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Abstract: A deep understanding of the dissociation and transportation mechanism of natural gas hy-
drate (NGH), taking into account the effects of geo-stress, contributes to optimizing the development
strategy and increases the exploitation efficiency of NGH. In this paper, the mathematical model, cou-
pled with fluid heat and mass transfer, multiphase flow mechanics, and reaction kinetics with phase
change in the process of hydrate decomposition was established. An axisymmetric two-dimensional
model was developed to simulate the depressurization decomposition process of natural gas hydrate
in the Berea sandstones. FLUENT software was used to solve the fundamental governing equations of
the multi-phase flow, and UDF programming was employed to program the hydrate decomposition
model and the modified permeability model in the dissociation and transportation of NGH. The
simulation results were then validated by Masuda’s experimental data. The effects of gas saturation,
outlet pressure, temperature, absolute permeability and geo-stress on the decomposition of natural
gas hydrate were studied. The results indicated that a higher absolute permeability, higher initial gas
saturation, lower outlet pressure, and higher initial temperature advance the decomposition rate of
hydrate. Thus, an optimized production plan is essential to promote the extraction efficiency of the
NGH. The geo-stress causes a decrease in the porosity and permeability of the porous rock, which
restricts the efficiency of the heat and mass transfer by the fluid flow, leading to a slower dissociation
and transportation rate of the NGH. Thus, it is important to take geo-stress into consideration and
balance the extracting efficiency and the well pressure, especially when the NGH is developed
by depressurization.

Keywords: natural gas hydrate; heat and mass transfer; reaction kinetics; geo-stress

1. Introduction

The increasing global demands for energy and environmental protection urge govern-
ments and scientists to exploit unconventional oil and gas resources, but with tremendous
reservation, such as coalbed methane, shale gas, tight sandstone gas, and natural gas
hydrate, among others [1,2]. Natural gas hydrate (NGH), which accounts for the largest
proportion of unconventional natural gas resources, is a kind of high-quality, efficient,
and clean energy with great potential [3]. NGH is a non-fixed stoichiometric cage-like
crystalline compound formed by the reaction of one or several small molecular gases with
water at a certain temperature and pressure [4]. One cubic meter of NGH can release
164 cubic meters of methane in standard conditions, which is 10 times the energy density
of other unconventional gas source rocks (such as coalbed methane), and 2~5 times the
energy density of conventional natural gas [5]. Therefore, the commercial exploitation of
NGH is crucial to worldwide energy supply and economic development.

NGH requires low temperature and high-pressure conditions to maintain a stable
state, and is generally distributed in deep sea or continental permafrost. Up to now, the
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short-term field tests of hydrate exploitation in the world have been carried out in sandy
(or partially sandy) sediments [6]. The exploitation methods of NGH mainly include the
thermal stimulation method, depressurization method, chemical reagent injection method
and CO2 replacement method [7–9]. Current thermal stimulation methods in mining
technology are inefficient and can only achieve local heating [10]. The chemical reagents
huff-n-puff method is high-cost and low-efficiency, and has a potential risk of environ-
mental pollution [11]. The efficiency of the carbon dioxide replacement method is also
low [12]. Consequently, the depressurization method is regarded as the most economical
and environmentally friendly way for NGH exploitation [13–15]. By depressurization, the
solid NGH decomposes into gas and water, and, then, gas escapes from the reservoir. Stable
NGH serves as the cementing material for the mineral grains of rocks and improves the
strength of the rock mass. The dissociation of the NGH may cause potential geo-hazards.
Thus, a study on the dissociation and transportation mechanism of NGH, considering the
effects of the geo-stress, contributes to the economic and safe development of NGH.

