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Abstract: This article introduces a single-phase five-level multilevel inverter based on six switches
and two transformers. The proposed converter requires a single dc input source with low voltage.
The disposition of switches makes it possible to build the converter with a transistors six-pack module
off-the-shelves, traditionally used to build three-phase inverters, which simplifies the manufacturing
process. The converter increases the voltage with two transformers; for that reason, it does not require
an auxiliary step-up converter. The use of transformers (with the transformer’s turns ratio) allows
for using the same topology for several input voltage levels. To verify the operation of the proposed
multilevel inverter, a computer-based simulation was performed with PSIM, a software that considers
parasitic components. The results show that the proposed converter can work properly.

Keywords: power converter; transformer-based multilevel inverter; single-phase inverter

1. Introduction

Power electronics has become a key technology for renewable energy applications,
electric and hybrid electric vehicles, and the advancement of electric and electronic appli-
ances. One of the most recent advances in power electronics has been the development of
multilevel inverters (MLI) [1–5]. They are already an established solution for developing
medium- and high-power electronics applications. MLI has been applied in applications
of ac-dc rectification, dc-ac inversion, dc-dc conversion, and as variable speed drives with
combined conversion schemes (i.e., dc-ac-dc) [6,7].

Some of the advantages of high-power MLI are: (i) The output voltage is provided in
a stepped output function that can be filtrated with smaller components than a two-level
output; for this reason, MLI are considered to have a good power quality, for example, in
the case of their application as an active front end (AFE) rectifier, the input current has low
harmonic distortion. (ii) Low-voltage stress on devices, as will be further discussed, in low-
voltage applications is not a big problem, but in high-voltage applications, this is a major
concern. Their capability to operate with a relatively high-power quality and a relatively
low switching frequency leads to high efficiency and small magnetic components [6–8].

The first three topologies studied as MLI were: (i) neutral point clamped or diode
clamped [9–11], (ii) the flying capacitor topology [12,13], and (iii) cascaded cells’ topology [1–7].
Recently, the (iv) modular multilevel converter (MMC) [14–16] has proven to have many
advantages and can be considered the fourth topology of the main family of converters, for
which the main characteristics are their applications in high-power applications.

There is another kind of MLI topologies, where the main applications are low-power
converters, and they are characterized by having a larger number of output voltage levels
(compared to the high-power ones) with a relatively reduced number of switches. In
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this article, we will call high-voltage MLI (HV-MLI) the converters of the first family and
low-voltage MLI (LV-MLI) the converters of the second family.

The HV-MLI are applied in applications such as variable speed drives for large motors,
static VAR generators, and grid-tied applications [1–8]. They can be used to make flexible
ac transmission systems (FACTS) and power conditioners [17], and renewable energy
applications [17–19].

The first member of the family of MLI was the neutral point-clamped or diode-clamped
converter, initially introduced in [9]. Its basic configuration is shown in Figure 1a. Figure 1b
shows the basic configuration of the flying capacitor MLI.
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Figure 1. The two topologies of HV-MLI are (a) neutral point-clamped or diode-clamped and
(b) flying capacitor or capacitor-clamped MLI.

The main advantage of the HV-MLI over the LV-MLI for medium- to high-power
applications is that an HV-MLI has the same voltage stress on all switches, which is only
a fraction of the output voltage. On the other hand, topologies of LV-MLI usually have
a larger ratio of output voltage levels over the number of switches. Still, they usually
have a larger ratio of voltage stress on devices over the output voltage. Furthermore, for
low-voltage applications, HV-MLI has some limitations. Topologies with several voltage
sources are more expensive than other low-voltage solutions (i.e., the traditional full-bridge
inverter) since they require more than one input voltage source and require isolation among
them. Topologies with a single voltage source usually require an additional mechanism to
balance the voltage in capacitors.

This article introduces a single-phase five-level multilevel inverter based on six switches
and two transformers. The proposed converter requires a single dc input source with low
voltage, which is an advantage since no voltage balancing mechanisms are required. The
disposition of switches makes it possible to build the converter with the widely known
transistors six-pack modules since those packages are commercially available (off-the-shelves),
and their use simplifies the manufacturing process. The converter increases the voltage with
two transformers, for which the converter does not require an auxiliary step-up converter.
The proposed converter features low-voltage stress on transistors. The main drawbacks are:
(i) it uses two transformers; however, this allows using the same topology for several input
voltage levels by changing the transformers’ turn ratio, and (ii) if the switching method used
is the line switching frequency, it requires an auxiliary boost converter to regulate the output
voltage. Despite the requirements of an auxiliary converter to regulate the output voltage,
most of the voltage gain can be performed with the transformer’s turn ratios.

