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Abstract: One of the main challenges that face the reliable use of photovoltaic solar systems in hot
arid regions is the prevailing high temperatures during the day. To overcome this issue, Phase Change
Materials (PCM) are used for passive cooling providing different options to attain sufficient thermal
management solutions for different applications. Passive cooling can be achieved by adjusting a heat
sink to the solar PV module. This can be realized by attaching a PCM layer or sensible heat storage
to the backside of PV panels. Few studies have reported on simplified modeling and numerical
procedures using the apparent heat capacity formulation and volume averaging technique as a robust
approach to solving such sophisticated problems with minimal computational efforts, high accuracy,
and in a short period of time. However, there is still a need to bridge the large-scale gap between the
macroscale within the PCM layer, with a moving melting front, and the length scale of PV modules.
Hence, this work focuses on modeling and simulating PCM-Matrix Absorbers (PCM-MA) that consist
of fibrous aluminum cellular structure filled with PCM for passive thermal management of PV
panels using apparent heat capacity formulation and homogenization based on volume averaging
technique. COMSOL Multiphysics FEM software was used for the numerical simulation of the phase
change problem by using a Smoothed Heaviside step function to overcome the singularity of PCM
challenge that arises with sharp melting temperatures. To validate the proposed model, it has been
compared with a benchmark analytical solution for an ice melting problem, i.e., the Stefan problem,
in a semi-finite slab, i.e., Neumann’s solution under the same assumptions and boundary conditions.
The specific characteristics of phase change and evolution of melting front with time, heat capacity
change with the temperature at different times, and with locations along the slab height are presented.
As the phase change is modeled to take place over a mushy region, i.e., a narrow temperature interval
rather than a sharp melting point, the results show a good coincidence of the heat capacity profile
and its peak at different times and locations. The validated model can be used for the optimization of
PCM-MA for any specific geographical location and other applications such as the passive cooling of
buildings with PCM integrated with the outer envelope. To this end, the results of the simulation in
this work are shown to be in agreement with those obtained from the analytical solution.

Keywords: solar power; solar PV efficiency; passive cooling; PCM; thermal management; thermal
energy storage

1. Introduction

The operation of solar photovoltaic (PV) systems in hot climatic areas where extremely
high temperature and humidity conditions prevail is a major challenge in the field [1–3].
More specifically, the efficient operation of PV systems requires a reliable thermal manage-
ment tool to sustain the power output and increase the life expectancy of the panels.

The efficiency of PV cells is proven to drop significantly at high temperatures when
the cooling demand is also high. This indicates that maintaining the temperature of PV
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modules at a lower level is highly desirable. In hot climates, air cooling with natural
convection would be less effective, hence active thermal management of PV cells becomes
a necessity. While cooling of PV modules is only needed during the daytime, air humidity
condensation on PV panels should be avoided during both day and nighttime. This
prevents mud formation in the existence of dust which would start if the temperature
of the module surface falls below the dew point. Mud formation on the module surface
increases maintenance cost, shortens the module’s lifespan, and decreases its efficiency in
addition to the high-temperature adverse effects. To address this issue, the active thermal
management of PV modules using hybrid photovoltaic-thermal (PV/T) solar collectors,
that generate both heat and electricity from the solar resource, is of special interest. One of
the important advantages of PV/T systems is the simultaneous generation of electrical and
thermal energy in the same collector, with no additional land footprint. Thus PV/T can
be more cost effective than PV and solar thermal collectors standing alone, especially for
applications that require both electricity and hot water at relatively low temperatures.

Kern and Russell initially reported on the hybrid PV/T solar collectors [4] which
was followed by other studies [5,6]. Many practical applications of PV/T were reviewed
including several design options such as different types of PV cells (e.g., monocrystalline,
polycrystalline, thin film), concentrating or non-concentrating flat plate collectors, glazed
or unglazed, natural or forced flow, standing alone or building-integrated Zhang et al. [7].

A diversity of PV/T system designs has been developed with focus on two main
applications: where two different applications: obtaining electricity at improved conversion
efficiency of PV panels with low temperature of the heat transfer fluid (HTF) or sacrificing
the electrical efficiency for obtaining HTF at higher temperature. In the first arrangement,
unglazed cheap collectors can be used as the HTF temperature is controlled below 40 ◦C. In
the second arrangement, HTF temperatures above 60 ◦C are usually desired. Consequently,
higher cell temperatures will lead to a decrease in both electrical and thermal efficiencies.
Additional glazing and thermal insulation of the collector suppresses thermal losses of the
collector and improve the thermal efficiency, at the expense of electrical efficiency.

While PV/T collectors in the moderate climatic zones like in Central Europe are in
competition with the falling PV module prices, the use of PV/T still can be of advantage
in hot arid climate regions. However, due to the involvement of a relatively high level of
process engineering with water piping and circulation pumps as well as related engineering
costs of the PV/T systems, it may not be suitable for small and medium scale applications
or remote isolated areas in deserts.

