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Abstract: This paper proposes an alternative multiconductor transmission line model that combines
the folded line equivalent with the modal transformation. The folded line equivalent decomposes the
nodal admittance matrix of a transmission line into its open-circuit and short-circuit contributions.
These contributions are fitted to rational functions, which are associated with Norton equivalent
circuits based on their state space models. The proposed model uses an orthogonal matrix to
transform voltages and currents from the phase domain to the folded line equivalent domain and
vice versa. Because the transformation matrix is orthogonal, we represent it using ideal transformers
in simulation software. First, we use a circuit representation of Clarke’s matrix to decompose a
transmission line into its modes. Then, each mode is decomposed into its open-circuit and short-
circuit contributions using a circuit implementation of the proposed matrix. The proposed approach
can accurately represent short lines in simulations with time steps equal to or greater than the
propagation time of the transmission line. We compare the results obtained with the proposed
approach to those obtained with power systems computer-aided design/electromagnetic transients
including the DC universal line model.

Keywords: transmission line modeling; Norton equivalent; folded line equivalent; electromagnetic
transient

1. Introduction and Literature Review

Frequency-dependent cable and transmission line (TL) models have been widely
used in the study of electromagnetic transients in power systems. These models can be
developed in the modal domain or directly in the phase domain. For instance, the JMarti
model, introduced in [1], assumes a constant matrix to transform electrical parameters
to the mode domain and vice versa. This assumption is valid for ideally transposed
TLs and gives good results for non-transposed TLs with vertical symmetry. For this
reason, the JMarti model is available as a built-in model in simulation software such as
the Alternative Transient Program-Electromagnetic Transients Program (ATP-EMTP) [2].
However, assuming frequency-independent transformation matrices is not valid for non-
transposed asymmetric lines or parallel circuits. Other TL models that do not make this
assumption are preferred for these cases e.g., the universal line model (ULM) [3]. The ULM
computes voltages and currents directly in the phase domain and is considered one of
the most accurate and general models for the simulation of overhead transmission lines
and cables. The ULM is available as a built-in model in simulation software such as the
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Power Systems Computer Aided Design (PSCAD) [4] and the Electromagnetic Transients
Program—Restructured Version (EMTP-RV) [5].

Numerous transmission line models (including the ULM and the JMarti model) derive
from the method of characteristics. The method of characteristics requires (simulation) time
steps to be smaller than the propagation time of the transmission line. Therefore, the time
step used in the simulation of complex power systems is limited to the propagation time
of the shortest line [6,7]. The folded line equivalent (FLE) [8] circumvents this problem.
The FLE decouples a TL into two blocks that represent the short-circuit and open-circuit
contributions of the TL. These blocks are fitted to rational functions using the vector fitting
(VF) algorithm [9,10]. The state-space representations of the open-circuit and short-circuit
contributions are then associated with equivalent Norton circuits, which are compatible
with simulation software such as the EMTP. The main advantage of the FLE is that it
provides accurate results for short lines when the time step is greater than the propagation
time of the transmission line, reducing execution times in the simulation of complex power
systems. In contrast, other transmission line models require smaller time steps and thereby
take longer to compute simulations.

This paper proposes an EMTP-compatible multi-conductor TL model based on the
FLE. The proposed model first transforms voltages and currents to the mode domain using
a circuit representation of Clarke’s matrix. Then, voltages and currents are transformed
to the FLE domain using a new orthogonal transformation matrix, different from the one
originally proposed in [8]. The proposed transformation matrix has a simpler interpreta-
tion and allows a more intuitive implementation using ideal transformers, similar to the
arrangement used to represent Clarke’s matrix. We implement the proposed model in the
MatLab/Simulink simulation software [11].

