
0.115 g/L; NaCl, 0.04 g/L; MgSO4·7H2O, 0.01 g/L; CaCl2·2H2O, 0.02 g/L; KCl, 0.02 g/L;
and yeast extract, 0.005 g/L.
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Table 1. Operating conditions of electroactive biofilm reactors (EBRs) treating synthetic and domestic
wastewater (WW).

EBR WW Type

Phase 1 Phase 2

Applied
Anode

Potential 1

(V)

External
Resistance

(Ω)

Applied
Anode

Potential
(V)

External
Resistance

(Ω)

SE1
Synthetic

WW

−0.3 No No 100
SE2 −0.2 No No 100
SE3 −0.1 No No 100
SE4 +0.1 No No 100

DE1
Domestic

WW

−0.3 No No 500
DE2 −0.2 No No 500
DE3 −0.1 No No 500
DE4 +0.1 No No 500

1 vs. Ag/AgCl.
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Figure 1. Experimental configuration of this study.

2.3. Analysis

Chemical oxygen demand (COD) was analyzed using a kit (Humas Co. Ltd., Daejeon,
Republic of Korea) according to the standard method (APHA, 2005). The voltage across the
external resistor in the EBR circuit was measured using a data acquisition system (2700,
Keithley Instruments, Solon, OH, USA) and recorded every 50 s on a personal computer. In
phase 1, the initially applied potentials (vs. Ag/AgCl electrode) were controlled using a
potentiostat (WMPG 1000, WonATech, Seoul, Republic of Korea). The maximum power
density (mW/m2) was determined by the linear sweep voltammetry, which was performed
at 10 mV/s using a potentiostat (WMPG1000, WonATech, Seoul, Republic of Korea).

2.4. Microbial Community Analysis

The anodic biofilm of the EBRs was collected and DNA was extracted using a Pow-
erSoilTM DNA extraction kit (Mo Bio Lab., Carlsbad, CA, USA). Bacterial 16S rRNA
genes were amplified using the EUB 27F and 518R primers. Denaturing gradient gel elec-
trophoresis (DGGE) was performed. The band profile was visualized using an ultraviolet
transilluminator (Uvitec, Cambridge, UK) and photographed using a digital camera (Olym-
pus 720 UZ; Olympus Optical Co., Ltd., Tokyo, Japan). The band positions and intensities in
the DGGE profiles were determined using Fingerprinting II Informatix software (Bio-Rad,
Hercules, CA, USA).
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Principal component analysis (PCA) was performed to identify relationships in the
band profile using the SPSS software (version 14.0; SPSS Inc., Chicago, IL, USA). DNA
fragments extracted from the DGGE band profile were polymerase chain reaction (PCR)
amplified using the same primers as those used for PCR amplification in the DGGE ex-
periments. The fragments were sequenced on an ABI 3730XL capillary DNA sequencer
(Applied Biosystems, Waltham, MA, USA) by a professional company (Solgent Co., Dae-
jeon, Republic of Korea). The sequence results were analyzed using the GenBank database,
and phylotype identification was performed based on 16S rDNA sequence homology.

3. Results and Discussion
3.1. Voltage Generations in EBRs According to Initially Applied Voltages

EBRs poised with different anodic potentials were acclimated in phase 1 for approxi-
mately 50 days. The EBR showed a slightly different performance according to the WW
type and applied potential. In the synthetic WW, SE4 showed the highest maximum
power density of 450 mW/m2, followed by 231 mW/m2 for SE3, 206 mW/m2 for SE2, and
153 mW/m2 for SE1, while in domestic WW, DE1 showed the highest maximum power
density of 250 mW/m2, followed by 155 mW/m2 for DE4, 91.5 mW/m2 for DE3, and
40 mW/m2 for DE2 (Figure 2).
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Figure 2. Polarization (a,b) and power (c,d) curves for EBRs treating synthetic (solid line) and
domestic (dotted line) wastewater (WW); (a) polarization curve for synthetic WW, (b) polarization
curve for domestic WW, (c) power curve for synthetic WW, and (d) power curve for domestic WW.

In phase 2, EBRs treating synthetic WW and domestic WW also showed slightly
different voltage production trends depending on the initially applied potential (Fig-
ure 3). In the case of the synthetic WW (Figure 3a), SE4 showed the highest voltage
generation (290 ± 17 mV), followed by SE2 (210 ± 62 mV), SE3 (170 ± 24 mV), and
SE1 (106 ± 14 mV). As seen in Figure 3a, in the case of domestic WW, a slightly different
trend is observed. DE4 also exhibited the highest voltage generation (140 ± 25 mV), followed
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by DE1 (62 ± 38 mV), DE2 (25 ± 7 mV), and DE3 (18 ± 4 mV). In this study, regardless of
WW type, it is expected to be advantageous to supply a potential of +0.1 V (vs. Ag/AgCl)
for the start-up of EBR. Similarly, start-up time was reduced from 59 days to 35 days and
current output was increased from 0.42 to 3 mA in EBR poised with +0.2 V (vs. Ag/AgCl)
because of the increase in the driving force of substrate oxidation [10].
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Figure 3. Peak average of voltage generation (a) and chemical oxygen demand (COD) removal (b)
for 20 cycles of EBRs treating synthetic and domestic wastewaters (WWs) at phase 2 depending on
initially anode potential.