To verify the operation of the proposed multilevel inverter, a computer-based simula-
tion was performed with PSIM, a software that considers parasitic components. The results
show that the proposed converter can work properly.
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2. The Proposed Topology

As mentioned before, the core of the switching stage is a full bridge or six-pack
module of MOSFETS or IGBTs. Those six-pack modules are widely used to build low-
power three-phase inverters (two levels); in this case, the inverter is a single-phase five-level
inverter. Figure 2 shows a commercial six-pack module, indicating the output phases and
dc input side, and the small connectors at the top are for gate drivers (a pair for each
transistor).
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Figure 3 shows the proposed five-level single-phase inverter in a full application. As
mentioned before, the inverter requires its input to be regulated, and in this case, a dc-dc
boost converter is used to regulate the voltage (an interleaved boost may be used if a large
amount of power is handled).
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Figure 3. The entire conversion system with the proposed five-level inverter topology.

The six-pack is made, in this case, by s1, s2, s3, s1n, s2n, and s3n. The six-pack switching
stage feeds two single-phase transformers, T1 and T2. The turn ratio can be selected
according to the desired input and output voltage, and this can be customized according to
the application. Let us consider that the power converter is made of a pre-regulator (boost
converter), which is fed with a 12 V dc input. The boost converter regulates the voltage to
feed the six-pack with 18 V and the inverter must generate a 127 V ac voltage (180 V peak).
T1 may have (for this example) a turn ratio of 1:10, while T2 has a turn ratio of 1:5.

The six transistors are driven with three switching signals, and usually the two tran-
sistors of the same arm are complementary. The name of the transistors was assigned
considering this. For example, s1 is complementary to s1n. When s1 is closed, s1n is open,
and vice versa. This simplifies the description of the firing signals. We can describe the
behavior with only three switching signals, considering that the other three are comple-
mentary. For the analysis, only the upper switching signals are described since the lower
switches are the logical inverse of the upper ones.

The principle of operation of the proposed circuit can be explained in the following
manner. If there are three firing signals that can take two possible states (zero or one), there
is a total of eight possible switching states. The instantaneous output voltage depends on
the state of the transistors, and each transformer can contribute with a positive, negative,
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or zero voltage to the output, depending on how its primary winding is connected to the
input voltage source.

Let us analyze the eight switching states one by one. We will consider the input
voltage is the output of the boost converter, and it is regulated to 18 V, and the turn ratio
of transformers is 1:10 for T1 and 1:5 for T2. Parameters may change depending on the
applications, but it will help to explain the principle of operation.

From Figure 3, we can define the primary winding currents in terms of the output
current and the transformer’s turn ratio as in (1)–(3):

iT1 =
T1N2

T1N1
io. (1)

iT2 =
T2N2

T2N1
io. (2)

iTN = iT1 − iT2 =

(
T1N2

T1N1
− T2N2

T2N1

)
io. (3)

Let us consider, for example, the input voltage of the transistor six-pack is the output
of the boost converter, and it is regulated to 18 V. In this case, all transistors are rated to 18 V.
Their current depends on two different factors, the loads’ power factor and the switching
state. Below, each switching state is analyzed to gain a better idea of the current through
the switches.

2.1. The State {0, 0, 0}

When the three firing signals are zero, the three upper switches (s1, s2, and s3) are open,
and their complementary switches (s1n, s2n, and s3n) are closed, and the circuit behaves like
the one shown in Figure 4. Note that the primary winding of both transistors is in a short
circuit, in other words, connected to zero voltage, for which their output winding provides
zero voltage to the load. In this state, the output voltage is zero.
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Figure 4. Equivalent circuit when s1 = 0, s2 = 0, and s3 = 0 (s1n = 1, s2n = 1, and s3n = 1).