To date, extensive studies have been performed to investigate the dissociation and
transportation process of NGH in porous media by numerical modeling. Zhao et al. [16]
simulated the distribution of temperature, pressure, and hydrate saturation as natural
gas hydrate decomposed in a two-dimensional axisymmetric model. Deng et al. [17] es-
tablished a coupling model of two-phase flow and heat transfer for hydrate dissociation.
Zhang et al. [18] adopted the dynamic grid algorithm to analyze the effects of permeability,
lithology, and reservoir compression modulus on the recovery efficiency of natural gas
hydrate in the core. Based on the implicit pressure–explicit saturation (IMPES) method,
Liang et al. [19] created a two-dimensional axisymmetric model and analyzed the effects of
outlet pressure, initial hydrate saturation and other parameters on hydrate decomposition
and gas production rate in porous media. Ruan et al. [20] investigated the responses of hy-
drate dissociation to permeability and hydrate saturation of the reservoir. Two-dimensional
axisymmetric models were established in FLUENT software to investigate the impact of
temperature, permeability, pressure, phase distribution and other factors on the rate of
NGH dissociation [21–28]. However, the geo-stress was not considered in these studies.
The effective pressure is believed to be one of the key factors for efficiency and stability in
the formation of NGH [29]. White et al. [30] integrated the geomechanical calculation into
the existing thermal and hydrological coupling model framework to simulate the process
of NGH exploitation by using IGHCCS2 codes. Cheng et al. [31] developed a gas–water
two-phase fluid mechanics coupling model to investigate the effects of the interaction of
the fluid and solid on the gas production of NGH. Lee et al. [32] developed a 3D geological
model to investigate the geo-stress on gas production of NGH by using the cyclic depres-
surization method. Liu et al. [33] utilized the thermal-hydrological-mechanical-chemical
(THCM) coupling model to study the geomechanical issues during the exploitation of
NGH. Wu et al. [34] investigated the effects of the effective stresses on the permeability and
porosity of natural gas hydrate reservoirs with different NGH saturations. Sun et al. [35]
developed a fully coupled thermal-hydrological-mechanical-chemical (THCM) model. The
impacts of compressibility on the rate of gas production, pore pressure, temperature, per-
meability, and other parameters were investigated. Jang et al. [36] studied the effects
of geo-stress on fluid flow in NGH reservoirs. Kimoto et al. [37] conducted a numeri-
cal simulation based on a chemical-thermal-mechanical coupling model and an updated
Lagrangian equation, and investigated the influencing factors of ground deformation
caused by NGH dissociation. Sun et al. [38,39] used COMSOL to simulate the mechan-
ical behavior of NGH by integrating the Mohr–Coulomb model into the fully coupled
thermal-water-mechanics model. Cheng et al. [40] proposed a thermal-hydro-mechanical
(THM) coupling model and studied the distribution of pressure, saturation of each phase,
temperature, and mechanical parameters around the wellbore. Wan et al. [41] proposed a
thermal-water-mechanical-chemical (THMC) coupling model based on the CVFEM frame-
work, which was then validated by Masuda’s triaxial compression experiment [42] and
sandstone core experiment [43]. However, the mechanical parameters used in most of
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these studies were estimated empirically, which limited the validation and applicability in
engineering applications.

In this paper, a mathematical model, considering fluid heat and mass transfer, multi-
phase flow mechanics, and reaction kinetics with phase change in the process of hydrate
decomposition, was established. In this model, the mechanical properties of the Berea
sandstone and its stress sensitivity were adopted. The THMC codes were programmed in C
language and used as a subroutine in FLUENT software. The Masuda’s experiments on the
Berea sandstone were simulated and used as benchmark data for model verification. The
effects of initial gas saturation, outlet pressure, initial temperature, absolute permeability
and geo-stress on the decomposition of natural gas hydrate were studied.

2. Methods
2.1. Computer Model

This work employed Masuda’s experimental benchmark data [43] to validate the
numerical model, and, on that basis, addressed and investigated the effect of effective stress
on hydrate decomposition and gas production in sandy sediments. Masuda’s experiment
involved distributing a specified volume of water, methane gas, and hydrate in the core
of a cylindrical sandstone. The core had a cross-sectional size of 20.3 cm2. The gas phase
followed the Peng–Robinson equations. The Euler model was adopted to simulate the
multiphase flow in the porous rock containing NGH. This study turned the original three-
dimensional model into a two-dimensional axisymmetric model for processing using
ICEM software, as in Figure 1. The symmetry axis was chosen to be the bottom edge,
and the calculation area was divided into 120 × 20 grids. FLUENT was then used to
import the mesh model. In Masuda’s experiment, the left side was the outlet, while the
surrounding and right side were the non-slip and free convection walls with external heat
flow through the rubber casing around the sandstone. In this study, the casing thickness
in the experiment was 10 mm, and the appropriate range of h was 1.90–272.7 W/(m2·K),
and 50 W/(m2·K) was employed. The temperature monitoring points were P1 (7.5, 2.5),
P2 (15, 2.5), and P3 (22.5, 2.5) in Figure 1. The initial conditions, and boundary conditions
used in this simulation followed the experiment of Masuda et al. [43], as shown in Table 1
The properties of the fluids in the simulation referred to the standard database at the same
temperature and pressure conditions as the experiment. The material properties of the
porous sandstone referred to average values of the Berea sandstones in literature [44], as
shown in Table 2.
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Figure 1. Mesh model and boundary conditions for Masuda’s experiment.

Table 1. Initial conditions, boundary conditions and properties of sandstone cores in Masuda’s experiment.

Properties Value Properties Value

Average saturation of initial hydrate 0.501 Initial permeability of sandstone core 97.98 mD
Average saturation of initial water 0.199 Sandstone core porosity 0.182

Average saturation of initial methane gas 0.3 Joule-Thomson throttling coefficient −1.5 × 10−4

initial temperature 275.45 K Critical pressure of methane 4.599 MPa
initial pressure 3.75 MPa Critical temperature of methane 190.56 K
outlet pressure 2.84 MPa ambient temperature 274.15 K
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Table 2. Material properties in the simulation.