The power generation of EBR treating domestic WW was generally lower than that of
EBR treating synthetic WW. This appears to have been limited by complex organic matter
(e.g., non-biodegradable organics), low conductivity [15], inhibition of electron acceptors
other than the anode [16], and competition with non-electroactive bacteria for organic
matter utilization [17]. EBRs (70–75%) treating domestic WW showed lower COD removal
than EBRs (89–93%) treating synthetic WW (Figure 3b). As COD removal increased, the
voltage of the EBR using synthetic WW increased, but the voltage of the EBR using domestic
WW decreased (Figure 4). This means that the COD removed in the EBR using synthetic
WW might be utilized for electricity generation, but the COD removed in the EBR using
domestic WW does not seem to be utilized well for electricity generation.
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3.2. Anodic Microbial Community in EBRs Treating Synthetic WW

The anodic microbial community in the EBR treating synthetic WW differed in phase 1
and 2 depending on the initially applied potential (Figure 5a). PCA results based on DGGE
profiles showed that the microbial communities of SE1, SE2, SE3, and SE4 were completely
different in phase 1. In phase 2, the microbial communities of SE1, SE2, and SE3 were
similarly shifted. However, the microbial community in SE4 did not significantly change
(Figure 5b). This positive potential might contribute to the development of the electroactive
biofilms.

As bands S1, S2, S3, and S16 detected in the inoculum were also found in all EBRs, they
were related to organic oxidation or fermentation. While other bands were strong only in
EBRs, they were involved in electricity generation. However, in the microbial community
analysis, both S7 and S8 were dominant in phase 1, whereas in phase 2, S7 was dominant in
E1 and S8 in E4. S7, which appeared to be similar to Zoogloea sp., was strongly found in E1,
which had the lowest electricity generation, so it is expected to be unrelated to electricity
generation (Table 2). On the other hand, S8, similar to Geobacter sp., known as electroactive
bacteria, is related to electricity generation because it was found in E4 with the highest
electricity generation.

In general, enzymes and electron transport chains can transfer electrons only through
their potential for electron transport [6]. From a thermodynamic point of view, the higher
the anode potential, the more energy bacteria gain. Therefore, as the potential of the anode
increases, the growth rate of bacteria, and the production rate per transferred electron
also increase. This intensifies competition among microorganisms for substrate use on the
electrode surface, and it was determined that microorganisms with electron transfer ability
in a specific potential range dominate.

Therefore, in this study, it is considered that Geobacter sp., known as an electroactive
bacteria, was dominant in the competition between bacteria under the potential condition
of +0.1 V (phase 1). In addition, because the potential favorable for electron transfer by
Geobacter was stably maintained in phase 2, Geobacter sp. appeared to continue to dominate
without significant changes in the microbial community.
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Table 2. Sequence analysis of denaturing gradient gel electrophoresis (DGGE) bands for EBR using
synthetic wastewater (WW).

Band The Closet Sequence Phylum Similarity Acc. No.

S1 Uncultured Geobacter sp. Proteobacteria 97% AB717104

S2 Uncultured bacterium
clone MFC-GIST23

Environmental
samples 97% EU704538

S3 Uncultured Chloroflexi
bacterium Chloroflexi 97% JX023230

S4 Zoogloea sp. Proteobacteria 100% HQ694764

S5
Uncultured

Hyphomicrobiaceae
bacterium

Proteobacteria 98% KF500830

S6 Acidovorax sp. Proteobacteria 99% Y18617

S7 Zoogloea sp. Proteobacteria 100% JQ751310

S8 Geobacter sp. Proteobacteria 99% GQ463728

S9 Sphingomonas
paucimobilis Proteobacteria 99% HE800592

S10 Uncultured
Pseudoxanthomonas sp. Proteobacteria 99% JQ328218

S11 Uncultured Shigella sp. Gammproteobacteria 99% JF833726

S12 Uncultured bacterium
clone MFC-GIST252

Environmental
samples 995 GQ463728

S13 Uncultured bacterium Environmental
samples 98% GU908879

S14 Uncultured bacterium Environmental
samples 97% JX086768

S15 Actinobacterium Actinobacteria 97% FJ529700

S16 Uncultured bacterium Environmental
samples 98% AF255632

In addition, uncultured bacterium clone MFC-GIST23, clone MFC GIST252 [18], Sph-
ingomonas paucimobilis [19], and Pseudoxanthomonas [20] were mainly detected in EBR.
Interestingly, Sphingomonas and Pseudoxanthomonas mainly detected in the cathode, could
use an electrode as an electron acceptor. Some bacteria, such as Zoogloea and Shigella sp.,
can oxidize the carbon source into acids in the EBR [21].