The zero-voltage state does not mean that the load current is zero, and the output
current has a path to flow in case an inductive load is connected. In this switching state, the
current through transistors that are closed can be expressed in terms of the output current
and the transformer’s turn ratio as in (4)–(6):

iS1n = iT1 = 10io. (4)

iS3n = iT2 = 5io. (5)

iS2n = iTN = iT1 − iT2 = 5io. (6)

Notice that the output current may be different from zero even if the output voltage
is zero. This would depend on the load’s power factor. This state leads to zero current if
the load is resistive; if the load is not resistive, it can be modeled as a current source that
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may have either a positive or negative direction and the converter must be prepared to
deal with any current direction (this effect is due to the power factor). In case the current is
positive, the current paths on the converter would look like that in Figure 5a, otherwise it
would look like that in Figure 5b.
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Figure 5. Current flow for different directions of the load current when s1 = 0, s2 = 0, and s3 = 0.
(a) when the load current is positive and (b) when the load current is negative.

Note that depending on the load current direction, in some switches, the current flows
through the transistor, and in other cases it flows through the diode.

2.2. The State {0, 0, 1}

When the first two firing signals are zero and the third is one, two upper switches are
open (s1 and s2) while s3 is closed. Two lower switches are closed (s1n and s2n) while the
third one (s3n) is open. The circuit behaves like the one shown in Figure 6.
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Figure 6. Equivalent circuit when s1 = 0, s2 = 0, and s3 = 1 (s1n = 1, s2n = 1, and s3n = 0).

The primary winding of the transformer T1 is shorted (connected to zero volts), while
the primary winding of the transformer T2 is connected to the input source but in a way
that provides a negative voltage (the dot coincides with the negative side of the power
source). In this state, the inverter provides −90 V.

In this switching state, the current through transistors that are closed can be expressed
in terms of the output current and the transformer’s turn ratio as in (7)–(9):

iS1n = iT1 = 10io. (7)

iS3 = iT2 = 5io. (8)

iS2n = iTN = iT1 − iT2 = 5io. (9)

Similar to Figure 5, Figure 7 shows the current paths for the state {0, 0, 1}.



Energies 2022, 15, 9321 6 of 21

Energies 2022, 15, x FOR PEER REVIEW 6 of 22 
 

 

The primary winding of the transformer T1 is shorted (connected to zero volts), while 

the primary winding of the transformer T2 is connected to the input source but in a way 

that provides a negative voltage (the dot coincides with the negative side of the power 

source). In this state, the inverter provides −90 V. 

 

Figure 6. Equivalent circuit when s1 = 0, s2 = 0, and s3 = 1 (s1n = 1, s2n = 1, and s3n = 0). 

In this switching state, the current through transistors that are closed can be 

expressed in terms of the output current and the transformer’s turn ratio as in (7)–(9): 

1 1 10S n T oi i i= = . (7) 

3 2 5S T oi i i= = . (8) 

2 1 2 5S n TN T T oi i i i i= = − = . (9) 

Similar to Figure 5, Figure 7 shows the current paths for the state {0, 0, 1}. 

  

Figure 7. Current flow for different directions of the load current when s1 = 0, s2 = 0, and s3 = 1. (a) 

when the load current is positive and (b) when the load current is negative. 

As in the previous state, the converter must be able to operate with different output 

current directions to consider an operation with a power factor different than one. The 

load can be modeled as a current source. In case the current is positive, the current paths 

on the converter would look like that in Figure 7a, otherwise it would look like that in 

Figure 7b. Depending on the load current direction, in some switches, the current flows 

through the transistor, and in other cases it flows through the diode. 

2.3. The State {0, 1, 0} 

When the first and the third firing signals are zero, while the second one is one, two 

upper switches are open (s1 and s3) while s2 is closed. Two lower switches are closed (s1n 

and s3n) while the third one (s2n) is open, and the circuit behaves like in Figure 8.  

(a)

1s

1ns

2s

2ns

3s

3ns

90outV = −

-90V

0V

1:10

1:5 outV

T1

T2

VC=18

1Ti

2Ti

TNi

oi oi

(a)

1s

1ns

2s

2ns

3s

3ns

1:10

1:5

T1

T2

VC

1Ti

2Ti

TNi

oi

(b)

1s

1ns

2s

2ns

3s

3ns

1:10

1:5

T1

T2

oiVC

1Ti

2Ti

TNi

Figure 7. Current flow for different directions of the load current when s1 = 0, s2 = 0, and s3 = 1.
(a) when the load current is positive and (b) when the load current is negative.

As in the previous state, the converter must be able to operate with different output
current directions to consider an operation with a power factor different than one. The load
can be modeled as a current source. In case the current is positive, the current paths on the
converter would look like that in Figure 7a, otherwise it would look like that in Figure 7b.
Depending on the load current direction, in some switches, the current flows through the
transistor, and in other cases it flows through the diode.

