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Abstract: Solar energy is one of the most widely exploited renewable/sustainable resources for
electricity generation, with photovoltaic and concentrating solar power technologies at the forefront
of research. This study focuses on the development of a neural network prediction model aimed at
assessing the energy producibility of dish–Stirling systems, testing the methodology and offering
a useful tool to support the design and sizing phases of the system at different installation sites.
Employing the open-source platform TensorFlow, two different classes of feedforward neural net-
works were developed and validated (multilayer perceptron and radial basis function). The absolute
novelty of this approach is the use of real data for the training phase and not predictions coming
from another analytical/numerical model. Several neural networks were investigated by varying the
level of depth, the number of neurons, and the computing resources involved for two different sets of
input variables. The best of all the tested neural networks resulted in a coefficient of determination of
0.98 by comparing the predicted electrical output power values with those measured experimentally.
The results confirmed the high reliability of the neural models, and the use of only open-source IT
tools guarantees maximum transparency and replicability of the models.

Keywords: solar energy; concentrating solar power; dish–Stirling; neural network; energy perfor-
mance forecasting

1. Introduction

Following the Paris Agreement and the more recent Glasgow Climate Pact [1,2],
a framework was established to keep the global average temperature increase within
2 ◦C of pre-industrial levels by 2050. At the same time, a plan of action was outlined to
confine global warming within the upper limit of 1.5 ◦C [3]. To this end, national and
regional policies have focused on a global energy transition that consists of increased use
of renewable sources for electricity generation [4] and direct use of renewable heat and
biomass, fast electrification processes, including direct use of clean electricity in transport
and heat applications, improved energy efficiency, and increased use of green hydrogen
and bioenergy with carbon capture and storage [5]. Currently, the renewable energy
sources with the widest range of applications in the industrial sector are hydroelectric,
geothermal, biomass, tidal, wind, and solar. Solar energy is used to desalinate seawater
or brackish water [6,7], to generate electricity using large-scale power plants or building
installations, to produce domestic hot water, and to supply space heating or cooling to
meet the energy demands of both residential and tertiary users. The most widely used
solar technologies for direct electricity generation are photovoltaic (PV) and concentrating
photovoltaic (CPV) systems, both of which convert solar radiation into energy but exploit
different operating mechanisms and have different conversion efficiencies and investment
costs [8]. The concentrating solar power (CSP) systems currently being developed are very
promising [9] because they are characterised by a low environmental impact, low land
consumption, and excellent energy performance [10]. However, they have poor commercial

Energies 2022, 15, 9298. https://doi.org/10.3390/en15249298 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15249298
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-5728-0379
https://orcid.org/0000-0003-3557-4752
https://doi.org/10.3390/en15249298
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15249298?type=check_update&version=1


Energies 2022, 15, 9298 2 of 27

penetration if compared to PV systems. At the end of 2020, more than 707 GW of solar
photovoltaic systems were installed worldwide, of which approximately 127 GW were
commissioned in 2020 alone. This growth in installed capacity was the highest recorded
in that year when compared to all other renewable technologies. CSP installed capacity
grew globally between 2010 and 2020, reaching around 6.5 GW at the end of 2020, of which
only 150 MW was commissioned in the same year [11]. The share of energy generation by
CSP plants increased by 34% in 2019 [12], closely reflecting the growing trend of the global
share of renewable generation, which reached 27% in 2019 and 29% in 2020 [13].

A solar concentrator essentially consists of a collector, which, through a series of
mirrors or lenses, concentrates the collected direct normal irradiance (DNI) onto a receiver,
thus, obtaining high-temperature thermal energy, which is subsequently converted into
mechanical and electrical energy [14]. There are four types of solar concentrator systems
currently available in the renewable power technologies market, namely: linear Fresnel
reflectors and parabolic trough collectors, known as linear-focusing systems, and central
solar towers and parabolic dishes (usually equipped with a Stirling engine), known as
point-focusing systems [15]. The dish–Stirling system is the least widespread, commercially,
and the least mature from a technological point of view since, firstly, the installation cost of
the parabolic dish concentrator is still too high compared to other CSP technologies [11],
and, secondly, coupling with a thermal storage system is more difficult to realise [16].
Nevertheless, this technology appears to be the most promising in terms of its high values
of solar-to-electric energy conversion efficiency, ease of installation, and modularity [17].

The main factors affecting the energy producibility of a dish–Stirling solar concentrator,
and which directly influence the design and optimisation of such a system, are the char-
acteristic climate conditions of the installation site, i.e., DNI and ambient air temperature,
and the level of soiling of the mirrors of the collector [18]. Therefore, once an installation
site is selected, it is easy to understand how extremely complicated it is to reliably predict
the amount of electricity that can be generated by a dish–Stirling solar concentrator. In
the continuation of our research, therefore, two different input datasets are defined, one
as complete as possible and the other as limited as possible, in order to include all the
combinations within these two extremes.

Several studies in the scientific literature have presented numerical models used to
assess the energy output of a dish–Stirling system, although only very few of them were
based on the real performance data of an operational dish–Stirling system; among these,
the Stine model is the most widely used [19]. Generally, these models were developed from
a linear or quasi-linear correlation between electrical power output and incident direct
normal irradiance, such as the recent physical–numerical model calibrated on experimental
data collected during the period of operation of the demo 33 kWe dish–Stirling plant built
at a facility test site at Palermo University [18].

Several studies have proposed the energy modelling of solar power systems by ar-
tificial neural networks (ANNs) as alternatives to the analytical models developed and
presented in the literature. ANNs represent a valuable, intelligent method for optimising
and predicting the performance of buildings [20] and of various solar energy systems,
such as solar collectors, solar-assisted heat pumps, solar air and water heaters, photo-
voltaic/thermal (PV/T) systems [21,22], solar stills, solar cookers, and solar dryers [23].

Referring to concentrating solar power systems, [24] assessed the energy performance
of a dish–Stirling system, considering its installation in Natal, RN, Brazil, and investigat-
ing four hybrid methods, including the adaptive neuro-fuzzy inference system (ANFIS)
and multiple-layer perceptron (MLP), both of which were trained with particle swarm
optimization (PSO) or a genetic algorithm (GA) [25,26]. The authors of [27] compared
the performance of two analytical methods and one based on neural networks to assess
the hourly electrical production of a parabolic trough solar plant (PTSTPP) located in
Ain Beni-Mathar in eastern Morocco. Simulations conducted using an annual series of
operating data showed that the performance of the ANN model was better than that of
the analytical models analysed. The authors of [28] demonstrated the effectiveness of a
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model based on a feedforward artificial neural network optimised with particle swarm
optimisation to predict the power output of the solar Stirling heat engine, first using input
data from literature and then experimental data.