3.3. Anodic Microbial Community in EBRs Treating Domestic WW

The anodic microbial community in the EBR treating domestic WW was also different
in phases 1 and 2 depending on the initially applied potential (Figure 6a). As the applied po-
tential increased, it was indirectly shown that the microbial community diversified because
the number of bands increased. The PCA results showed that the microbial communities
of DE1, DE2, and DE3 appeared to be similar to each other, but were completely different
from the microbial community of DE4. In phase 2, the microbial communities of DE1,
DE2, and DE3 were similarly shifted, but the microbial community of DE4 did not change
significantly (Figure 6b). It also shows that the positive potential could help to develop
electroactive biofilms in EBR treating domestic WW.
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Bands R2, R3 and R7 were unlikely to be involved in electricity generation because
they were detected in all EBRs in each phase and band R7 was only found in the inoculum.
However, as bands R1, R5, R15, and R20 were detected in phase 2 or the band intensity was
relatively increased, they seemed to be related to electricity generation. In particular, band
R20 was similar to Desulforhabdus sp., which may play a role in electricity production from
sulfide oxidation [22]. However, band R1 was similar to Chitinophaga may be related to the
anaerobic environment [23] (Table 3).
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Table 3. Sequence analysis of DGGE bands for EBR using domestic WW.

Band The Closet Sequence Phylum Similarity Acc. No.

R1 Chitinophaga sp. Bacteroidota 100% JF710262

R2 Zoogloea sp. Proteobacteria 99% HQ694764

R3 Uncultured Chloroflexi
bacterium Chloroflexi 97% JX023230

R4
Uncultured

Hyphomicrobiaceae
bacterium

Proteobacteria 99% KF500830

R5 Uncultured bacterium Environmental
samples 96% JQ096520

R6 Uncultured bacterium Environmental
samples 97% GU934266

R7 Uncultured bacterium
clone MFC-GIST2

Environmental
samples 99% EU704531

R8 Variovorax paradoxus Proteobacteria 99% AF508103

R9 Uncultured bacterium Environmental
samples 99% JN391943

R10 Uncultured bacterium Environmental
samples 99% FJ375463

R11 Uncultured beta
proteobacterium Proteobacteria 98% GU013679

R12 Uncultured bacterium
clone MFC-GIST2

Environmental
samples 99% EU704531

R13 Uncultured bacterium Environmental
samples 99% DQ444005

R14 Uncultured bacterium Environmental
samples 99% JX023223

R15 Uncultured bacterium Environmental
samples 99% GQ996483

R16 Uncultured Thauera sp. Proteobacteria 99% KX914702

R17 Uncultured bacterium Environmental
samples 99% GU083491

R18 Thauera sp. Proteobacteria 99% AY570693

R19
Uncultuyed

Aminanaerobia
bacterium

Environmental
samples 99% CU926332

R20 Desulforhabdus sp. Proteobacteria 99% EF442978

Bacterial activity was significantly affected by acclimation anode potentials [24]. Pre-
vious studies have demonstrated that a positive poised applied potential promotes the
enrichment of specific consortia and results in a larger current output [25,26].

As mentioned above, as the higher the anode potential, the more energy the bacteria
gain, and the higher anodic potential seemed to contribute to electroactive biofilm develop-
ment. Although the microbial community differed according to WW type, the microbial
community of EBRs applied with negative potential (−0.3, −0.2, and −0.1 V) seemed to
shift to the microbial community of EBRs applied with positive applied potential (+0.1 V).
Thus, the initially applied potential would be an important factor in electroactive biofilm
development in EBR.
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4. Conclusions

This study investigated the effect of the initially anodic potential on the microbial
community, voltage generation, and COD removal. The COD removal of EBR treating
domestic WW was relatively lower than that of EBR treating synthetic WW, but there
was little difference in COD removal depending on anodic potentials. EBR poised with a
positive potential (+0.1 V) showed the highest voltage generation regardless of the WW
type. The microbial community of the EBR applied with negative anodic potentials would
be shifted to those of the EBR applied with a positive anodic potential. Therefore, the
positive anodic potential may be an important operational factor in electroactive biofilm
development and voltage generation for rapid start-up. Further studies on the effect of
applied potential on power generation and microbial community shift through long-term
operation are required, which will contribute to the practical application of EBR in WW
treatment process.
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