2.3. The State {0, 1, 0}

When the first and the third firing signals are zero, while the second one is one, two
upper switches are open (s1 and s3) while s2 is closed. Two lower switches are closed (s1n
and s3n) while the third one (s2n) is open, and the circuit behaves like in Figure 8.
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Figure 8. Equivalent circuit when s1 = 0, s2 = 1, and s3 = 0 (s1n = 1, s2n = 0, and s3n = 1).

The primary winding of the transformer T1 is connected to the input source, but the
dot at the primary winding coincides with the negative side of the input power source
and T1 provides a negative voltage (−180 V). In this state, the primary winding of the
transformer T2 is connected to the input source in a positive manner (the primary dot
coincides with the positive side of the input power source). In this state, the inverter
provides an output of 90 V.

In this switching state, the current through transistors that are closed can be expressed
in terms of the output current and the transformer’s turn ratio as in (10)–(12):

iS1n = iT1 = 10io. (10)

iS3n = iT2 = 5io. (11)

iS2 = iTN = iT1 − iT2 = 5io. (12)

As in previous states, the converter must be able to operate with different output
current directions to consider an operation with a power factor different than one. The load
can be modeled as a current source. In case the current is positive, the current paths on the
converter would look like that in Figure 9a, otherwise it would look like that in Figure 9b.
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Depending on the load current direction, in some switches, the current flows through the
transistor, and in other cases it flows through the diode.
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Figure 9. Current flow for different directions of the load current when s1 = 0, s2 = 1, and s3 = 0.
(a) when the load current is positive and (b) when the load current is negative.

2.4. The State {0, 1, 1}

When the first firing signal is zero, while the second and third are one, the first upper
switch (s1) is open, while the other two (s2 and s3) are closed. The first lower switch (s1n) is
closed, while the other two (s2n and s3n) are open. In this state the circuit behaves like in
Figure 10.
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Figure 10. Equivalent circuit when s1 = 0, s2 = 1, and s3 = 1 (s1n = 1, s2n = 0, and s3n = 0).

The primary winding of the transformer T1 is connected to the input source, but the
dot at the primary winding coincides with the negative side of the input power source
and T1 provides a negative voltage (−180 V). The primary winding of the transformer T2
is shorted or connected to zero volts (it is not contributing to the output voltage in this
switching state). In this state, the inverter provides an output of −180 V.

In this switching state, the current through transistors that are closed can be expressed
in terms of the output current and the transformer’s turn ratio as in (13)–(15):

iS1n = iT1 = 10io. (13)

iS3 = iT2 = 5io. (14)

iS2 = iTN = iT1 − iT2 = 5io. (15)

As in previous states, the converter must be able to operate with different output
current directions to consider an operation with a power factor different than one. The load
can be modeled as a current source. In case the current is positive, the current paths on the
converter would look like that in Figure 11a, otherwise it would look like that in Figure 11b.
Depending on the load current direction, in some switches, the current flows through the
transistor, and in other cases it flows through the diode.
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Figure 11. Current flow for different directions of the load current when s1 = 0, s2 = 1, and s3 = 1.
(a) when the load current is positive and (b) when the load current is negative.

2.5. The State {1, 0, 0}

When the first firing signal is one, while the second and third are zero, the first upper
switch (s1) is closed and the other two (s2 and s3) are open. The first lower switch (s1n) is
open, while the other two (s2n and s3n) are closed. In this state, the circuit behaves like in
Figure 12.
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Figure 12. Equivalent circuit when s1 = 1, s2 = 0, and s3 = 0 (s1n = 0, s2n = 1, and s3n = 1).

The primary winding of the transformer T1 is connected to the input source, in a
positive manner (the dot is connected to the positive side of the input power source), then
it provides 180 V to the output. The primary winding of the transformer T2 is shorted or
connected to zero volts (it is not contributing to the output voltage in this switching state).
In this state, the inverter provides an output of 180 V.

In this switching state, the current through transistors that are closed can be expressed
in terms of the output current and the transformer’s turn ratio as in (16)–(18):

iS1 = iT1 = 10io. (16)

iS3n = iT2 = 5io. (17)

iS2n = iTN = iT1 − iT2 = 5io. (18)

As in previous states, the converter must be able to operate with different output
current directions to consider an operation with a power factor different than one. The load
can be modeled as a current source. In case the current is positive, the current paths on the
converter would look like that in Figure 13a, otherwise it would look like that in Figure 13b.
Depending on the load current direction, in some switches, the current flows through the
transistor, and in other cases it flows through the diode.
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Figure 13. Current flow for different directions of the load current when s1 = 1, s2 = 0, and s3 = 0.
(a) when the load current is positive and (b) when the load current is negative.