Density (kg/m3) Fluid Viscosity (cP)
Thermal

Conductivity
(w·m−1·k−1)

Thermal Capacity
(J·kg−1·k−1)

water 1001.5 1 0.6 4180
hydrate 913 - 0.393 2010
methane PR equation 0.01 0.00332 2190

Berea sandstone 2030 - 5 800

2.2. Mathematical Model

Mathematical models of the multiphase flow and heat transfer include mass balance
equations, heat balance equations, additional source terms of mass and energy, and initial
and boundary conditions. The basic governing equations for the multiphase flow in the
porous rock and the reaction kinetics of the NGH dissociation are presented in Table 3.

The effects of the geo-stress are also coupled with the transportation and dissociation
process of the NGH in the porous media. Based on the assumptions of stress and strain
linearity and the reversibility of medium deformation, Biot et al. [45] proposed the pore
elastic constitutive equation of fluid saturated porous media. Detournay et al. [46] proposed
the pore elastic constitutive equation illustrated in Equation (1), and defined volumetric
strain as follows, under isotropic compressive stress:

εV =
σ

2G
− (

1
6G
− 1

9KT
)δσ +

1
3H′

δPT (1)

εV = 3ε =
1
K
(σ− αPT) (2)

where εv is volumetric strain, G is the shear modulus, KT is bulk modulus, δ is a unit matrix,
H′ is the constitutive constant (stress-strain coupling of fluid), σ is confining pressure, and
PT is pore pressure.

Usually, the effective stress is calculated, based on the test results of variable confin-
ing pressure experiments. There are various forms of effective stress. In 1923, Terzaghi
proposed the calculation formula of effective stress:

σ′ = σ− p (3)

In this study, the influence of effective stress in sandstone core was studied, and the
effective stress coefficient was set to 1 in this study.

σ′ = σ− αp (4)

where α is the effective stress coefficient. Fatt et al. [47,48] suggested that α could be set
between 0.75 and 1. Knaap et al. [49], Hubbert et al. [50] and Zimmerman et al. [51] believed
that the effective stress coefficient was set to 1 through the experimental results. In this
study, α = 1.

When the stress and pore pressure are known, the volumetric strain can be obtained
by using the linear isotropic theory of pore elasticity. For the case of nonlinear volumetric
deformation in porous rock, it was found that the fitting equation of stress–strain data collected
in the Berea experiment was as follows (meeting the initial conditions σ′ = 0, εv = 0) [52]:

εV = A′σ′ − B′e−σ′/C′ + B′C′ (5)

where A’, B’, C’ are the fitting constants [53], εV is volumetric strain.
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Table 3. Different models of porous media methane hydrate dissociation flow.

Sun et al. (2005) Nazridoust and Ahmadi. (2007) Ruan et al. (2012) Chen et al. (2016) This Study

Modle 1-D 2-D 2-D 2-D 2-D
Flow model Darcy’s law Darcy’s law Darcy’s law Darcy’s law Darcy’s law

Relative
permeability Corey’s model (1954) Corey’s model (1954) Corey’s model (1954) Corey’s model (1954) Adapted Corey’s model (1954)

Permeability
model

krw = k

 sw
sw+sg −swr
1−swr−sgr

nw

,

krg =


sg

sw+sg −sgr
1−swr−sgr


ng

nw = 4, ng = 2, swr = 0.2, sgr = 0.3; kD = kD0
(
1− sh

)N

N = 15
kD = kD0

(
1− sh

)N

N = 11
kD = kD0

(
1− sh

)N

N = 15

krw =
(

sw−swr
1−swr

)nw
, krg =

( sg
1−swr

)ng

nw = 0.6, ng = 1.42;

where Krw and krg
are the relative
permeability of water
and gas, Swr is the
irreducible saturation
of water.

kD =

{
5.51721× (ϕe )0.86, ϕe < 0.11
4.84653× 108 × (ϕe )9.13, ϕe ≥ 0.11

kD =


5.51721×

(
ϕ0−εV
1−εV

(1− sh )
)0.86

,
ϕ0−εV
1−εV

(1− sh ) ≥ 0.11

kDO (
ϕ0−εV
1−εV

(1− sh ))
1.2

,
ϕ0−εV
1−εV

(1− sh ) ≥ 0.11

where ϕO is
absolute porosity,
εv is volumetric strain,
kDO absolute
permeability of the
sandstone without
contains hydrate, mD
Sh is saturation
of hydrate.

Kim et al. (1987) Kim et al. (1987) Kim et al. (1987) Kim et al. (1987) Kim et al. (1987)

Dissociation rate .
mg = kd AS ( fe − f ), kd = 4.4× 10−16 .

mg = kd Mg Ad
(

peh − pg
)
= ko

de−
∆E
RT Mg Ad

(
Peg − Pg

)
where Peh is the
equilibrium pressure,
Pg is the methane
pressure,
Ad is reacting surface

of hydrate, K0
d is the

intrinsic constant,
R is the universal
gas constant,
∆E is an
activation energy.