In this work, different artificial neural networks (ANNs) are investigated and trained
to predict the energy performance of an existing demo dish–Stirling solar concentrator
installed on the university campus in Palermo. To this aim, employing the open-source
platform TensorFlow, two different classes of feedforward neural networks, multilayer
perceptron (MLP) and radial basis function (RBF), are developed and validated using a set
of experimental input data collected during the real operation period of the cited system.
The two different classes of networks are tested by varying the number of neurons (depth
and computing resources involved) and other sensitive parameters in order to identify the
best possible architecture. Finally, the predictive performance of the networks is compared
with a previously developed analytical model.

The aleatory nature of solar energy sources and the need to have available power
generation plants, which ensure the dispatchability of the resource and make the energy
supply secure, drive the development of reliable energy prediction tools. Especially in the
case of plants not yet fully mature from a commercial point of view, such as the dish–Stirling
plants here investigated, their diffusion cannot disregard the development of a predictive
model that considers the most influencing environmental and technical variables.

The paper is organised as follows: Section 2 presents the experimental set-up; Section 3
describes the analytic energy model of the analysed dish–Stirling solar concentrator;
Section 4 introduces, explains, and discusses all the ANNs developed; Section 5 discusses
the results obtained; and, lastly, Section 6 outlines the conclusions of the study.

2. Novelties of This Study

The work described below is characterised by some notable innovative aspects which
integrate the latest scientific knowledge in this field:

• The numerical models investigated are based on a collection of experimental data ob-
tained from the real operation of a prototype dish–Stirling solar concentrator installed
at the campus of the University of Palermo. The direct availability of such data, in the
case of the aforementioned technology, is not common, and several previous studies
were exclusively theoretical, such as [29–32]. Furthermore, in the case of the applica-
tion of artificial intelligence techniques, sometimes the data used are mainly obtained
from other analytical or numerical models and not from experimental measurement
campaigns [24];

• One of the most important characteristics of the following research is that the tools
that are used to develop the proposed models are explicitly stated and belong to the
category of open-source software (Python and TensorFlow), ensuring the absolute
replicability of the algorithms by the scientific community. This feature is not par-
ticularly common in the previous literature; even if tools are declared, it is still not
possible to faithfully reproduce the models as they lack a multitude of details typical
of proprietary software, as is the case in [27,28,33];

• Finally, a further innovative element concerning other models already available con-
sists of the use of an input parameter representing the level of cleanliness of the mirrors.
This parameter has been shown by the authors to be among the most influential for
the energy production of the system [18].

The combination of such innovative features makes this research an effective tool able
to encourage the promotion of dish–Stirling systems among other CSP technologies.

3. Experimental Set-Up

This paper proposes a neural approach to predict the electric energy production of
a dish–Stirling solar concentrator at a specific, selected installation site. The reference
system that is considered for the development of a neural prediction model is the demo
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commercial dish–Stirling solar concentrator installed on the university campus in Palermo
(see Figure 1) as well as its real operational data.
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Figure 1. The dish–Stirling concentrator plant that is installed at the University of Palermo.

This dish–Stirling plant has a net peak electric output power of 33 kWe and features
a geometric concentration ratio equal to 3217 (see Table 1). The reference system has
a paraboloidal collector consisting of an assembly of 54 mirrors with a high reflection
coefficient; each mirror is characterised by a sandwich structure and a double curvature
calibrated in order to concentrate the incident DNI on a fixed point corresponding to the
small aperture of the cavity receiver. Subsequently, the Stirling engine and the electric
generator convert the thermal energy into mechanical power and then electricity [34]. The
power conversion unit (see zoom in Figure 1), including the receiver, the Stirling engine,
and the electric generator, is placed at the focal point of the paraboloidal collector by
a tripod.

Inside the Stirling engine, hydrogen is used as the working fluid; the fundamental
reason why hydrogen is selected as the working fluid is to minimise internal losses due
to viscous friction. Figure 2 shows a comparison with two other possible fluids, air and
helium, under the same working conditions. It is evident that hydrogen is less viscous
than the other fluids considered. The curves drawn in Figure 2 were produced using the
well-known database of thermodynamic properties provided by [35].
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Table 1. Main technical parameters of the dish–Stirling system.

Parameter Value Unit

Paraboloidal reflector

Net aperture area of the dish collector (An) 106 m2

Aperture area of the receiver (Ar) 0.0314 m2

Focal length 7.45 m
Geometric concentration ratio 3217 -

Reflectivity of clean mirrors (ρ) 0.95 -
Power conversion unit

Peak electric output (DNI equal to 960 W/m2) 31.5 @ 2300 rpm kWe
Type of Stirling engine 4 cylinders double acting

Displaced volume 4 (95 × 10−6) m3

Max operating pressure of hydrogen 20 MPa
Temperature of the receiver (Tr) 720 ◦C
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Figure 2. Dynamic viscosity for hydrogen, helium, and air versus temperature with a pressure value
of 20 MPa.

Moreover, the perfect alignment between the focal axis of the collector and the direction
of the sun’s rays is ensured by a biaxial solar tracking system throughout the day [34].

3.1. Description of the Experimental Dataset

The installation site of the plant, on the outskirts of Palermo (see Figure 3), is char-
acterised by typically Mediterranean climatic conditions. In this location, winters are
generally characterised by very moderate temperatures ranging from 8 to 14 degrees. The
summer period typically features rather high temperatures, sometimes even reaching 45 ◦C.
Throughout most of the year, hot south-easterly winds, known as Sirocco winds, occur
sporadically. Usually, the Sirocco winds bring with them a large amount of dust or sand
from the North African coast, which tends to adhere to the external surfaces, strongly
decreasing the amount of DNI available on the ground and, at the same time, decreasing
the reflective properties of the mirrors of CSP systems.

The geographical coordinates specifying the installation site of the reference dish–
Stirling system (described in Section 2) are long. 13◦20′43” E and lat. 38◦06′17” N.

All variables observed and recorded by the monitoring systems of the CSP plant are
listed in Table 2.
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Figure 3. The location of the reference dish–Stirling system (Palermo, Italy).

Table 2. All monitored variables of the CSP system.