2.6. The State {1, 0, 1}

When the first and the third firing signals are one, while the second signal is zero,
the first and the third upper switches (s1 and s3) are closed while the second upper switch
(s2) is open. The first and the third lower switches (s1n, and s3n) are open, while the other
switch (s2n) is closed. In this state, the circuit behaves like in Figure 14.
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Figure 14. Equivalent circuit when s1 = 1, s2 = 0, and s3 = 1 (s1n = 0, s2n = 1, and s3n = 0).

The primary winding of the transformer T1 is connected to the input source, in a
positive manner (the dot is connected to the positive side of the input power source), then it
provides 180 V to the output. The primary winding of the transformer T2 is also connected
to the input power source, but in a negative manner (the dot coincides with the negative
side of the power source), and in this case, T2 contributes with −90 V to the load. In this
state, the inverter provides an output of 90 V.

In this switching state, the current through transistors that are closed can be expressed
in terms of the output current and the transformer’s turn ratio as in (19)–(21):

iS1 = iT1 = 10io. (19)

iS3 = iT2 = 5io. (20)

iS2n = iTN = iT1 − iT2 = 5io. (21)

As in previous states, the converter must be able to operate with different output
current directions to consider an operation with a power factor different than one. The load
can be modeled as a current source. In case the current is positive, the current paths on the
converter would look like that in Figure 15a, otherwise it would look like that in Figure 15b.
Depending on the load current direction, in some switches, the current flows through the
transistor, and in other cases it flows through the diode.
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Figure 15. Current flow for different directions of the load current when s1 = 1, s2 = 0, and s3 = 1.
(a) when the load current is positive and (b) when the load current is negative.

2.7. The State {1, 1, 0}

When the first two firing signals are one, while the last one is zero, the first and the
second upper switches (s1 and s2) are closed while the third upper switch (s3) is open. The
first and the second lower switches (s1n and s2n) are open, while the last one (s3n) is closed.
In this state, the circuit behaves like in Figure 16.
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Figure 16. Equivalent circuit when s1 = 1, s2 = 1, and s3 = 0 (s1n = 0, s2n = 0, and s3n = 1).

The primary winding of the transformer T1 is shorted and provides no voltage to the
output side. The primary winding of the transformer T2 is connected to the input power
source in a positive manner (the dot coincides with the positive side), and in this case, T2
contributes with 90 V to the load. In this state, the inverter provides an output of 90 V.

In this switching state, the current through transistors that are closed can be expressed
in terms of the output current and the transformer’s turn ratio as in (22)–(24):

iS1 = iT1 = 10io. (22)

iS3n = iT2 = 5io. (23)

iS2 = iTN = iT1 − iT2 = 5io. (24)

As in previous states, the converter must be able to operate with different output
current directions to consider an operation with a power factor different than one. The load
can be modeled as a current source. In case the current is positive, the current paths on the
converter would look like that in Figure 17a, otherwise it would look like that in Figure 17b.
Depending on the load current direction, in some switches, the current flows through the
transistor, and in other cases it flows through the diode.

2.8. The State {1, 1, 1}

When all firing signals are one, all upper switches (s1, s2, and s3) are closed while all
lower switches (s1n, s2n, and s3n) are open. In this state, the circuit behaves like in Figure 18.
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Figure 17. Current flow for different directions of the load current when s1 = 1, s2 = 1, and s3 = 0.
(a) when the load current is positive and (b) when the load current is negative.
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Figure 18. Equivalent circuit when s1 = 1, s2 = 1, and s3 = 1 (s1n = 0, s2n = 0, and s3n = 0).

Both transformers’ primary windings are shorted and provide no voltage to the output
side. In this state, the inverter provides an output of 0 V.