(kd , Ad )

Dissociation
constant kd

(kmol/Pa.s.m2)
k0
d = 2.75× 10−12 k0

d = 8.06

∆E = 77.33× 103 J

k0
d = 36

∆E = 81.08× 103 J

k0
d = 124

∆E = 78.15× 103 J

k0
d = 36

∆E = 81.08× 103 J

Surface area of
hydrate per

unit
volume Ad

Ad =

√
ϕ3

e
2KD

Ad = ϕ0Sh Ageo , 2r = 16 µm
Ageo = 3.75× 105 m2/m3 Ad =

√
ϕ3

e
2KD

Ad = ϕ0Sh Ageo , 2r = 16 µm
Ageo = 3.75× 105 m2/m3 Ad =

√
ϕ3

e
2KD

ϕe = ϕo (1− sh )
where ϕe is the
effective porosity of
porous media.

The heat
transfer

Enthalpy,
internal

energy (J/Kg)

∆Hd = 446.12× 103 − 132.638T ∆Hd = 473.63× 103 − 140.117T Sun et al. (2005) ∆Hd = 473.63× 103 − 140.117T

.
mw = MW NH

.
mg/Mg ,− .

mh = Mh
.

mg/Mg
q = λb (To − T)

∆Hd =

[
215.59× 103 − 394.945T, 248K < T < 273K
446.12× 103 − 132.638T, 273K < T < 298K

where Mw and Mh
are molecular
weights of water
and hydrate.
where q is boundary
heat flux,
To is air temperature,
λb is the boundary
heat transfer
coefficient
determined by the
heat transfer
coefficient of the
rubber sleeve and the
ambient convection
intensity.



Energies 2022, 15, 9311 6 of 22

Table 3. Cont.

Sun et al. (2005) Nazridoust and Ahmadi. (2007) Ruan et al. (2012) Chen et al. (2016) This Study

Continuity
equation of

different fluid
phases are:
Momentum

equation

∂
∂t
(

ϕ0ρk Sk
)
+ ∂

∂x
(
ρk Sk

)
=

.
mk

(k = h, g, w)

−∇.ρk
→
uk +

.
mk = ∂

∂t
(

ϕ0ρk Sk
)

(k = h, g, w, i)

− 1
r

∂
∂r
(
rρk vkr

)
+ ∂

∂x
(
ρk vkx

)
+

.
qk

+
.

mk = ∂
∂t
(

ϕ0ρk Sk
)
(k = g, w)

.
mh = ∂

∂t
(

ϕ0ρh Sh
) Nazridoust and Ahmadi. (2007)

−∇.ρk
→
uk +

.
mk = ∂

∂t
(

ϕ0ρk Sk
)

(k = h, g, w)
where ρ is the density, mk is the mass rate of dissociation formation substance, ϕ0 is the porosity,
S is the saturation, µk is the fluid velocity. The subscripts h, g, w corresponds to hydrate, gas and

water in multiphase systems, respectively.

uk = − kD krk
µk

∇pk,(k = g, w)p

where uk is the relative permeability of phase k, KD is the absolute permeability of hydrated
sandstone, Krk is the relative permeability of phase k, and P is fluid pressure

∂
∂t

[
(1− ϕo )ρRCR T + ϕOShρhCh T
+ϕOSwρwCw T + ϕOSgρgCg T

]
CK

+∇T.
(

ρwCw
→
u w + ρgCg

→
u g
)
−∇.(λe∇T) =

.
Qh

where C is the heat capacity, T is the temperature,
→
u is the internal energy, Subscript R represents

rock, h is the enthalpy. λe is the effective thermal conductivity,
.

Qh is the source term of
endothermic reaction based on hydrate dissociation.

.
Qh = − .

mh ∆Hd − φρg Sg σg
∂pg
∂t − ρgug∇pg

where
.

mh is the mass dissociation rate for methane hydrate,
∆Hd is the latent heat of hydrate during the dissociation of methane hydrate, σg is the

Joule-Thomson throttling coefficient, σg = −1.5 × 10 −4

λe =
(
1− ϕ0

)
λR + ϕ0

(
sh λh + swλw + sgλg

)
where λR ,λh ,λw ,λg are thermal conductivity of rock, hydrate, water, gas, respectively.

Energy equation

∂
∂t

[
(1− ϕo )ρR HR + ϕOShρh Hh
+ϕOSwρw Hw + ϕOSgρg Hg

]
+ ∂

∂x

(
ρwvw Hw + ρgvg Hg

)
= ∂

∂x

(
λ ∂T

∂x

)
+ q

∂
∂t

[
(1− ϕo )ρRCR T + ϕOSh ρhCh T
+ϕOSwρwCw T + ϕOSgρgCg T

]
CK

+∇T.(ρwCw
→
u w + ρgCg

→
u g )−∇.(λe∇T) =

.
Qh

1
r

∂
∂r

(
rkc ∂T

∂r

)
+ ∂

∂x

(
kc ∂T

∂x

)
− 1

r
∂
∂r

(
rρgvgr hg + rρwvwr hw

)
− ∂

∂x

(
ρgvgr hg + ρwvwr hw

)
+ ∂

∂x
(
ρk vkx

)
+

.
qg hg +

.
qw hw +

.
qh +

.
qin

= ∂
∂t

[
(1− ϕ)ρr hr + ϕ

(
hhρhSh + hgρgSg + hwρwSw

)]
Nazridoust and Ahmadi. (2007)