Therefore, one thermal management process that meets the demand in such hot areas
is passive cooling [8]. Passive cooling utilizes the tangible difference in temperature during
day and night in hot areas. The passive cooling materials (PCM) are characterized by
the high thermal capacity that maintains PV cells at an acceptable temperature during
the day by accumulating coolness during the night. The thermal energy accumulated
during daytime in the PCM layer is released gradually to the ambient during nighttime.
The gradual discharge of accumulated heat keeps the PV panel temperature above the
dew point of the surrounding air to prevent condensation during the night. This, in turn,
minimizes the chance for mud to form which causes cementation of dust on the panel
surface [2,9]. The latter effect can reduce water consumption and mechanical efforts in the
cleaning of PV modules in deserts and dusty regions.

However, one of the main drawbacks of PCM that adversely impacts charging and
discharging processes by limiting PV power density is the low thermal conductivity. There-
fore, several studies have proposed the application of metal fibers to enhance the PCM
absorber thermal conductivity [1,10,11]. Consequently, an increasing attention has been
paid to using PCM in thermal management of PV modules in the last few decades with
considerable research and scientific analysis conducted to enhance the knowledge in this
field both experimentally and numerically. Choubineha et al. experimentally examined
the effect of both natural and forced air convection cooling of PV modules equipped with
PCM on the modules’ electrical efficiency [12]. The results showed that using PCM layers
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with 6 mm thickness led to reducing the panel temperature under different natural and
forced convection modes which led to an increase in the output power and electrical ef-
ficiency. Moreover, Adibpoura et al. examined the effect of PCM cooling on a tracking
PV module [13]. The results showed that the melting dynamics of PCM is very different
while tracking compared to previous research on fixed panels. More specifically, the ef-
ficiency of tracking PV modules with PCM is on average 4.6% higher than that without
PCM. Hassabou et al. have performed comprehensive experimental analysis on PV passive
cooling with PCM under hot weather conditions for nine months in Qatar using one type
of Monocrystalline PV modules and two PCM absorber thicknesses of 30 mm and 50 mm,
and a melting point of 54 ◦C [1]. The experimental analysis showed that the PV module’s
peak temperature was shaved by 10 ◦C with the PCM effect compared to reference PV
modules without PCM.

However, the simulation of such set up encounters sophisticated challenges in coupling
the physics of phase change phenomena with a moving melting and solidification fronts
at the macroscale level with the length scale of PV modules. This scale gap imposes some
limitations on the number of simulation cases in the open literature. Other difficulties
involved in modelling the PCM layer include the consideration of internal convection heat
transfer effects, accurately tracking the moving boundary that is neither desirable nor easy
due to the scale gap and the impact of some common assumptions in numerical simulation
on the accuracy of the model.

The main focus of this work is to develop a simplified, yet robust numerical simulation
tool, that can be used to solve such sophisticated phase change problems inside the PCM
layer with minimal computational efforts, high accuracy and in a short period of time. This
simplified and accurate model is extremely important to bridge the big scale gap between
the macroscale level within the PCM layer with moving melting front/solidification and
the length scale of PV modules, without the need to track the moving boundary.

2. Methods
2.1. Approaches for Modelling Solid-Liquid Phase Change

The transient non-linearity phenomenon in the heat transfer in PCM is coupled with a
moving solid-liquid interface. This moving boundary is normally presented as the “moving
boundary” or “Stefan” problem [14]. The challenge, in this case, is generally associated
with the uncertainty of the PCM physical properties as well as not having enough details
about the natural convection in the liquid phase. The two main heat transfer modes during
the melting and solidification process in this configuration are mainly conduction, and
to a less extent, natural convection due to the temperature difference that exists in the
liquid-solid interface. Nevertheless, the effect of natural convection can be neglected in the
solid-liquid interface compared with the heat conduction in the solid PCM [15]. Figure 1
shows the integration of PCM as a heat sink with solar PV modules.
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2.1.1. Analytical Methods

Several analytical methods for solving moving boundary surface problems were
reviewed by Mori and Araki [16]. It should be stressed that few exact analytical solutions
are available, and those that do exist are primarily for one-dimensional (1-D) problems.
Generally, the set of partial differential equations describing the heat transfer of the latent
heat energy storage systems is not solved analytically due to nonlinearity as well as the
presence of complicated boundaries.

One of the most precise and well-known analytical solutions for Stefan’s problem
related to the one-dimensional moving boundary nature of the problem was proposed by
Neumann [14]. In the analytical solution, it is assumed that the melting temperature or (so-
lidification temperature when prevails) is constant, which is not the dominant case in many
phase change mediums. Therefore, the use of numerical methods shall be investigated to
provide sufficiently accurate solutions and identify configurations of particular interest.