In this switching state, the current through transistors that are closed can be expressed
in terms of the output current and the transformer’s turn ratio as in (25)–(27):

iS1 = iT1 = 10io. (25)

iS3 = iT2 = 5io. (26)

iS2 = iTN = iT1 − iT2 = 5io. (27)

As in previous states, the converter must be able to operate with different output
current directions to consider an operation with a power factor different than one. The load
can be modeled as a current source. In case the current is positive, the current paths on the
converter would look like that in Figure 19a, otherwise it would look like that in Figure 19b.
Depending on the load current direction, in some switches, the current flows through the
transistor, and in other cases it flows through the diode.
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Figure 19. Current flow for different directions of the load current when s1 = 1, s2 = 1, and s3 = 1.
(a) when the load current is positive and (b) when the load current is negative.
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2.9. Summary of the Converter’s Equivalent Circuits

Table 1 shows a summary in which firing signals are shown with their respective
output voltage.

Table 1. Firing signals and output voltage.

s1 s2 s3 T1out T2out Vout

0 0 0 zero zero 0
0 0 1 zero negative −90
0 1 0 negative positive −90
0 1 1 negative zero −180
1 0 0 positive zero 180
1 0 1 positive negative 90
1 1 0 zero positive 90
1 1 1 zero zero 0

Table 1 also includes the information about the contribution of transformers, whether
it is positive, negative, or zero. The last column indicates the output voltage considering
that the turn ratio of transformer T1 is 1:10, the turn ratio of transformer T2 is 1:5, and the
input voltage (the capacitor’s voltage) is 18 V.

We can see from the analysis that the converter has eight equivalent circuits, but only
five different output voltage levels, since two pairs of states are redundant, which means
they provide the same voltage. In this case, the states {0, 0, 1} and {0, 1, 0} both provide
−90 V, and the states {1, 0, 1} and {1, 1, 0} both provide 90 V.

Evidently, the designer can choose some parameters, such as the turn ratio of trans-
formers, and the input voltage may be different, but the converter can provide five different
output voltage levels, which can produce a five-level stepped waveform.

The operation of the inverter requires the appropriate selection of switching functions.
To operate the dc-ac inverter, we chose only the switching states marked in bold in Table 1.

Figure 20 shows important signals of the converter. From top to bottom, the first
three signals are the selected switching functions and they are directly applied to the three
upper switches (s1, s2, and s3), while lower switches (s1n, s2n, and s3n) have the opposite
(complementary) logic signals.
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Figure 20. Important signals of the converter operation. From top to bottom: firing signals, output
voltage, and voltage in transformers T1 and T2.

Figure 20 also shows the output voltage (Vout), the ideal sinusoidal waveform is shown
in light gray, and the real stepped waveform is shown in black, and this is the multilevel
waveform, with five levels. Finally, Figure 20 also shows the voltage at the secondary
winding (output) of both transformers (T1 and T2). VT1 (180 V peak) has twice the peak
amplitude of VT1 (90 V peak).
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The output voltage can be expressed as the summation of the voltage at both trans-
formers’ secondary windings, as in (28):

Vout = VT1 + VT2; (28)

From the theoretical signals, we can also observe that four of the six transistors switch
at the output frequency (i.e., 60 Hz), while two of them switch at three times the output
frequency (i.e., 180 Hz); still, the switching frequency is relatively low for the capacity of a
regular IGBT or a MOSFET.

The full-bridge power stage operates with a dead-time among the upper and lower
transistors of the same phase, and this may cause a small distortion on the output current of
a traditional PWM inverter, as described in [20]. In this case, since the switching frequency
is low, the dead-time is negligible compared to the time in which transistors were on, and
no effect was observed. However, if PWM is used, a dead-time elimination method (such
as the one described in [20]) may be used to eliminate any current distortion.

2.10. Dynamical Model of the System

The elements that store energy in the system shown in Figure 3 are basically the
inductor and capacitor of the boost converter, and despite that transformers have some
stored energy in their magnetizing inductance, the amount of stored energy is relatively
small. A simple mathematical model can be derived by analyzing the boost converter and
then adding the input current of the six-pack module as the output current of the boost
converter in the capacitor.

Figure 21 shows the boost converter with a current source as a load, and the load
current ix is the input current to the six-pack module, as shown in Figure 3.
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Figure 21. (a) The boost pre-regulators and their equivalent circuits according to the switching state,
(b) when sa = 1 (san = 0), and (c) when sa = 0 (san = 1).

From the equivalent circuits, it is possible to use the standard averaging technique to
describe the dynamics of the state variables. In this case, the state variables are the current
through the inductor and the voltage across the capacitor [21]. The average voltage across
the inductor and the average current through the capacitor would be expressed as in (29)
and (30), respectively:

L
diL
dt

= d
(
vg
)
+ (1 − d)

(
vg − vC

)
. (29)

C
dvC
dt

= d(−ix) + (1 − d)(iL − ix). (30)

where d is the duty cycle of the switch sa; in other words, the time in each switching cycle
that the converter behaves like the circuit in Figure 21b, divided over the switching period.