Parameter Description Unit

Direct normal irradiance Direct normal solar radiation incident per unit area by the reflector W·m−2

Global horizontal irradiance Global solar radiation incident per unit area by the reflector W·m−2

Diffuse horizontal irradiance Diffuse solar radiation incident per unit area by the reflector W·m−2

Ambient temperature Outdoor air temperature ◦C
Average wind speed Average wind speed on site m·s−1

Wind speed Wind speed on site m·s−1

Wind direction Wind direction on site degree
Humidity Relative humidity of external air %

Air pressure Outdoor air pressure mbar
Solar azimuth Instantaneous position of the sun relative to the south direction degree
Solar elevation Instantaneous position of the sun relative to the horizontal plane degree

Total CSP net power output Instantaneous power output of CSP less parasitic consumption W

The index of cleanness (ηcle) is a measure of the amount of soiling or dirt deposited on
the reflector compared to the condition of clean mirrors, and, along with the reflectivity of
mirrors (ρ), the interception factor (γ) of the concentrator (which is defined as the fraction
of rays incident upon the aperture that reaches the receiver for a given incidence angle) and
the absorption coefficient (α) of the inner surface of the cavity receiver affect the optical
efficiency (ηo) of the CSP system (see Equation (1)) [18,36].

ηo = ρ · ηcle · γ · α (1)

For the 165 days from 5 January 2018 to 2 July 2018, the monitoring system acquired
14,256,000 records (on a second-by-second basis). A large proportion of these records related
to events when the plant was not operating because they corresponded to the night periods
or day periods affected by weather conditions that were unsuitable for plant operation or
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to periods when the plant was under maintenance. The records relating to the remaining
events were further aggregated with a simple average operation by single minutes, thus, we
obtained 7971 records (data on a minute basis). Figure 4 shows some results of the statistical
analysis carried out on those variables of the original dataset which, from a physical and
thermodynamic point of view, are the most relevant to the operation of an engine based on
a Stirling cycle. From a physical and thermodynamic point of view, the variables that are
certainly most significant in determining the performance of a dish–Stirling system are the
DNI, on which the power input to the system depends, and the outside air temperature,
which affects, on the one hand, the heat exchange between the receiver and the external
environment and, on the other hand, the heat exchange between the cold side of the Stirling
engine and the environment. The Pearson coefficient (ρp) illustrated in Figure 5 shows that
the net electrical power output of the dish–Stirling system is strongly correlated with the
DNI.
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3.2. Outlier Removal Procedure

As is usually the case, any population of samples or data can exhibit large deviations,
meaning anomaly points or individual data points that deviate significantly from the rest
of the distribution data. These data points are called outliers. The presence of outliers
in a dataset can be due to a variety of factors, such as the experimental nature of the
same data, human or measurement instrument errors, or wrong data handling; therefore,
they are considered normal. In order to prevent outliers in the dataset from affecting the
performance of any model developed, it is common practice to preliminarily identify and
remove them to reduce the variability of the input dataset. Outliers can be either univariate
or multivariate, depending on whether it is possible to identify them by observing a
distribution of values in a single-dimensional space or an n-dimensional space. Obviously,
in the latter case, the removal of outliers requires the training of an appropriate model
able to replace the human brain. Several techniques are useful for detecting outliers in a
dataset, of which the most widely used is the Z-score. The Z-score method uses standard
deviation to identify outliers in a dataset with a Gaussian distribution (or those where the
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distribution is assumed to be Gaussian). Such a statistical quantity is a measure of how the
observed data deviate from the most probably occurring data in the dataset, in other words,
the mean of the data [37]. Referring to a Gaussian distribution of the data, the standard
deviation (σ) is defined as in Equation (2) below:

σ =

√
N
∑

i=1
(xi−x)2

N−1

x = 1
N

N
∑

i=1
xi

(2)

where N is the number of records in the dataset, xi is the i-th record in the dataset, and
x is the mean of the data (see Equation (2)). Thus, the Z-score (z) can be calculated by
Equation (3) as:

z =
xi − x

σ
(3)

In our case, the Z-score technique was applied considering three variables from
the dataset, which were: the DNI, the net electric output power, and the outdoor air
temperature. This is because, according to our experience of running the solar power plant
installed at the Palermo University campus, these variables are the ones that most influence
the behaviour of the system and can also vary very quickly. It should also be noted that
abrupt variations can induce operating transients that can lead to system shutdown or
restart within seconds. According to the Gaussian distribution of the data, all records
falling within the range of extremes ±2σ were considered. The resulting filtered dataset
included 7417 records, approximately 93% of the originally available, valid data.

3.3. Statistical Analysis of Input Datasets

To describe and define the dataset, purified of outliers, a statistical analysis was carried
out, investigating the quantities that are listed and explained in Table 3. These quantities
were calculated for each variable of the original dataset without outliers, which included
7417 records, and were analysed by using the statistical variables summarised in Table 3
below.

Table 3. Summary of all used statistical quantities.

Statistical Quantity Description Formula

Arithmetic mean the sum of a set of values divided by the
number of values in the set Equation (2)

Variance measures how much a set of values
quadratically deviates from its arithmetic mean σ2 = 1

N

N
∑

i=1
(xi − x)2

Standard deviation a measure of how much a set of values deviates
from its arithmetic mean Equation (2)

Standard error
a measure of how much the sample statistic
(i.e., sample mean) deviates from the actual

population mean
se = σ√

N

Skewness a measure of the asymmetry of the probability
distribution of the data

N
(N−1)(N−2)

1
σ3

N
∑

i=1
(xi − x)3

Kurtosis a measure of the thickness of tails or the
flattening of a probability distribution (N+1)N

(N−1)(N−2)(N−3)

N
∑

i=1
(xi−x)4

σ4 − 3 (N−1)2

(N−2)(N−3)

The results of the preliminary statistical analysis of the data, summarised in Table 4,
describe the main characteristics of the data and provide precise quantitative information
on the data distribution, variability, skewness, and taililedness of the actual data sample
available to the authors. The analysed data sample refers to all monitored variables listed
in Table 2 and to the variable “Clean day”, which indicates the number of days since the
last cleaning event affecting the mirrors.
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Table 4. Summary of all used statistical quantities.