.
Qh =

− .
mH (c+dT)

MH
C = 56.599J/mol, d = −16.744J/mol K
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Haghi et al. [54] derived the calculation equation of stress-dependent porosity of
intact rock without considering the differences between particle compressibility and pore
compressibility:

ϕt =
ϕ0 − εV
1− εV

(6)

Then the effective porosity under the condition of different geo-stresses is:

ϕe =
ϕ0 − εV
1− εV

(1− sh) (7)

A new permeability formula under effective stress can be obtained as follows:

kD =

 5.51721×
(

ϕ0−εV
1−εV

(1− sh)
)0.86

, ϕ0−εV
1−εV

(1− sh) < 0.11

kDO(
ϕ0−εV
1−εV

(1− sh))
1.2

, ϕ0−εV
1−εV

(1− sh) ≥ 0.11
(8)

3. Results and Discussions
3.1. Model Validation

The gas production vs. time in the simulation and Masuda’s experiment are presented
in Figure 2. The simulation results showed the generation of methane gas in this study
was slightly delayed, compared to experimental results. The temperature of the inspecting
points (P1, P2, P3) vs. time in the simulation and Masuda’s experiment are presented in
Figure 3. It can be seen that when the time t was in the range of 0–100 min, closer to the
outlet, the faster the temperature dropped, which was generally consistent with Masuda’s
experimental results. The minimum temperature of the three monitoring points in the
simulation was lower than that of the Masuda experiment. The R-square values of the
three temperature monitoring points were 0.882, 0.799, and 0.852, respectively. The pore
pressure at the far-field boundary vs. time is presented in Figure 4. The overall trend
of the pressure drop at the far end in the simulation experiment was consistent with the
results of the Masuda experiment. The R-square of the far end boundary pressure was
0.890. The variations between the simulation and experimental results were caused by
the heterogeneous distribution of the different phases, as well as the heterogeneous pore
structure in the Berea sandstone. Considering the influence of pore structure, hydrate
heterogeneity, and the application of the mathematical model on the experiment, the
simulation results were believed to be in good agreement with the Masuda experiment.

Energies 2022, 15, x FOR PEER REVIEW 9 of 25 
 

 

3. Results and Discussions 

3.1. Model Validation 

The gas production vs. time in the simulation and Masuda’s experiment are 

presented in Figure 2. The simulation results showed the generation of methane gas in 

this study was slightly delayed, compared to experimental results. The temperature of the 

inspecting points (P1, P2, P3) vs. time in the simulation and Masuda’s experiment are 

presented in Figure 3. It can be seen that when the time t was in the range of 0–100 min, 

closer to the outlet, the faster the temperature dropped, which was generally consistent 

with Masuda’s experimental results. The minimum temperature of the three monitoring 

points in the simulation was lower than that of the Masuda experiment. The R-square 

values of the three temperature monitoring points were 0.882, 0.799, and 0.852, 

respectively. The pore pressure at the far-field boundary vs. time is presented in Figure 4. 

The overall trend of the pressure drop at the far end in the simulation experiment was 

consistent with the results of the Masuda experiment. The R-square of the far end 

boundary pressure was 0.890. The variations between the simulation and experimental 

results were caused by the heterogeneous distribution of the different phases, as well as 

the heterogeneous pore structure in the Berea sandstone. Considering the influence of 

pore structure, hydrate heterogeneity, and the application of the mathematical model on 

the experiment, the simulation results were believed to be in good agreement with the 

Masuda experiment. 

 

Figure 2. Gas production vs. time in the simulation experiment and Masuda’s experiment [43]. 

 

Figure 3. Temperature (T1, T2, T3) vs. time in the simulation experiment and Masuda’s experiment 

[43]. 

0 50 100 150 200 250 300 350 400
0.000

0.002

0.004

0.006

0.008

0.010

T
h

e 
am

ou
nt

 o
f 

ga
s 

pr
od

uc
ti

on
(m

³)

Time(min)

 simulation in this study

 Experiment by Masuda,et al.

0 50 100 150 200 250 300 350 400
273.5

274.0

274.5

275.0

275.5

T
em

pe
ra

tu
re

(K
)

Time(min)

 T1(in this study)

 T2(in this study)

 T3(in this study)

 T1(Masuda,et al.)

 T2(Masuda,et al.)

 T3(Masuda,et al.)

Figure 2. Gas production vs. time in the simulation experiment and Masuda’s experiment [43].