The proposed approach inherits the advantages of the FLE and thus can be simulated
with time steps greater than the propagation time of the TL. Because our approach is
combined with modal transformation, it provides a better understanding of mode behavior
during high-frequency phenomena such as lightning strikes or switching operations, which
could cause outages and damage equipment. Moreover, analyzing three independent
modes is simpler and computationally more efficient than analyzing a coupled three-phase
TL. Because the proposed model uses basic circuit elements, it can be implemented in
simulation software e.g., EMTP-RV, PSCAD/EMTDC, and ATP. Results show that the
proposed approach outputs accurate results when the step size of the simulations is greater
than the propagation time of the TL.

2. The Folded Line Equivalent

The nodal admittance matrix of the TL of Figure 1 relates voltages V1 =
[
V1,1 . . . Vn,1

]T and

currents I1 =
[
I1,1 . . . I2,1

]T at one of the line terminals to the voltages V2 =
[
V1,2 . . . Vn,2

]T
and currents I2 =

[
I1,2 . . . I2,2

]T at the other terminal, as follows:[
I1
I2

]
=

[
Ys Ym
Ym Ys

][
V1
V2

]
. (1)

Transmission Line1 2

+

-

+

-

I1
 I2


Ground

V1 V2

Figure 1. Multiconductor transmission line.

Refs. [12–14] compute the frequency-dependent nodal admittance matrix in (1) from
the per unit length (p.u.l.) TL parameters. The FLE takes advantage of the symmetry of
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the nodal admittance matrix in (1) and decouples it into its open-circuit and short-circuit
contributions as follows: [

Ioc
Isc

]
=

[
Yoc 0

0 Ysc

][
Voc
V sc

]
(2)

where the open-circuit admittance Yoc and the short-circuit admittance Ysc are, respectively,
given by

Yoc = Ys + Ym (3)

Ysc = Ys − Ym. (4)

Voltages and currents are transformed to and from the FLE domain as follows:[
Voc
V sc

]
= K−1

[
V1
V2

]
(5)

[
Ioc
Isc

]
= K−1

[
I1
I2

]
(6)

where the transformation matrix K−1 is given by

K =

[
U U
U −U

]
, (7)

and U is the identity matrix.

3. Our Approach: Proposed Folded Line Equivalent

The transformation of voltages V and currents I at line terminals, longitudinal
impedances Z, and shunt admittances Y of the TL of Figure 1 from the phase domain
to the mode domain and vice versa is given by

V = TV V αβ0 (8)

I = TI Iαβ0 (9)

Zαβ0 = TT
I ZTI (10)

Yαβ0 = T−1
I YT−T

I . (11)

In (8) and (9), the transformation matrices TI and TV are frequency-dependent.
Clarke’s matrix (12) is a frequency-constant orthogonal transformation matrix that

gives accurate results for perfectly transposed TLs and relatively accurate results for TLs
with vertical symmetry [15].

Tclk =

2/
√

6 −1/
√

6 −1/
√

6
0 1/

√
2 −1/

√
2

1/
√

3 1/
√

3 1/
√

3

 (12)

We propose to use Clarke’s matrix to decouple three-phase TLs into its modes, as
shown in Figure 2. Then, we transform each independent mode to the FLE domain, as
shown in Figure 3. We represent each of these transformations using circuit elements, as
shown in Figure 4.

Phase a

Phase b

Phase c

Tranformation

matrix

Tclk


Tranformation

matrix

Tclk


Single phase line

mode β

Single phase line
mode 0

Phase a

Phase b

Phase c

Single phase line
mode α

Figure 2. Representation of a three-phase transmission line in the mode domain: abc⇔ αβ0⇔ abc.
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1i1,mk


2i2,mk

+

-

+

-

ioc,mk


isc,mk


+

-

+

-

Matrix
 K

Ground

oc

sc
v1,mk


v2,mk
 vsc,mk


voc,mk


ihis,scGsc,mk


ihis,oc Goc,mk


Figure 3. Mode representation for the proposed FLE (PFLE) model. 
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Figure 4. Circuit representation of (a) Clarke’s matrix (αβ0 transformation) and (b) the proposed FLE
transformation matrix (FLE transformation).