Variable Max
Value

Arithmetic
Mean Variance Standard

Deviation
Standard

Error Skewness Kurtosis

Clean day 131 46.61 1533 39.15 0.45 0.74 −0.95
Direct normal irradiance (W/m2) 957.17 774.63 7399.4 86.02 0.99 −0.14 −0.75

Global horizontal irradiance
(W/m2) 1118 765.95 27869 166.44 1.94 −0.73 −0.49

Diffuse horizontal irradiance
(W/m2) 512.2 157.06 4022.8 63.43 0.73 1 1.85

Ambient temperature (◦C) 30.46 21.77 18.93 4.35 0.05 −0.26 −1.12
Average wind speed (m/s) 10.29 2.87 1.76 1.33 0.01 1.12 2.94

Wind speed (m/s) 11.43 3.13 2.08 1.44 0.02 1.23 3.38
Wind direction (deg) 340.65 145.32 5576.3 74.67 0.87 0.94 −0.59

Humidity (%) 71 52.15 90.45 9.51 0.11 −0.19 −1.06
Air pressure (hPa) 1026.1 1006.7 34.85 5.90 0.06 0.57 1.87

Solar azimuth (deg) 265.05 167.99 2512.3 50.12 0.58 0.17 −1.20
Solar elevation (deg) 75.42 54.04 217.07 14.73 0.17 −0.35 −1.05

Total CSP net power output (W) 25531 19516 9.65 ×
106 3107.8 36.08 −0.36 −0.63

The full input dataset of 7417 samples was always randomly split to obtain an input
dataset for the training process of the neural networks and another input dataset to be used
for the validation process of the same neural networks; the training dataset included 85%
of the original data; the validation dataset resembles the other 15%. Preliminary statistical
analysis of the data made it possible to evaluate the correlation coefficients between each of
the variables covered, and the results are exemplified by Figure 5.

To avoid any form of direct influence or manipulation in order to improve the predic-
tive performance of the developed neural models, training and validation datasets were
autonomously extracted by the software in random mode from the set of data monitored
on our prototype system. Therefore, no filter or algorithm was applied for the above
splitting operation except for that used for the removal of outliers. In this sense, punctual
data used for the training of the network were never used to validate the results and vice
versa. Although, in theory, point data might be used for the training phase, and the one
immediately following in time used for validation, it is necessary to underline that we did
not applied algorithms specifically indicated for time series. The data, before being used,
were purposely remixed, eliminating any temporal succession. In addition, the operation
of the dish–Stirling was characterised by extreme and fast variability due to a continuous
variability of weather and solar parameters.

4. Energy Modelling of the Dish–Stirling Concentrator

As it is possible to observe from the layout of the plant depicted in Figure 6, the
dish–Stirling solar concentrator is mainly composed of four subsystems [9], which are: the
paraboloidal reflector; the power conversion unit, which includes all those components that
provide energy conversion as well as the cavity receiver [38], the Stirling engine, and the
electric generator [34]; the biaxial tracking system; and the cooling system of the engine [39].

The analytical energy model of dish–Stirling technology [18] most recently dissemi-
nated in the scientific literature was developed firstly using the energy balance of the system
and was subsequently calibrated using experimental data from a single clear-sky day. This
energy model allows the evaluation of the net electric output power of the dish–Stirling
system as a function, essentially, of three quantities: the DNI, the ambient air temperature,
and the level of cleanliness of the mirrors.
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Energy and Heat Balance Equations

The development of the analytical energy model of the dish–Stirling system, to which
reference is made, was based on the energy and heat balance of the same system [18]. The
flow chart in Figure 7 indicates the energy input and output rates affecting the various
subsystems of the dish–Stirling solar concentrator.

The solar power input to the paraboloidal reflector is the result of DNI intercepting
the aperture area of the collector. However, this power is not fully available to the receiver
because part of this power is lost to the environment due to optical inefficiencies in the
system. In addition, the receiver is also affected by thermal losses due to the temperature
difference between the cavity and the environment.

The thermal power (
.

Qr,out) lost at the receiver is due to the combined effect of radiative
and convective heat transfer to the environment, and it can be calculated using Equation (4):

.
Qr,out = Ar ·

{
hr · (Tave

r − Tair) + σSB · εr ·
[
(Tave

r + 273.15)4 −
(

Tsky + 273.15
)4
]}

[W] (4)

where:

• Ar is the aperture area of the cavity receiver (m2);
• hr is the convective heat transfer coefficient of the receiver (W/(m2·K));
• Tave

r is the average value of the receiver temperature (◦C);
• Tair is the temperature of the external air (◦C);
• σSB is the Stefan–Boltzmann constant equal to 5.67·108 W/(m2·K4);
• εr is the emissivity of the cavity receiver (-);
• Tsky is the sky’s apparent temperature calculated using the empirical formula [40] of

Equation (5):
Tsky = 0.0552 · (Tair + 273.15)1.5 − 273.15 [◦C] (5)
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Despite these losses, the thermal power that the receiver transfers to the hot side of
the Stirling engine (

.
QS,in) is converted into mechanical energy at the engine crankshaft

(
.

WS) thanks to the working fluid (hydrogen), which evolves according to the homonymous
thermodynamic cycle. The analytical energy model [18] uses a linear correlation to relate
these last two quantities. Thus, the mechanical power output of the Stirling engine (

.
WS)

can be calculated using Equation (6) as follows:

.
WS =

(
a1 ·

.
QS,in − a2

)
· RT [W] (6)

where:

• a1 (-) and a2 (W) are two fitting parameters of the mechanical efficiency curve of the
Stirling engine;

• RT is a dimensionless correction factor of the ambient air temperature (Tair) for the
reference temperature (T0 set equal to 25 ◦C) (both expressed in ◦C) defined as:

RT =
T0 + 273.15

Tair + 273.15
(7)

The final energy conversion step is carried out by the electric generator. Lastly, exclud-
ing the parasitic absorption of electric power by the engine cooling system and the solar
tracking system, the net electrical power produced by the dish–Stirling system (

.
En) can be

expressed by Equation (8) as follows:

.
En(Ib, Tair, ηave

cle ) = ηe · RT ·
[

a1 ·
(

ηo · ηave
cle · Ib · An −

.
Qr,out

)
− a2

]
−

.
E

ave
p [W] (8)

where:
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• Ib is the DNI arriving on the mirrors (W/m2);
• Tair is the ambient air temperature (◦C);
• ηave

cle is the average level of cleanliness of the mirrors, ranging between 0 and 1 (-);
• ηe is the mechanical-to-electric conversion efficiency of the electric generator (-);
• ηo is the optical efficiency of the solar concentrator (-);
• An is the net aperture area of the paraboloidal collector (m2);

•
.

Qr,out is the thermal power loss at the cavity receiver (W);

•
.
E

ave
p is the average value of electric power consumed by parasitic equipment, such as

the tracking system and dry cooler of the cooling system (W).

The values of the main parameters used as input to the analytical model described
above are reported in Table 5.

Table 5. Main parameters used as input to the analytical model of the dish–Stirling system of Palermo.