As shown in Appendix A, the gas production of methane vs. time varies in literatures
and in this study. The reasons lie in the fact that the initial hydrate saturation in some
literature [19–25,43] was 0.443, while it was 0.501 in some others [17,18,26,28,41] and in this
study. Zhang et al. [18] and Ruan’s [20] gas production curves were in good agreement with
the trials; however, Zhang only simulated gas production. The far-field boundary pressure
was not simulated by Ruan et al. Chen et al. [23] simulated the pressure and temperature
at the monitoring point without the gas generation. Additionally, the findings in this
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study and the literature [17,21–25,27] demonstrated that the early-stage gas generation
rate was lower. The gas production rate was relatively higher, according to modeling
results from Song et al. [44]. Overall, the simulation results in this study agreed well
with the experimental benchmark data in far-field boundary pressure, temperature, and
gas production, by assuming a homogenous initial distribution of the hydrate, water and
methane in Berea sandstone.
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Figure 3. Temperature (T1, T2, T3) vs. time in the simulation experiment and Masuda’s experiment [43].
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Figure 4. Pore pressure vs. time in the simulation experiment and Masuda’s experiment [43].

As shown in Appendix B, Nazridoust et al. [21] the distal pressure did not significantly
change at the start of the simulation, and the distal pressure of Chen et al. [23] was at
its lowest point after 125 min of reaction time. Furthermore, Wan et al. [41] found that
although the downward pressure trend throughout the earlier time was consistent, the
downward pressure trend between 50 and 200 min was rather sluggish, and none of their
results included small peaks. Small peaks were visible in the simulation findings from
this work. The small peak predicted by Song et al. [44] and the trials were essentially in
agreement; however, the pressure value remained high after the small peak arrived. The
trials ‘small peak fluctuated as the pressure lowered to roughly 3.2 MPa, and the small peak
anticipated in this work exhibited the same behavior, but it occurred about 20 min later.
Overall, the simulation results in this study agreed well with the experimental benchmark
data in far-field boundary pressure.

Theoretically, the closer to the outlet, the lower the temperature and the earlier the
dissociation of the hydrate. However, as shown in Appendix C, Chen et al.’s findings [23]
did not support this conclusion. In terms of the temperatures at each monitoring point
in the sandstone core during hydrate dissociation, the findings in this study and the
literature [17–22,24–26,41] basically predicted the correct result. That is, the temperature at
T1 decreased earlier than that at T2, and the temperature at T2 decreased earlier than that at
T3. In this study and in [17,21,26,27,41], the monitoring point temperature was even lower,
while in [19,20,23,24] it was higher. Since their boundary heat transfer coefficients were (50,
41.8, 16.6, 45.4, 45, 50) W/(m2K), this study holds that the result was mostly caused by the
boundary’s uneven heat transmission. Considering the gas production at the outlet, the
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far-field boundary pressure and the temperature at the monitoring point, the curve fits of
this study were good, compared with most previous research.

3.2. Effect of Initial Gas Saturation

The effects of initial gas saturation (0.1, 0.2, 0.25, 0.3, 0.4) on hydrate dissociation were
investigated in this section. Other simulation conditions, except the initial gas saturation,
were maintained. As shown in Figure 5, natural gas production with different initial gas
saturations fluctuated over time. When the outlet valve was opened, gas production first
increased sharply and then dropped steadily to zero over time. The fundamental cause
for the first peak was that the gas tended to flow out when the outlet valve opened, due
to the pressure difference between the inside and outside of the core. When the hydrate
gradually decomposed, the difference between gas fugacity and equilibrium fugacity grew,
promoting hydrate decomposition and increasing the gas production rate to the second
peak. The value, t90% (referring to the required time of 90% NGH dissociating in the core),
decreased with increase of the initial gas saturation, as shown in Figure 6, which also
showed that the higher the initial gas saturation, the faster the NGH decomposed.
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Figure 5. Gas production rate and cumulative gas production vs. time under different initial
gas saturations.
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3.3. Effect of Outlet Pressure

The effects of outlet pressure (2.52 MPa, 2.68 MPa, 2.84 MPa, 3.00 MPa, 3.16 MPa)
on hydrate dissociation were investigated in this section. Other simulation conditions,
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except the outlet pressure, were maintained. As shown in Figure 7, gas production and
cumulative production fluctuated over time as the outlet pressure changed. The study
found that natural gas production had four stages and two peaks, which were basically the
same characteristics as mentioned earlier. The NGH in the core did not entirely dissociate in
the first 400 min when the outlet pressure exceeded 3.16 MPa. Additionally, it was evident
that when outlet pressure fell, a greater overall amount of gas was generated. The residual
gas in the core varied under various pressure differences, which led to different cumulative
gas production. The value,t90%, decreased with a decrease in the outlet pressure, as shown
in Figure 8, which also showed that the lower the outlet pressure, the faster the natural gas
hydrate decomposed.
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Figure 7. Gas production rate and cumulative gas production vs. time under different outlet pressure.
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3.4. Effect of Initial Temperature