3.1. Modal Transformation: Circuit Representation of Clarke’s Matrix

The block labeled as transformation matrix in Figure 2 transforms voltages and currents
from the phase domain to the mode domain and vice versa. This block contains the
arrangement of ideal transformers of Figure 4a [16], which relates voltages at the left and
right terminals Figure 4a as follows:

va = va1 + va3 =
2√
6

vα +
1√
3

v0 (13)

vb = vb1 + vb2 + vb3 = − 1√
6

vα +
1√
2

vβ +
1√
3

v0 (14)

vc = vc1 + vc2 + vc3 = − 1√
6

vα +
1√
2

vβ +
1√
3

v0 (15)

The relationship between currents at right and left terminals of Figure 4a is given by

iα = iα1 + iα2 + iα3 =
2√
6

ia −
1√
6

ib −
1√
6

ic (16)

iβ = iβ2 + iβ3 =
1√
2

ib −
1√
2

ic (17)
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i0 = i01 + i02 + i03 =
1√
3

ia +
1√
3

ib +
1√
3

ic (18)

In matrix form, the relationships presented in (13)–(18) can be written as follows:

Vabc = T−1
clkV αβ0 (19)

Iαβ0 = TclkV abc (20)

which is equivalent to (9) when TI = Tclk (Clarke’s transformation).

3.2. FLE Transformation: Circuit Representation of the Proposed Transformation Matrix

We combine the circuit representation of the αβ0 decomposition of Section 3.1 with the
circuit representation of the FLE transformation presented in this section. After the three-
phase TL is decomposed into its modes, as shown in Figure 2, each mode is individually
transformed to the FLE domain, as shown in Figure 3. Each mode has its open-circuit (OC)
and short-circuit (SC) contributions. The block labeled as Matrix K in Figure 3 transforms
voltages and currents from the mode domain to the FLE domain and vice versa. This
block contains the arrangement of ideal transformers of Figure 4b, which relates voltages at
terminals 1 and 2 to voltages at terminals OC and SC as follows:

V1,mk = V1,mk1 + V1,mk2 =
1√
2

Voc,mk +
1√
2

Vsc,mk (21)

V2,mk = V2,mk1 + V2,mk2 =
1√
2

Voc,mk −
1√
2

Vsc,mk (22)

where subscript mk = {α, β, 0}. The relationship between currents at terminals 1 and 2 to
voltages at terminals OC and SC is given by

Ioc,mk = Ioc,mk1 + Ioc,mk2 =
1√
2

I1,mk +
1√
2

I2,mk (23)

Isc,mk = Isc,mk1 + Isc,mk2 =
1√
2

I1,mk −
1√
2

I2,mk (24)

In matrix form, the relationships presented in (21)–(24) can be written as follows:[
V1,mk
V2,mk

]
= K

[
Voc,mk
Vsc,mk

]
(25)[

Ioc,mk
Isc,mk

]
= K−1

[
I1,mk
I2,mk

]
. (26)

In (25) and (26), instead of using the transformation Matrix K introduced in [8], we
propose using the following transformation matrix to decouple single-phase TL into its
open-circuit and short-circuit contributions.

K =

[ 1√
2

1√
2

1√
2
− 1√

2

]
(27)

The proposed transformation matrix preserves the properties and relationships of
the transformation matrix introduced in [8], yet it allows a simpler and more intuitive
implementation. Figure 4b shows the circuit implementation of (27) using an arrangement
of ideal transformers.

3.3. Computation of the Nodal Admittance Matrix of Each Mode

Each of the modes resulting from the transformation presented in Section 3.1 is con-
sidered an independent transmission line and thus has a nodal admittance matrix given by
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Ymk =

[
Ymk,s Ymk,m
Ymk,m Ymk,s

]
. (28)

The nodal admittance matrix of the mk-th mode can be calculated from the propagation
function Hmk and characteristic admittance Yc,mk of the mode as follows

Ymk,s =
(

1− H2
mk

)−1(
H2

mk + 1
)

Yc,mk (29)