Parameter Value Unit

Net aperture area of the collector (An) 106 m2

Aperture area of the cavity receiver (Ar) 0.0314 m2

Convective heat transfer coefficient of the
receiver (hr) 10 W/(m2·K)

Emissivity of the cavity receiver (εr) 0.88 -
a1 parameter 0.475 -
a2 parameter 3319 W

Average receiver temperature (Tave
r ) 720 ◦C

Average level of cleanliness of the mirrors (ηave
cle ) 0.85 -

Electric efficiency of the PCU (ηe) 0.924 -
Clean mirrors’ optical efficiency (ηo) 0.85 -

Average electric power consumption (
.
E

ave
p ) 1600 W

Knowing the climate data characteristics of a location, e.g., those from a typical meteo-
rological year (TMY), the energy model [18] can be used to assess the energy performance of
the dish–Stirling system. Furthermore, in [41], based on this analytical energy model, a sim-
ple new algorithm was developed to evaluate the energy performance of the dish–Stirling
system knowing only the hourly frequency distribution of the DNI of the installation site.

5. Artificial Neural Network Models
5.1. Machine Learning Deployment Using TensorFlow and Python

In recent years, the use of neural network technologies and algorithms applied to
physical and engineering problems has become increasingly common, and software com-
panies have made increasingly sophisticated tools available for analysing complex systems.
However, such software often requires the user to have detailed knowledge of artificial
intelligence, which has slowed the spread of these interesting methodologies. The cost
of purchasing such software has been another limiting factor for the spread of machine
learning techniques. The diffusion of open-source libraries characterised by high reliability
and effectiveness has facilitated the success of this ground-breaking technology. In this
context, Google’s TensorFlow 2 library represents an extremely powerful, free tool, which,
at the same time, is characterised by extreme ease of use for the production of machine
learning algorithms in several programming environments [42]. For the development of
the models described below, the authors used the Python code language, which is very well
suited to some of the particular functionalities of TensorFlow 2 [43], such as saving and
restoring the state of a neural network in order to predict at a time following the training of
the network itself [44]. Python is a programming language, developed in the 1990s, that is
particularly suited to the development of applications that rely on numerical computation.
It is free of charge and is available for a wide range of operating systems, a feature that has
made it particularly popular in academic circles [45,46]. All the machine learning models
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described below, therefore, use libraries and environments that are completely free and
reusable for absolute transparency and replicability of the results.

5.2. Artificial Neural Networks

The artificial neural network (ANN) is a powerful tool, the sophisticated rationale of
which is inspired by the way the human brain analyses and elaborates information [47].
ANNs are largely used for the modelling, prediction, assessment, and optimisation of the
performance of many different engineering technologies, such as solar energy systems,
which often require the solving of complex and non-linear problems [48].

In this paper, from all the different types of ANNs, the multilayer perceptron (MLP)
and the radial basis function (RBF) models were selected.

5.2.1. Multilayer Perceptron Neural Network

The MLP neural network (see Figure 8a) consists of several layers (an input layer,
several hidden layers, and an output layer) in which the neurons are ordered to transmit
signals from the input to the output of the network. The output (ϕi(x)) of each neuron of
the hidden layer and the network output (y) are mathematically described by the following
Equation (9):  ϕi(x) = ζ

(
∑
k

aikxk + bi

)
y = ∑i wi ϕi

(9)

where ζ is a non-linear function, aik is the weight of the first layer, xk is the input information,
bi is the bias, and wi is the weight of the output layer [48].
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5.2.2. Radial Basis Function

As can be seen in Figure 8b, which shows the architecture of a general RBF network,
each neuron of the hidden layer has a vector of parameters called centre (xi), which
is compared with the input vector (x) of the network, producing a radial, symmetric
response [49]. The responses of the hidden layer are also scaled by the connection weights
(wi) to the output layer and then combined to generate the output of the network [50].
The output (ϕi(x)) of each neuron of the hidden layer and the network output (y) are
mathematically described by Equation (10) as:{

ϕi(x) = g(| x− xi| )
y = ∑i wi ϕi

(10)

where g(.) can be a Gaussian function [48].
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Keras layers are the basic building blocks of neural networks in Keras, the open-source
framework used in our research. A layer consists of a tensor-in tensor-out computation
function (the layer’s call method) and a state, held in TensorFlow variables (the layer’s
weights). While Keras offers a wide range of built-in layers, it does not cover every possible
use case. Indeed, a radial basis function layer was achieved by customising the already
available layers in Keras [42,51].

5.3. Development of Neural Network Models

This section defines the models and the description of the neural network architectures,
both MLP and RBF, which were used for the prediction of the energy producibility of the
analysed dish–Stirling plant. As indicated in Table 6, for both types of ANN models, the
total net output power of the CSP was the only output variable of the networks, and two
different datasets were defined for the input variables to these same networks; the first
included twelve variables (long dataset), and the second one included only two variables
(short dataset). It is important to highlight that the identification of a restricted group of
variables, to be used in the training phase, was carried out after a preliminary sensitivity
analysis of the energy performance of the plant with respect to the environmental and
operating conditions of the technology, also taking into account the physical features of the
phenomena occurring in a CSP plant such as the one being investigated.

Table 6. Input and output variables of datasets implemented in both MLP and RBF neural network
models.

Long Dataset Short Dataset

Input variables

Direct normal irradiance Direct normal irradiance
Ambient temperature Ambient temperature

Clean day
Global horizontal irradiance
Diffuse horizontal irradiance

Average wind speed
Wind speed

Wind direction
Humidity

Air pressure
Solar azimuth
Solar elevation

Output variables

Total CSP net power output Total CSP net power output

Two possible types of input datasets are presented in the research described here:
long and short. The long dataset consisted of all significant variables made available by
our monitoring system. The short dataset, on the other hand, considered only the two
climate variables that are absolutely necessary from the physical point of view to describe
the energy balance and the related analytical model of the dish–Stirling system. The two
possible datasets, therefore, delimit the widest interval within which the input variables
can be selected.

For both MLP and RBF models, several neural network architectures characterised
by different levels of depth were tested for each of the two datasets of variables defined.
Specifically, the performance of each network architecture was investigated for four dif-
ferent depth levels, varying the number of neurons in the layers and the number of layers
making up the neural network. Therefore, a total of 16 networks were trained, of which
eight were of the MLP type, and the other eight were of the RBF type.