The effects of initial temperatures (273.45 K, 274.45 K, 275.45 K, 276.45 K, 277.45 K)
on hydrate dissociation were investigated in this section. Other simulation conditions,
except the initial temperatures, were maintained. As shown in Figure 9, at higher initial
temperatures, natural gas production and cumulative natural gas production fluctuated
over time as the initial temperature changed, and as the initial temperature increased, the
rate of natural gas hydrate dissociation accelerated. The total production of gas did not
change much, though. The value, t90%, decreased with increasing initial temperatures,
as shown in Figure 10, which also showed that the higher the initial temperatures, the
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faster the natural gas hydrate decomposed. As shown in Figure 11, it was discovered that,
under adiabatic conditions, the gas generation rate rose instantly in the beginning and then
gradually fell until it reached zero. As the final cumulative gas production was 2800 Scm3,
no new gas was generated, so it could be concluded that the hydrate would not decompose
under adiabatic conditions (insufficient energy).
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Figure 9. Gas production rate and cumulative gas production vs. time at different initial temperature.
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3.5. Effect of Absolute Permeability

The effects of absolute permeability (10 mD, 50 mD, 98.97 mD, 150 mD, 200 mD)
on hydrate dissociation were investigated in this section. Other simulation conditions,
except the absolute permeability, were maintained. As shown in Figure 12, variation
of absolute permeability caused gas production rate and cumulative gas production to
fluctuate with time. The gas production rate and cumulative gas production for 10 mD
absolute permeability were different from the other four data, and the gas production rate
was very low. This was because reduced absolute permeability limited fluid flowability
and decreased the pressure driving force of hydrate dissociation, resulting in a lengthier
hydrate dissociation process. The value, t90%, decreased with an increase in the absolute
permeability, as shown in Figure 13, which also showed that the higher the absolute
permeability, the faster the natural gas hydrate decomposed.
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3.6. Effect of Geo-Stress

As early as the 1940s, some researchers in other countries began to investigate the fluctu-
ation of porosity and permeability with confining pressure. Fatt et al. [47,48], Gray et al. [53],
and Mclatchie et al. [55] investigated the effect of reservoir stress fluctuations on rock perme-
ability and porosity, and the researchers confirmed that porosity and permeability steadily
declined as effective stress increased. In the late 1980s, China conducted a substantial study on
reservoir stress sensitivity. Research [47,48,51–56] showed that the porosity and permeability
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of the reservoir decreased when effective stress increased. Furthermore, the stress sensitivity
effect was particularly noticeable in low permeability reservoirs.

Zhu and Wang et al. [56] reported the stress-related porosity data of five different
sandstones under isotropic effective stress conditions. As shown in Figure 14, the effective
stress range of 0–30 MPa appeared in the data and the fitting curves of volumetric strain
and stress-related porosity of Equations (5) and (6) to assess the validity of the aforesaid
fitting correlation equation for Berea sandstone. The certain value of the fitting constants
are displyed in Table 4.
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Figure 14. Fitted curves of porosity and permeability of Berea sandstone vs. effective stress in Zhu
and Wang’s experimental data [56].

Table 4. Fitting constants in Zhu and Wang experiments.

Rock A’ B’ C’

Berea sandstone 0.183 0.01859 9.842

Based on Masuda’s hydrate core decomposition experiment, the effective stress (5 MPa,
15 MPa, and 25 MPa) was changed by varying the confining pressure of the sandstone
core, and numerical models were built for the evolution of physical properties of hydrate
sandstone cores under different stresses.

Figure 15a,b show the volume of gas hydrate in the cores considering, or not consider-
ing, the effect of ground stress. The average volume fraction in the core, considering the
geo-stress, was higher than that without considering the geo-stress at the same time point,
which indicated that the effect of geo-stress reduced the decomposition rate of natural gas
hydrate in sandstone core. The volume fraction of methane in the core without considering,
or considering, the effect of geo-stress is shown in Figure 16a,b. The average volume
fraction in the core, considering the geo-stress, was lower than that without considering the
geo-stress at the same time, which indicated that the effect of geo-stress reduced the gas pro-
duction rate in sandstone core. Figure 17 also illustrates this point. The temperature in the
core without considering, or considering, the effect of geo-stress is shown in Figure 18a,b.
In the process of the temperature dropping, caused by endothermic reaction, the average
core temperature considering geo-stress effect was higher than that without considering
geo-stress. In the process of the temperature rising, caused by heat transfer, the average core
temperature considering geo-stress was lower than that without considering geo-stress,
which indicated that the effect of geo-stress slowed down the efficiency of the heat and
mass transfer in the sandstone core, leading to slower dissociation and transportation rates
of the NGH.
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Figure 15. Hydrate volume fraction in the core at different times.
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Figure 16. Methane volume fraction in the core at different times.
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Figure 17. Water volume fraction in the core at different times.
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Figure 18. Temperature distribution in the core at different times.