Ymk,m = −2
(

1− H2
mk

)−1
HmkYc,mk (30)

where Hmk and Yc,mk are computed from the mode’s p.u.l. impedance Zmk, p.u.l. admit-
tance Ymk, and the length of the line `, as shown below

Yc,k = Z−1
mk

√
ZmkYmk (31)

Hk = e−`
√

YmkZmk . (32)

There are alternative procedures of computing Ymk,s and Ymk,m. In [12], Morched et al.
compute the elements of the modal admittance matrix of a single-phase TL as follows:

Ymk,s = YmkΛ−1
mk,zy coth

(
Λmk,zy`

)
(33)

Yk,m = −YmkΛ−1
mk,zycsch

(
Λmk,zy`

)
(34)

where propagation constant Λmk,zy =
√

ZmkYmk. Alternatively, in [14], Gustavsen avoids
hyperbolic functions and computes Ymk,s and Ymk,m as follows:

Ymk,s = Z−1
mkamk (35)

Ymk,m = Z−1
mkbmk (36)

where

amk =

√
dmk

(
1 + h2

mk
)

1− h2
mk

(37)

bmk =
−2
√

dmk.hmk

1− h2
mk

(38)

hmk = exp
(
−
√

dmk`
)

(39)

dmk =
(√

ZmkYmk

)−1
(40)

3.4. Circuit Representation of the FLE Parameters of Each Mode

The FLE parameters (open-circuit and short-circuit contributions) of each mode can be
represented by Norton equivalent circuits [17] or an arrangement of resistors, capacitors,
and inductors [18]. In this paper, we employ Norton equivalent circuits to represent the
open-circuit and short-circuit contributions for each mode in simulation software.

The VF algorithm [9,10] fits the open-circuit Yoc,mk and short-circuit Ysc,mk contribu-
tions of each mode to rational functions. We use both the VF algorithm and the fast modal
perturbation (FMP) [19] to ensure passivity in the fitted rational functions. The state-space
model of each fitted matrix is then generated following the procedure described in [20].
The state-space model that describes the open-circuit contribution of the mk-th mode is
given by

ẋmk,oc(t) = Amk,ocxmk,oc(t) + Bmk,ocvmk,oc(t) (41)

imk,oc(t) = Cmk,ocxmk,oc(t) + Dmk,ocvmk,oc(t) (42)
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Similarly, the state-space model that describes the short-circuit contribution of the
mk-th mode is given by

ẋmk,sc(t) = Amk,scxmk,sc(t) + Bmk,scvmk,sc(t) (43)

imk,sc(t) = Cmk,scxmk,sc(t) + Dmk,scvmk,sc(t) (44)

In (41)–(44), state matrices A, B, C, and D are constant.
The Norton equivalent circuit of a state-space model consists of a constant conductance

G and a historic current ihist that updates its value in each time step, as portrayed in Figure 3.
The historic current sources and the constant parameters of the Norton equivalent circuit
allow the proposed model to consider the wave phenomena. Application of the trapezoidal
rule of integration to (41)–(44) results in the following Norton parameters [17]:

Gck,mk = Dck,mk + Cck,mkλck,mkBck,mk (45)

ihist,ck,mk[n] = −Cck,mk
(
αck,mk + 1

)
λck,mkxck,mk[n] (46)

where

λck,mk =

(
1− Ack,mk

∆t
2

)−1 ∆t
2

(47)

αck,mk =

(
1− Ack,mk

∆t
2

)−1(
1 + Ack,mk

∆t
2

)
(48)

xck,mk[n] = αck,mkxck,mk[n− 1] + Bck,mkvck,mk[n− 1] (49)

and ck = {oc,sc}, mk = {α, β, 0}. The Norton parameters in (45) and (46) are EMTP-compatible
because all passive components are represented by Norton equivalent circuits [6].

4. Results
4.1. Line Configuration and Simulation Approach

To show results, we

• Computed the p.u.l. line parameters of the TL of Figure 5 using the PSCAD/EMTDC’s
Line Constants Program;

• Simulated the TL using the proposed approach, implemented in Matlab/Simulink, as
shown in Figure 4;

• Simulated the TL using PSCAD/EMTDC’s ULM;
• Compared the outputs of both models.