From this point on, for ease of writing and to better identify the different neural
networks examined, each of them is associated with the nomenclature X-Y-N, in which:



Energies 2022, 15, 9298 16 of 27

X is a letter that indicates the level of depth of the network, which can be superficial (S),
medium deep (M), deep (D), or very deep (V); Y is an acronym that can be MLP or RBF
depending on the type of neural network implemented; and N is a number that can be
equal to 2 or 12 depending on how many input variables were used. Table 7 summarises
the main characteristics of all 16 neural networks tested to predict the energy producibility
of the dish–Stirling plant, reporting for each network: the number of layers, the number of
neurons in each layer, and the total number of parameters involved in the training process.

Table 7. Input and output variables of datasets implemented in both MLP and RBF neural network
models.

ANN Code Number of Layers Neurons Trained Parameters

S-MLP-2 4 2 + 20 + 5 + 1 181
S-MLP-12 4 12 + 50 + 10 + 1 1351
S-RBF-2 4 2 + 20 + 5 + 1 181

S-RBF-12 4 12 + 50 + 10 + 1 1351
M-MLP-2 4 2 + 40 + 20 + 1 971
M-MLP-12 4 12 + 150 + 30 + 1 6691
M-RBF-2 4 2 + 40 + 20 + 1 971

M-RBF-12 4 12 + 150 + 30 + 1 6691
D-MLP-2 5 2 + 140 + 300 + 80 + 1 66,891
D-MLP-12 5 12 + 140 + 300 + 80 + 1 68,461
D-RBF-2 5 2 + 140 + 300 + 80 + 1 66,891

D-RBF-12 5 12 + 140 + 300 + 80 + 1 68,461
V-MLP-2 8 2 + 130 + 200 + 400 + 700 + 100 + 50 + 1 462,897
V-MLP-12 8 12 + 130 + 200 + 400 + 700 + 100 + 50 + 1 464,371
V-RBF-2 8 2 + 130 + 200 + 400 + 700 + 100 + 50 + 1 462,901

V-RBF-12 8 12 + 130 + 200 + 400 + 700 + 100 + 50 + 1 464,371

5.4. Description of Supplementary Materials

The programming language used to build the artificial neural network models defined
in Table 7 was Python employing TensorFlow libraries. Supplementary Materials include all
scripts and data necessary to ensure the complete replicability of the neural network models
examined and proposed for predicting the electrical producibility of a dish–Stirling system.
Among them, the master script defines the network architecture of the neural model (see
‘NN_script.py’), and the reader can examine it to recreate, modify, and review the modelling
procedures and data used in both the training and validation phases. With regard to the
input data of the neural networks examined, although the complete original dataset is
not provided due to confidentiality issues, a limited dataset used for the validation phase
of the neural networks is nevertheless provided both for the long input dataset, which
includes twelve variables (see ‘y_test.txt’), and for the short input dataset, which includes
two variables (see ‘X_test.txt’). Various strategies were used to avoid overfitting, involving
the definition of different checkpoints. The checkpoint configures the early stopping of the
training phase in order to avoid overfitting by using a measure of the loss of accuracy in
the validation phase and setting a maximum number of training repetitions (epochs) for
which no improvement in the accuracy of the prediction is detected.

Finally, a simplified script is provided (see “NN_reload_script.py”), which allows
the user to instantly execute the best neural network by reading a file in which all the
parameters of the best neural network are stored (see “best_dish_model_achieve.h5”). This
set of files allows the user to directly verify the results of the present study and possibly
modify and reuse these architectures even in other cases.

5.5. Definition of Performance Measures

With the aim of assessing the quality and reliability of the neural models developed,
several statistical indices were calculated, starting from the validation dataset, including the
determination coefficient R squared explained by Equation (11) in Table 8, which provides
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a synthetic measure of the goodness of the approximate function. This index can assume a
value between 0 and 1 and indicates how far the predicted values deviate from the expected
ones. Moreover, starting from the validation dataset again, the mean absolute error (MAE)
was produced for each trained neural network. The MAE, explained in Equation (12), is
the average of the absolute differences between the prediction and the actual value of the
output variable of the neural network, providing information on the average magnitude of
errors in a set of predictions, regardless of their direction.

Table 8. Statistical quantities calculated on residuals.

Statistical Index Symbol Formula

Coefficient of determination R2 1− ∑i e2
i

∑i(yi−µ)2 (11)

Mean absolute error MAE ∑C
i=1|yi−mi |

C (12)
Count C Size of the validation dataset

Mean µ 1
C

C
∑

i=1
ei

Standard deviation σ

√
C
∑

i=1
(ei−e)2

C−1
Minimum min min(ei)
Maximum max max(ei)

Quartile at 25% Q1 Value for which the cumulative percentage frequency of the sample is at least 25%
Quartile at 50% Q2 Value for which the cumulative percentage frequency of the sample is at least 50%
Quartile at 75% Q3 Value for which the cumulative percentage frequency of the sample is at least 75%

In addition, a statistical analysis of the resulting residuals was carried out after the
validation process for each neural network. Being residuals (ei), the set of differences was
obtained by subtracting the actually measured values from those predicted as the output
variable of the networks. The following quantities were then evaluated to examine the
frequency distribution of these residuals, such as the mean value, the size of the validation
dataset (count), the standard deviation value, the minimum and maximum values, and
quartiles at 25% (first quartile, Q1), at 50% (second quartile, Q2), and 75% (third quartile,
Q3). In order to graphically compare all the developed neural networks in terms of the
accuracy of predicting the energy production of the dish–Stirling plant, the following
graphs were produced for each of them:

(1) A histogram of residuals showing the distribution of residuals obtained by compar-
ing the values of the electrical output power of the dish–Stirling system predicted against
that measured. From this comparison, the mean (µ) and standard deviation (σ) values of
the residuals were calculated and displayed. In general, it is expected that the distribution
is centred on the value 0 and is close to a Gaussian distribution. However, in this graph, it
is also possible to graphically compare the probability density distribution obtained with a
normal distribution having the same mean value and the same standard deviation value;

(2) A Q–Q (quantile–quantile) plot, a probability plot in which the probability distri-
butions of the residuals obtained after the validation process are compared with a normal
distribution by plotting their quantiles against each other;

(3) A predicted versus measured graph showing points of coordinates expected and
actual measured electrical output power values. In this graph, it is possible to appreciate,
through the coefficient of determination R squared explained in Equation (11) (see Table 8),
the spatial distribution of the points with respect to the bisector of the first quadrant, which
represents an ideally perfect regression.