Equations (29) and (30) can be simplified and rewritten as Equations (31) and (32):

L1
diL1

dt
= dvg − (1 − d)vC1. (31)

C1
dvC1

dt
= (1 − d)iL1 − ix. (32)
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From the dynamic Equations (31) and (32), the steady-state (or equilibrium) operation
can be calculated. In a steady state, the derivative of state variables is zero, and then,
making the derivatives in (31) and (32) equal to zero, the voltage in C1 can be expressed as
in (33) and the current through the inductor can be expressed as in (34):

VC =
1

1 − D
Vg. (33)

IL2 =
1

(1 − D)
Ix. (34)

Upper case letters are used in (33) and (34) to indicate steady-state values or variables
in the equilibrium condition.

3. Demonstrative Results

To corroborate the operation of the proposed converter, the converter was simulated
in the software PSIM (2022-1) using a computer with an Intel i7 processor (11th Gen i7-
1165G7 at 2.80 GHz), 32 GB of Ram memory, and Windows 11 Pro (64 bits). The simulation
parameters are shown in Table 2.

Table 2. Simulation parameters.

Parameter Value Unit

Simulation time 1 s
Step 1 µs

Boost inductor 100 µH
Inductors ESR 50 mΩ

DC Link Capacitor 2 mF
Capacitors ESR 2 mΩ
Transistors Ron 100 mΩ

Diodes Forward voltage 0.9 V
Transf Magnetizing inductance 2 mH

Several tests were performed with and without magnetizing inductance (in parallel
with the transformers’ primary winding), and the difference was too small to be observed
on the waveforms and only an increase of 0.05% on the THD was measured.

Figure 22 shows the simulation schematics, whereby the customizable power semicon-
ductor element was used to simulate the transistors. All transistors have an antiparallel
diode, which is a characteristic of the six-pack. The input voltage is 12 V, and the transform-
ers’ turn ratios are also the same as in the analysis (1:10 for T1 and 1:5 for T2).
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The simulator requires to have a reference (ground) in floating elements of the circuits,
but in the application, the input side and the output side of transformers are naturally
electrically isolated.

Figure 23 shows the switching signals (up) along with the output voltage, Vout. The
voltage is consistent with what we expected, and with the waveform shown in Figure 20.
The simulation shows that the proposed topology can make the voltage conversion from
the dc input to the five-level output.
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Figure 23. Switching signals and the output voltage.

The converter was used to generate a 60 Hz multilevel voltage output with a peak am-
plitude of 180 V (see Table 1). Figure 24 shows the voltage at transformers’ secondary wind-
ing along with the output voltage, which is the sum of both transformers’ output voltages.
The measured total harmonic distortion (THD) of the staircase output voltage waveform
generated by the converter was around 20%, although it can be improved by adding an
output filter, increasing the number of levels, or implementing a PWM modulation.
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We have also included important waveforms for the semiconductors of the power
converter, as can be observed in Figure 25, where the current through and voltage across
the switch S1 are compared to the current and voltage at the output, respectively.
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Figure 25. Semiconductor’s waveforms: (a) the current through switch S1 compared to the output
current, and (b) the voltage across switch S1 compared to the output voltage.

It can be seen that the peak values of current and voltage in semiconductors correspond
to the input current and voltage values. It is also important to notice that, as is expected
in multilevel converters, the semiconductors only block a portion of the output voltage,
which allows the selection of components with smaller voltage ratings.

The simulations were performed considering some parasitic components in the trans-
former, however the addition of non-idealities such as magnetizing and leakage inductance
will not drastically affect the performance of the converter. For instance, these inductances
could cause a small distortion in the levels of the converter that can be compensated by
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increasing the dc bus capacitance. The simulation was performed in a specialized software
which considers non-ideal models for semiconductors and other elements, and it showed
that the converter can perform the proposed conversion and demonstrated that the inverter
can be built with a six-pack IGBT module.

Operation of the Converter under Closed-Loop Control

Due to the nature of the output voltage waveform created by the proposed topology
(staircase), which has the aforementioned advantages of low-frequency switching and
low losses, the direct regulation of the output voltage is not permitted. However, the
closed-loop operation of the converter is possible by including PWM modulation or by
implementing a dc pre-regulator.