The flowchart of Figure 6 shows all the steps mentioned above, needed to implement
the proposed model in MatLab’s Simulink (ver. 2021b).

One of the benefits of the proposed approach is that it provides accurate results
when the time step is greater than the propagation delay of the TL. This is particularly
useful in networks containing short and long lines because the time step of the entire
network depends on the propagation delay of the shortest line. To show this advantage, we
considered the TL of Figure 5 300 m long, resulting in a propagation delay of approximately
1 µs. We show that the PFLE outputs accurate results in simulations with time steps greater
than 1 µs.
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DC resistance = 0.03842 Ω/km

Outside diameter = 1.53 cm


Phase a

ρsoil = 100 (Ω.m)

Phase b Phase c

7.0 m

 Height at tower = 15.0 m

Height at mid-span = 8.0 m 
 0.

4 
m

0.4 m

7.0 m

Figure 5. Three-phase transmission line geometry.

MATLAB 

Line data

Calculation of TL
parameters

Calculation of the nodal
admittance matrix for each mode

Similarity
Transformation

Apply VF adjustment, assessment
and Imposition of Passivity

Norton
 Equivalent

Model MFLE

Z, Y

Zmode, Ymode

Modal transformation

matrix

Ynodal,mode

Ysc,mode, Yoc,mode

Goc,mode, ihis,oc,mode
Gsc,mode, ihis,sc,mode

Similarity 
Transformation

Modal 
Transformation

mode_oc mode_sc

mode

mode2

Figure 6. Steps required to implement the PFLE in MatLab’s Simulink.

4.2. Fitting Procedure and Passivity Enforcement

The TL of Figure 5 has three modes of propagation: α, β, and 0. Each mode is composed
of an open-circuit and short-circuit nodal admittance.

We employed the VF routine [21] to fit the open-circuit and short-circuit admittances
of each mode using twenty poles and five iterations. Passivity is independently enforced
for each mode using the “RPdriver” routine [20]. Note that the “RPdriver” routine is applied
to a frequency range that is twice the fitting frequency. Therefore, it is necessary to compute
parameters up to 2 MHz.
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Figures 7–9 show the magnitude of the open-circuit and short-circuit nodal admittance
of each mode (solid blue line), the fitted rational function after enforcing passivity (dotted
red line), and the deviation between them (solid green line). Note that the deviation
curve has a behavior similar to the data because the weight used in the fitting is inversely
proportional to the magnitude of the data. This weighting scheme allows the accurate
fitting of small and large values.

10-2 100 102 104 106

Frequency [Hz]

10-15

10-10

10-5

100

105

A
dm

itt
an

ce
 [S

]

Data
VF
DeviationY ,sc

Y ,oc

Figure 7. Fitting of the open-circuit admittance Yoc and short-circuit admittance Ysc of mode α.

10-2 100 102 104 106

Frequency [Hz]

10-15

10-10

10-5

100

105

A
dm

itt
an

ce
 [S

]

Data
VF
Deviation

Y ,sc

Y ,oc

Figure 8. Fitting of the open-circuit admittance Yoc and short-circuit admittance Ysc of mode β.

The number of poles required to fit a given function usually depends on the number of
peaks present in the curve. The number of peaks in the frequency range of power systems
transients increases with the length of the line. As a result, short lines require fewer poles
to achieve a certain level of accuracy. This paper shows that the proposed model outputs
accurate results in the simulation of short lines even when the time step of the simulation is
larger than the propagation delay of the TL.

A Norton equivalent circuit is considered passive when the eigenvalues of the real
part of the open-circuit nodal admittance Yoc,mk and short-circuit nodal admittance Ysc,mk
are positive for all frequencies [8,22].
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10-2 100 102 104 106

Frequency [Hz]

10-20

10-15

10-10

10-5

100

105

A
dm

itt
an

ce
 [S

]

Data
VF
Deviation

Y0,oc

Y0,sc

Figure 9. Fitting of the open-circuit admittance Yoc and short-circuit admittance Ysc of mode 0.