6. Results and Discussion
6.1. Performance of Neural Network Models

In general, in the scientific literature, when neural networks are used as function
approximators, it is very common to use RBF-type architectures [49]. However, neural
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networks with MLP-type architecture are excellent function approximators because they
can replicate any type of mathematical function [48]. As can be noted from Table 9, which
summarises all the statistical variables calculated to assess the prediction accuracy obtained
by the 16 neural networks developed, the results show that the modelling approach through
RBF did not prove to be the most efficient in this study. Conversely, neural networks based
on an MLP-type architecture always led to better results, both when varying the level
of depth of the network and when varying the number of input variables to the neural
network.

Table 9. Values of all statistical quantities calculated on residuals resulting from the validation process
of all 16 neural networks tested.

ANN Code R2 MAE m s Min Max Q1 Q2 Q3

S-MLP-2 0.57 1597.8 −191.4 2038.6 −8113.1 5141 −11198.2 −22.4 1234
S-MLP-12 0.92 599.8 68.0 872.8 −4827.7 6164.7 −323.1 107.1 509.5
S-RBF-2 0.55 1650.5 7.4 2065.1 −6563.9 4908.6 −1320.3 173.2 1474.1
S-RBF-12 0.80 964.1 19.5 1341.9 −7987.8 8043.8 −630.6 46.7 705.9
M-MLP-2 0.63 1325.1 −148.2 1891.9 −8370.4 4382 −777.2 9.8 946.7

M-MLP-12 0.94 465.9 −5.5 720.8 −7290 3536.8 −281.3 59.5 390.9
M-RBF-2 0.62 1375.5 −250.7 1956.2 −8494.6 4800.2 −909.3 35.7 836.6
M-RBF-12 0.85 795.1 −62.9 1167.7 −5386.1 5695.8 −583.8 −44 451.2
D-MLP-2 0.72 1059.4 −99.4 1633.2 −7544.2 6653.0 −634.6 −17.8 576

D-MLP-12 0.95 419.7 −58.4 653 −6596.8 3117.6 −335 −21.1 285.7
D-RBF-2 0.70 1047.2 −39.3 1671.5 −7516.9 6034.8 −506.8 44.4 585.1
D-RBF-12 0.94 458.5 −87.1 695.7 −5627.9 6163.3 −362.4 −15.6 317.5
V-MLP-2 0.76 904.8 −124.6 1546.9 −9183.2 6220.4 −518.4 −28.1 385.2

V-MLP-12 0.98 306.9 −50.9 421 −3050.8 2484.5 −275.2 −45.0 205.4
V-RBF-2 0.73 936.2 91.7 1615.2 −8514.5 7946.0 −421.5 22.1 476.2
V-RBF-12 0.95 420 −66.7 682 −5950.3 7282.2 −353.6 −29.4 241.3

Furthermore, for the same type of architecture (MLP and RBF) and the number of
input variables, it can be seen from Table 10 that increasing the depth of the network, and,
in parallel, increasing their complexity (in terms of the number of neurons), generally led to
better performance but longer training times (see Table 9). For this reason, the authors did
not consider it appropriate to experiment with even more complex network architectures.

Table 10. Training time and velocity of all 16 neural networks tested with an i7 CPU with 32 GB of
RAM.

ANN Code Elapsed Time
(s)

Velocity
(epochs/s)

S-MLP-2 1662 0.487
S-MLP-12 2607 0.500
S-RBF-2 711 0.555
S-RBF-12 454 0.603
M-MLP-2 1558 0.217
M-MLP-12 1221 0.300
M-RBF-2 1613 0.203

M-RBF-12 1074 0.458
D-MLP-2 1595 0.333
D-MLP-12 1215 0.341
D-RBF-2 2505 0.385

D-RBF-12 1662 0.480
V-MLP-2 15731 0.507
V-MLP-12 5848 0.506

Table 10 shows the total time it took to train the different models and the speed evalu-
ated in training epochs per second. Furthermore, it is important to underline that too many
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input parameters can theoretically degrade the predictive performance of a neural network
and require excessive computational resources. In order to consciously guide the reader
in the choice of the number of input variables, we have, for the sake of the argument, pro-
vided in Table 10 the time required for the proper training of each neural model presented.
Naturally, once properly trained, the networks are able to perform prediction virtually
instantaneously. The reader can verify the variation of performance and time required for
correct training by using and modifying the neural network architecture by downloading
the configuration scripts and input datasets made available in “Supplementary Materials”.

The coefficients of determination (see R2 in Table 9) calculated for the neural networks
using synthetic input datasets (short datasets including two input variables) fell within
a range of values between 0.55 and 0.76. On the other hand, the neural networks using
12 input parameters (long dataset of input variables), specifically including the variable
providing the number of days since the last cleaning event of the reflecting mirrors (Clean
day—see Table 6), allowed the achievement of much better results in terms of R squared,
with values falling in the range between 0.80 and 0.98. Generally, the best performance-
tested neural networks had the following codes: V-MLP-2 and V-MLP-12. Of these, the
first neural network uses the short dataset with two input variables, and the second neural
network uses the long dataset with 12 input variables. However, both of the selected best
neural networks have an MLP-type architecture.

Referring to the best-performance neural network with the code V-MLP-2, Figures 9–11
show: the frequency distribution of the residuals, the plot of the distribution of the quartiles
of the residuals with respect to normal, and the plot of the predicted values compared to
the measured ones, respectively. The quantile−quantile (q−q) plot is a graphical technique
to compare the shapes of distributions. Specifically, observing the frequency distributions
of the residuals and quartiles (see Figures 9 and 10), it is possible to appreciate how close
these distributions were to normal ones. In the Figures 9 and 12, blue bars indicates
the probability densities of residuals; the dashed yellow line indicates the shape of the
theoretical normal distribution.
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V-MLP-2.
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whereas the continuous red line indicates the shape of the theoretical optimum distribution.

Similar to what was carried out for the best-performance neural network with two
input variables, the same graphs (see Figures 12–14) were also produced for the best-
performance neural network that uses the long dataset of input variables, which was
also the best of all developed ANNs. It is possible to appreciate how both the frequency
distribution of residuals (see Figure 12) and the distribution of quartiles (see Figure 13)
closely approximated the normal distribution, ensuring the high reliability of the model in
predicting the net electric output power of the dish–Stirling system.

Finally, Figure 11 (above) and Figure 14 show the predicted values of the net electric
output power of the dish–Stirling system versus those measured (blue points), clearly
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demonstrating the high accuracy of the developed and proposed predictive models (the
dashed black line indicates where the points of a perfect forecast should lie).
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6.2. Comparison with an Analytical Model

In order to better characterise the predictive performance of the neural models pre-
sented above, we compared the results achieved with those obtained through the applica-
tion of a very recent analytical model based on the same initial experimental data [18]. It
should be noted that the stochastic nature of the algorithms used made the input dataset
for the neural network, both for the training and validation phases, a subset of that used to
test the performance of the aforementioned analytical model. In the best conditions, as it is
possible to see in Figure 15 below, both models, the analytical one and the neural one, hit
the target of correctly calculating the energy production of a dish–Stirling plant, with, as
already anticipated, a slight prominence of the neural model, which gave a determination
coefficient of 0.98.