In this work, we chose to explore the option of the dc pre-regulator stage to demon-
strate the regulation capability. It is worth noting that in most applications, this pre-
regulator is required, for instance in PV grid-tied inverters and motor drivers.

The designed control scheme consists of a traditional PI controller which regulates
the RMS value of the output voltage, by controlling the operation of the dc pre-regulator,
as can be seen in Figure 26. The controller was tuned considering that the dc bus bulk
capacitor presents slow dynamics. There exist multiple options for designing the control
stage, however here we only show an alternative to demonstrate the application of the
proposed topology if the closed-loop operation is required.
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Figure 26. Controller diagram.

The RMS value in Figure 26 was calculated with the moving average or window
strategy to ensure a precise measurement.

We performed two different tests to corroborate the performance of the converter
under closed-loop operation. The first test was for changes at the input source. We changed
the input voltage from the nominal 12 to 15 V and back, and from 12 to 9 V and vice
versa, and the setpoint for the output voltage was fixed to 127 VRMS. As can be seen in
Figure 27, the output reaches its steady-state value after some milliseconds of the input
voltage change. It can be seen that the output voltage is stably bounded and correctly
regulated in spite of the abrupt input voltage changes.

The second test consisted in changing the output voltage setpoint reference of the
converter while keeping the input voltage constant. The reference was changed from 127 to
160 VRMS and back, and from 127 to 100 VRMS and vice versa. The results of this test can be
seen in Figure 28. As can be observed, the output voltage followed the reference after a short
transient of a few milliseconds, and it is worth mentioning that although the changes in the
reference were suddenly made, the converter followed the control commands properly.

To verify the stability margins of the closed-loop controller, we included the bode plots
for the closed-loop system. The bode diagrams were obtained directly from the simulation
by perturbing the reference signal with a frequency-varying sinusoidal waveform of around
10% of the nominal value of the reference. In Figure 29, we included the bode plots of
two tests to characterize the effect of the output transformer in the closed-loop operation of
the system. It can be seen from the plots that the closed-loop system presents a sufficient
phase margin of around 70◦ which, alongside with the gain margin of around 20 dB,



Energies 2022, 15, 9321 18 of 21

guarantees a stable operation of the converter. It can be noticed that the addition of the
output transformer slightly decreases the crossover frequency (bandwidth) of the closed-
loop system but does not have a substantial impact on the stability of the converter.
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4. Discussion

The proposed topology can be built with a six-pack transistors module, which is an
advantage from the manufacturing point of view. Six-pack transistors modules are widely
used in many applications, and they are available in a wide range of voltages, currents,
power dissipation, and with several types of devices, such as MOSFETs, IGBTs, etc. They
are off-the-shelf devices.

Four of the six transistors switched at the output frequency (60 Hz), while the other
two switched at three times the switching frequency (180 Hz). However, three times the
switching frequency is still considered a low frequency for IGBTs and MOSFETS.

The main disadvantage of the proposed topology is that it requires two transformers,
but their turn ratios can be used as an extra degree of freedom during the design, to
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customize the voltage gain according to the application. Furthermore, if one transformer is
chosen with a 1:1 turn ratio, and no isolation is required, the transformers can be omitted
while the converter performs the same application.

Compared to other topologies, the proposed one has a low-voltage stress on transistors;
on the other hand, the current may be relatively large since it is proportional to the output
current multiplied by the turn ratios of transformers. This makes the converter more
suitable to be used for MOSFETs, whereby the on-resistance may help to reduce the
conduction losses compared to other topologies.

5. Conclusions

This article introduced a single-phase five-level multilevel inverter topology which
is based on a three-phase arrangement of transistors (what we usually call a six-pack
module) and two transformers. The proposed converter requires a single dc input source,
and the input source may have low amplitude since the turn ratio of transformers can
be used to boost the voltage. Six-pack transistors modules are commercially available
(off-the-shelves), and since those packages are widely used to build low-power three-phase
inverters, their use simplifies the manufacturing process. The converter has low-voltage
stress on transistors. Their main drawback is the use of two transformers, but those
transformers allow using the same topology for several input voltage levels by changing
the transformers’ turn ratios. To verify the operation of the proposed multilevel inverter, a
computer-based simulation was performed with the specialized software PSIM, a software
that considers parasitic components (non-ideal). The results show that the proposed
converter can work properly and perform the power conversion as expected.
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