Figures 10–12 show that the eigenvalues of the open-circuit and short-circuit conduc-
tances of each mode are positive after passivity is enforced.

2 4 6 8 10 12 14 16 18

Frequency [Hz] 105

0

5

10

15

G
 e
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va
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10-4

Original
FMP

eig{G ,oc}

eig{G ,sc }

eig{G ,sc }
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Figure 10. Eigenvalues of the nodal admittance matrix of mode α.
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Figure 11. Eigenvalues of the nodal admittance matrix of mode β.
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Figure 12. Eigenvalues of the nodal admittance matrix of mode 0.

4.3. Open-Circuit, Capacitive Load, and Single-Phase Fault
4.3.1. Simulation Layout

Figure 13 shows the TL of Figure 5 when one of its terminals is energized at 0 s, and
the other terminal is

1. Left open-circuited when the line is energized;
2. Connected to a capacitive load at 4 ms;
3. A single-phase fault occurs at 8 ms.

We compared the results obtained by the proposed approach (labeled as PFLE) to
those obtained by PSCAD’s ULM. To show the advantages of the proposed approach, the
simulations were performed considering different time steps.

c

Transmission line


c
t=0 s

1 V, 60 Hz

110 mH

b

a

b

a

t=4 ms
t=8 ms

0.25 uF

300 m

Figure 13. Simulation configuration.

4.3.2. Results

Results show that the proposed approach outputs accurate results even when the time
step is four times the propagation delay of the TL. In contrast, the maximum integration
time step that the ULM supports is equal to the propagation delay of the TL, which is
approximately 1 µs. This requirement must be met for all line models based on the method
of characteristics. We use a time step equal to 1/10 of the propagation delay of the TL to
compute results using the ULM.

In all simulations, the red, blue, and green curves represent phases A, B, and C,
respectively. The results are organized as follows:

1. Figures 14 and 15 show, respectively, the voltages at the receiving terminal and the
currents at the sending terminal during line energization;

2. Figures 16 and 17 show, respectively, the voltages at the receiving terminal and the
currents at the sending terminal when the capacitive load is connected;

3. Figures 18 and 19 show, respectively, the voltages at the receiving terminal and the
currents at the sending terminal when a single-phase fault occurs at 8 ms.
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Figure 14. Voltage at the receiving end of the line when the line is energized.
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Figure 15. Current at the sending end of the line when the line is energized.
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Figure 16. Voltage at the receiving end of the line when the cable is connected.
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Figure 17. Current at the sending end of the line when the cable is connected.
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Figure 18. Voltage at the receiving end of the line after a single-phase fault occurs.
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Figure 19. Current at the sending end of the line after a single-phase fault occurs.

Figures 14–19 show that the PFLE outputs accurate results with time steps greater than
the propagation delay of the TL. This can greatly reduce execution times in the simulation
of large complex networks where the time step is limited to the propagation delay of the
shortest line when TL models based on the methods of characteristics are used.

4.4. Line Energization
4.4.1. Simulation Layout

Figure 20 shows the TL of Figure 5 when one of its terminals is energized at 0 s and
the other terminal is connected to a resistive-inductive load.

c

Transmission line


c
t=0 s

1 V, 60 Hz

110 mH

b

a

b

a

300 m
0.53 mH

0.9 Ohms

Figure 20. Transmission line connected to a resistive-inductive load.

4.4.2. Results

Figures 21 and 22 compare the voltages at the receiving terminal simulated with the
proposed approach (labeled as PFLE) and PSCAD’s ULM for several time steps. Figure 21
shows the transient voltages right after the line is energized, and Figure 22 shows the
voltages after the first high-frequency voltages disappear. Note that using a time step
greater than the propagation delay of the TL causes a small delay during the first high-
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frequency oscillations, which disappears as the TL reaches steady-state conditions, as
shown in Figure 22.
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Figure 21. Voltages at the receiving terminal of the line right after it is energized.
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Figure 22. Voltages at the receiving end of the line in the first 20 ms of the simulation.