As is easily observable from Figure 15, the number of the points in the diagram
predicted vs. measured referable to the neural model is inferior to that referable to the
analytical model. This condition derives from the fact that, in order not to overestimate the
predictive performances of the neural model, only the points belonging to the validation
dataset were used, that is only 15% of the total. With regard to the analytical model, instead,
all the available points were correctly used. Although it is theoretically possible to apply
the analytical model only to the points belonging to the validation dataset of the neural
network, this procedure is impractical and of doubtful utility, since the validation dataset is
selected in random mode and changes every time the training script of the neural network
is executed and for each neural network.
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7. Conclusions

The study here presented aimed to test and optimise a forecasting model for the energy
performance of a dish–Stirling solar-concentrating plant based upon the use of artificial
neural networks. Contrary to most of the models already tested in the most recent literature
in this scientific sector, the data used for the training phase of the networks were real
data from a monitoring campaign of a real working plant on the university campus in
Palermo. Neural networks of different architectures and sizes were also tested to better
understand the link between the complexity and quality of the obtained results. All the
different tested network architectures were trained alternately with two inputs (in the
case of only standard data such as DNI and external temperature being available) and 12
inputs (in the case of more complete climatic data being available). A further reason for the
novelty is the introduction of the input variables of information regarding the cleaning of
the reflector mirrors, which has never before been tested in this type of model. The results
made it possible to appreciate the good performance of the MLP models compared to the
RBF models, traditionally characterised by better performance in the approximation of
functions. Compared to a modern analytical model developed by the authors themselves,
the best of the developed neural models obtained an even higher determination index
between expected and calculated results, with a value equal to 0.98. The comparison is not,
therefore, to be considered singularly, but it is useful to understand how a sophisticated
neural network can be absolutely equivalent and sometimes superior to analytical models.

The results confirmed the maximum reliability of the developed ANN models.
It was not unexpected that the best neural model using the long input dataset, i.e., the

one extended to twelve input variables, had a slightly higher accuracy than that achieved
with the analytical energy model. The latter, being fundamentally based on a lumped
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parameter analysis of the dish–Stirling system, could not take into account the effect on its
operation of all those meteorological and climatic variables that were, instead, considered in
the extended dataset. For instance, it would be extremely complex to include the variability
induced by air humidity or wind speed in the analytical model for predicting the electrical
producibility of the solar concentrator, although these certainly influence the availability
of direct solar radiation. The neural model, on the other hand, was based on a black-
box approach, which simply learns from the available data without having to assume
any analytical cause-and-effect relations between input and output. Thus, the present
work demonstrates that the neural approach, using real data collected experimentally, is
competitive with an analytical approach.

A neural model, already trained, together with the same input data used, is made
available as attachments in “Supplementary Materials”. The digital neural model is directly
provided with the script in Python language, allowing maximum transparency of the
algorithms described in the research work. The availability of the dataset and the used
Python scripts allow, thanks to the exclusive use of open-source software, maximum
transparency and replicability. Finally, it should be noted that the results of the best of the
neural networks tested (V-MLP-12) were better, in terms of coefficient of determination
than one of the most advanced and highest performing analytical models developed by
the same authors [18]. Further improvements in the performance of the neural network
models could be achieved by using different activation functions and different optimisers
(fine tuning) using the Python script and dataset provided as a complement to this study.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/en15249298/s1.
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Nomenclature

a1 first fitting parameter of the mechanical efficiency curve of the engine (-)
a2 second fitting parameter of the mechanical efficiency curve of the engine (W)
aik weight of the first layer in a MLP neural network
An net aperture area of the dish collector (m2)
Ar aperture area of the receiver (m2)
bi bias value
C size of the validation dataset
e mean value of residuals
ei i-th value of residuals
.
En net electrical power produced by the dish–Stirling system (W)
.
E

ave
p average value of electric power consumed by parasitic equipment (W)

g Gaussian function

https://www.mdpi.com/article/10.3390/en15249298/s1
https://www.mdpi.com/article/10.3390/en15249298/s1
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hr convective heat transfer coefficient of the receiver (W/(m2·K))
Ib DNI arriving on the mirrors (W/m2)
mi i-th of the measured values
N number of records in the dataset
Q1 first quartile of the frequency distribution of residuals
Q2 second quartile of the frequency distribution of residuals
Q3 third quartile of the frequency distribution of residuals
.

Qr, out thermal power lost at the receiver (W)
.

QS,in thermal input power to the Stirling engine (W)
R2 coefficient of determination
RT correction factor of the ambient air temperature (-)
T0 reference temperature of the external air ( ◦C]
Tair temperature of the external air (◦C)
Tr temperature of the receiver (◦C)
Tr

ave average value of the receiver temperature (◦C)
Tsky sky apparent temperature (◦C)
wi weight of the output layer

.
WS mechanical output energy at the engine crankshaft (W)
x mean of the data
x vector of input data to the neural network
xi vector of parameters of each neuron of a hidden layer
xi i-th record in the dataset
y output signal from the neural network
Greek letters
α absorption coefficient of the cavity receiver (-)
εr emissivity of the cavity receiver (-)
φi(x) output signal of each neuron of the hidden layer
γ interception factor of the concentrator (-)
ηcle index of cleanness of mirrors (-)
ηave

cle average level of cleanliness of the mirrors (-)
ηe mechanical-to-electric conversion efficiency of the electric generator (-)
ηo optical efficiency of the concentrator (-)
µ mean of the values of residuals
ρ reflectivity of clean mirror (-)
ρp Pearson correlation coefficient (-)
σ standard deviation
σSB Stefan–Boltzmann constant (W/(m2·K4))
ζ non-linear function
Acronyms
ANFIS Adaptive Neuro-Fuzzy Inference System
ANN Artificial Neural Network
CPV Concentrating Photovoltaics
CSP Concentrating Solar Power
DNI Direct Normal Irradiance
GA Genetic Algorithm
MAE Mean Absolute Error
MLP Multiple-Layer Perceptron
PCU Power Conversion Unit
PSO Particle Swarm Optimisation
PTSTPP Parabolic Trough Solar Plant
PV Photovoltaic
RBF Radial Basis Function
TMY Typical Meteorological Year
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