As shown in Figure 19, natural gas production and cumulative natural gas production
fluctuated with time under different effective stresses. The gas production rate graph
shows that, at 125 min, before the reaction, the instantaneous gas production rate, without
taking the effect of effective stress into account, was higher than that under the effect
of effective stress. The rate of gas production decreased as effective stress increased. In
addition, as the effective stress increased, the time to drop to zero for the corresponding
gas production rate increased, which also meant that the time for the hydrate dissociation
increased. This was because the effective stress decreased the amount of pore space, which
lowered the core’s permeability and porosity. The permeability and porosity in the core
decreased as the effective stress increased. The slower the heat convection, the lower the
mass transfer efficiency, and the longer it took for the hydrate to dissociate, the smaller
the permeability, so, consequently, the longer the completion date for gas production from
the use of natural gas hydrates. The cumulative gas output showed that, under various
effective stress levels, the final cumulative gas output was equal. The time it took to reach
the final cumulative gas output increased with the effective stress. This indicated that
the effective stress decreased the permeability of the core, hence decreasing the rate of
hydrate decomposition and mining efficiency. However, it had no impact on the hydrate
decomposition’s overall cumulative gas generation. As shown in Figure 20, t90% rose as
effective stress increased. This was because the increase of effective stress led to the volume
shrinkage of pore space, thus reducing the permeability and porosity of sediments. Low
permeability slowed thermal convection, which slowed down the pressure drop from
one end of the core to the outlet and reduced mass transfer efficiency. This slowed down
hydrate decomposition, which increased the time it took to produce gas from natural
gas hydrates and reduced their exploitation efficiency. Therefore, the natural gas hydrate
production would be less effective as effective stress rose, under various effective stresses.

Under various effective stress levels, pore pressure at the far-field boundary varied
over time as shown in Figure 21. The diagram shows that when the effective stress was low,
the duration and size of the small peak were close and the pore pressure test curve was
more like the experimental results of Masuda. The pore pressure test curve was significantly
different from the experimental data of Masuda. With a rise in effective stress, the small
peak value also gradually declined, and the small peak value’s appearance time arrived
later and later. Additionally, there was a small peak in several conditions, and this small
peak in the pore pressure curve at the far-field boundary was not a coincidence; rather,
it was one of the characteristics of the two-phase flow in porous media that was brought
on by hydrate dissociation. In the case of hydrate dissociation, for instance, the inability
of the gas to spread quickly led to an increase in local pore pressure. This demonstrated
that the impact of effective stress caused a reduction in pore space volume, which caused a
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reduction in the core’s porosity and permeability. As a result, the gas produced by hydrate
decomposition could not be discharged quickly and accumulated in the core, increasing core
pressure and further impeding hydrate decomposition. Additionally, hydrate breakdown
was slowed down by increasing effective stress.
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Figure 19. Gas production rate and cumulative gas production vs. time under different effec-
tive stresses.
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Figure 20. The value t90% vs. confining pressure.

Three monitoring points’ temperatures over time, and under various effective stress
levels, are shown in Figure 22. The minimum temperature considering effective stress was
higher than it was without considering effective stress 125 min before decompression, as
shown in Figure 22. The increasing rate of temperature recovery (the heat transfer-induced
temperature recovery process) was lower than it would be without taking effective stress
into account. This was due to the decrease in effective stress, which lowered the core’s
porosity and permeability, and, moreover, slowing down the pace of hydrate dissociation
to achieve a late minimum temperature. Additionally, it can be seen from a comparison
of Figure 22a–c that the greater the effective stress, the later the minimum temperature
appeared. This was because the core’s porosity and permeability decreased as the effective
stress increased. The low permeability restricted the efficiency of the heat and mass transfer
by the fluid flow, leading to a slow dissociation and transportation rate of the NGH.
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Figure 22. Temperature of monitoring points vs. time under different effective stress conditions and
without considering stress. Subgraph (a–c) show that the temperature of monitoring points vs. time
under the effective stress of 5 MPa, 15 MPa, 25 MPa and without considering stress.

4. Conclusions

In this study, an axisymmetric two-dimensional model was developed to simulate
the depressurization decomposition process of natural gas hydrate in Berea sandstones. A
mathematical model that considered fluid heat, mass transport, multiphase flow mechanics,
and the kinetics of hydrate decomposition, was established. FLUENT was employed to
solve the basic governing equations of multi-phase flow and UDF was used to program the
hydrate dissociation model and modified permeability model during NGH dissociation and
transport. The simulation results were then validated by Masuda’s experimental data, and
multi-parametric analysis was performed. The following conclusions could be achieved:
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• The established mathematical model and the simulation scheme were validated by
historical matching with the experimental benchmark data.

• The sensitivity analysis of the parameters revealed that a higher absolute permeability,
higher initial gas saturation, lower outlet pressure, and higher initial temperature
advanced the decomposition rate of hydrate. Thus, an optimized production plan is
essential to promote the extraction efficiency of the NGH.

• Geo-stress caused a decrease of the porosity and permeability in the porous rock,
which restricted the efficiency of the heat and mass transfer by the fluid flow, leading
to a slow dissociation and transportation rate of the NGH. Thus, it is essential to
take geo-stress into consideration and balance the extracting efficiency and the well
pressure, especially when the NGH is developed by depressurization.

In this paper, the numerical modeling on the core scale dissociation and transporta-
tion of NGH was conducted. Future study will focus on the development of NGH in
its formation.
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Figure A1. Gas production vs. time in this study and previous studies [17–28,41,43,44].
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