Figure 23 shows the currents at the sending terminal of the TL. Note that the proposed
approach agrees with the ULM for all time steps.
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Figure 23. Current at the sending terminal of the line.

The execution time of a simulation depends on the time required to solve a single
time step and the total number of time steps in the simulation. Reducing the average
time to solve one time step is possible through optimization techniques and lightweight
models. However, the most effective way of reducing the execution time of simulation is
by reducing the total number of time steps that need to be computed. TL models based on
the method of characteristics are limited to time steps equal to the propagation delay of the
shortest TL in the network. The proposed approach supports time steps greater than the
propagation delay of the shortest TL without compromising accuracy. Our results show
that the proposed approach outputs accurate results even with time steps that are four
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times the propagation delay of the shortest TL, resulting in execution times that are up to
400% faster.

4.5. Error

Sections 4.3.2 and 4.4.2 show the results obtained by implementing the proposed
approach, the PFLE, in MatLab’s Simulink. We measure the error of the PFLE using the
normalized root-mean-square deviation (NRMSD), which is given by

NRMSD =

√
1
N ∑N

i=1(yPM,i − yULM)2

max{yULM} −min{yULM}
(50)

where N is the number of points of y.
In all simulations, we compare the results obtained by the PFLE to the results obtained

by the ULM when the time step is 1/10 of the propagation delay of the TL (1 µs). We use
PSCAD/EMTDC’s ULM as a reference model because this model is widely accepted in
technical literature and professional software due to its accuracy and numerical stability.
The ULM computes results directly in the phase domain and time domain while considering
the frequency dependence and distributed nature of line parameters.

Our numerical comparisons are organized as follows:

• Table 1 shows the NRMSD of the proposed approach (PFLE) in Figures 14 and 15.
• Table 2 shows the NRMSD of the proposed approach (PFLE) in Figures 16 and 17.
• Table 3 shows the NRMSDof the proposed approach (PFLE) in Figures 18 and 19.
• Table 4 shows the NRMSD of the proposed approach (PFLE) in Figures 22 and 23.

Table 1. NRMSD of the voltage and current curves obtained with the PFLE with respect to the voltage
and current curves obtained with the ULM and a time step of 1 µs: Figures 14 and 15.

Voltage Current

Phases Model: ∆t NRMSD Phases Model: ∆t NRMSD

1
(Figure 14)

PFLE: 0.1 µs 0.004
1

(Figure 15)

PFLE: 0.1 µs 1 × 10−4

PFLE: 1 µs 0.003 PFLE: 1 µs 3 × 10−4

PFLE: 2 µs 0.003 PFLE: 2 µs 1 × 10−4

PFLE: 4 µs 0.005 PFLE: 4 µs 2 × 10−4

2 and 3
(Figure 14)

PFLE: 0.1 µs 0.005
2 and 3

(Figure 15)

PFLE: 0.1 µs 1 × 10−4

PFLE: 1 µs 0.003 PFLE: 1 µs 2 × 10−4

PFLE: 2 µs 0.003 PFLE: 2 µs 4 × 10−4

PFLE: 4 µs 0.005 PFLE: 4 µs 1 × 10−4

Table 2. NRMSD of the voltage and current curves obtained with the PFLE with respect to the voltage
and current curves obtained with the ULM and a time step of 1 µs: Figures 16 and 17.

Voltage Current

Phases Model: ∆t NRMSD Phases Model: ∆t NRMSD

1
(Figure 16)

PFLE 0.1 µs 0.004
1

(Figure 17)

PFLE 0.1 µs 2 × 10−4

PFLE 1 µs 0.003 PFLE 1 µs 3 × 10−4

PFLE 2 µs 0.003 PFLE 2 µs 4 × 10−4

PFLE 4 µs 0.005 PFLE 4 µs 1 × 10−4

2 and 3
(Figure 16)

2 0.005
2 and 3

(Figure 17)

PFLE 0.1 µs 2 × 10−4

PFLE 1 µs 0.003 PFLE 1 µs 1 × 10−4

PFLE 2 µs 0.003 PFLE 2 µs 2 × 10−4

PFLE 4 µs 0.005 PFLE 4 µs 3 × 10−4
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Table 3. NRMSD of the voltage and current curves obtained with the PFLE with respect to the voltage
and current curves obtained with the ULM and a time step of 1 µs: Figures 18 and 19.

Voltage Current

Phases Model: ∆t NRMSD Phases Model: ∆t NRMSD

1
(Figure 18)

PFLE 0.1 µs 0.004
1

(Figure 19)

PFLE 0.1 µs 2 × 10−4

PFLE 1 µs 0.003 PFLE 1 µs 3 × 10−4

PFLE 2 µs 0.003 PFLE 2 µs 2 × 10−4

PFLE 4 µs 0.005 PFLE 4 µs 1 × 10−4

2 and 3
(Figure 18)

2 0.005
2 and 3

(Figure 19)

PFLE 0.1 µs 42 × 10−4

PFLE 1 µs 0.003 PFLE 1 µs 1 × 10−4

PFLE 2 µs 0.003 PFLE 2 µs 2 × 10−4

PFLE 4 µs 0.005 PFLE 4 µs 4 × 10−4

Table 4. NRMSD of the voltage and current curves obtained with the PFLE with respect to the voltage
and current curves obtained with the ULM and a time step of 1 µs: Figures 22 and 23.

Voltage Current

Phases Model NRMSD Phases Model NRMSD

1
(Figure 22)

PFLE 0.1 µs 0.004
1

(Figure 23)

PFLE 0.1 µs 3 × 10−4

PFLE 1 µs 0.003 PFLE 1 µs 3 × 10−4

PFLE 2 µs 0.003 PFLE 2 µs 1 × 10−4

PFLE 4 µs 0.005 PFLE 4 µs 1 × 10−4

2 and 3
(Figure 22)

PFLE 0.1 µs 0.005
2 and 3

(Figure 23)

PFLE 0.1 µs 2 × 10−4

PFLE 1 µs 0.003 PFLE 1 µs 2 × 10−4

PFLE 2 µs 0.003 PFLE 2 µs 1 × 10−4

PFLE 4 µs 0.005 PFLE 4 µs 4 × 10−4

5. Conclusions

In this paper, we propose an alternative frequency-dependent transmission line (TL)
model based on the folded line equivalent (FLE) line model to represent three-phase
TLs. The proposed approach uses a circuit representation of Clarke’s matrix to transform
parameters from the phase domain to the mode domain. Then, instead of using the
transformation matrix proposed in [8], we use a new transformation matrix to transform
parameters from the mode domain to the FLE domain. The proposed matrix allows the
proposed model to be implemented in simulation software using ideal transformers. The
open-circuit and short-circuit contributions of the proposed approach are represented
in simulation software using Norton equivalent circuits. We implement the proposed
approach in MatLab’s Simulink multidomain simulation software.

Traditional TL models based on the method of characteristics can only run in simula-
tions where the time step is equal to or less than the propagation delay of the shortest TL in
the network. The main advantage of the proposed approach is that it can run on simulations
where the step size is greater than the propagation time of the TL without compromising
accuracy. Figure 14 through Figure 23 show good agreement between the results obtained
with the ULM and the PFLE. Furthermore, they show that the PFLE provides accurate
results even when the time step is four times greater than the propagation delay of the TL.
Tables 1–4 show that the NRMSD of the results obtained by the PFLE, when compared to
the results obtained by the ULM with a time step of 1/10 of the propagation delay of the
TL, is less than 0.005. These results prove that the proposed model outputs accurate results
in simulations where the time step is 10%, 100%, 200%, and 400% of the propagation time
of the TL.
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