2.1.2. Numerical Methods

Several different numerical methods were proposed to solve problems that involve
continuously moving phase change boundary at a specific temperature or narrow tempera-
ture range. Voller has extensively reviewed these methods where he grouped them into
three categories: fixed-domain, front-fixing, and front-tracking strategies [17]. Moreover,
three methods have been further proposed to solve the fixed-domain ones which are the
enthalpy, temperature, and the apparent heat capacity methods.

The enthalpy method considers that enthalpy is the only control variable and expresses
temperature as a function of enthalpy, then the enthalpy-temperature relation is introduced
into the formulation to eliminate the temperature from the governing equations. The
interface is eliminated from consideration in the calculations and the problem is reduced to
heat conduction without phase change. This method can be applied to the whole domain
regardless of the phase at a certain point which eliminates the need to track the phase
change interface, which becomes unnecessary. Hence, when the enthalpy method is used,
the temperature field needs to be evaluated as a function of the enthalpy, since enthalpy is
taken as the control variable over the entire grid. In this case, the reference point of enthalpy
is selected as zero degrees Celsius, and the thermodynamic enthalpy-temperature relation
of the PCM is called the constitutive equation. By introducing the constitutive equation
into the formulation, the temperature can be eliminated from the governing equations.
Therefore, the interface is eliminated from consideration in the calculations. Hence, this
waives the need to consider sides or the region of the interface separately. Moreover,
no additional condition at the interface melting front shall be satisfied. As a result, the
two-phase moving boundary problem becomes a normal heat conduction problem without
phase transition. In addition, the phase change problems are easier to solve numerically by
making use of the enthalpy-based method. Nevertheless, for a pure PCM, the temperature
is a unique function of enthalpy which provides the singularity aspect to the problem.

In the temperature method, the temperature is the control variable, and the enthalpy
is the dependent variable. The simulation of the phase change phenomenon needs the
solution of the conservation equations considering separately both the convection and
conduction in the liquid (melt) zone and the conduction in the solid zone. Moreover, in
order to couple both phases (liquid and solid) together, an interface equation is needed.
Obviously, the melting front needs to be instantaneously tracked in this method.

In the apparent heat capacity method to solve heat conduction problems with phase
change, the temperature becomes the primary dependent variable to be derived from the
solution. Hence; it is assumed that the phase change takes place at a fixed temperature
or over a small temperature interval [18]. This method has been developed by Civan and
Sliepcevich and shall be utilized in this work for semi-infinite media [18].

The following section provides the background formulation of the general problem for
the apparent heat capacity method, and special techniques for the solution are presented in
the following section. The Neumann analytical solution for ice melting in a semi-finite slab
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heated from below and isolated from other sides will be presented for the sake of validation
of the numerical simulation based on the apparent heat capacity method.

2.2. Numerical Solutions of Solid-Liquid Phase Change Problems
2.2.1. Background on Stefan’s Problem

This problem concerns the numerical simulation of melting and solidification inside
a slab involving a moving boundary. The classically called “Stefan problem” is shown in
Figure 2.
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The physical problem states that a liquid solution is initially cooled to below the
solidification/melting point which causes an ice front formation that moves in space and
time across the domain as shown in Figure 3. In order to describe the transient heat transfer
with phase change in the domain that now contains solid and liquid phases with separating
moving front plan (x = s), Stefan wrote two energy equations for the solid and liquid phases
in the absence of fluid flow:

ρcs
∂Ts

∂t
=

∂

∂x

(
ks

∂Ts

∂x

)
, 0 ≤ x < S(t) (1)

ρcl
∂Tl
∂t

=
∂

∂x

(
kl

∂Tl
∂x

)
, S(t) ≤ x (2)

At the solidification front (x = S(t), & Tl = Ts = Tm), the Stefan condition which
formulates the energy balance at the interface governs the front velocity:

ρs∆Hm
dS
dt
→
n =

[(
Ks

∂T
∂n

)
x=s(t)

−
(

Kı
∂T
∂n

)
x=s(t)

]
→
n (3)

where
→
n is the vector normal to the front directed toward the liquid phase. In addition, for

the solidification of pure substances, the temperature condition at the interface is:

Tl = Ts = Tm (4)
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The Stefan problem was to track the moving front position satisfying the interface
conditions.
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2.2.2. Neumann’s Analytical Solution

A one-phase change problem is considered the first and simplest phase change prob-
lem; and it applies when, for instance, the liquid is in phase change, while the other phase is
at its melting temperature. This type of problem was first analytically solved by Stefan [19].
Stefan’s solution assumes constant thermophysical properties in the semi-infinite region to
show the rate of melting or solidification.

For a more accurate and practical approach, Neumann formulated Stefan’s one-phase
solution to be applied to a two-phase problem [14]. In this case, the two-phase in Stefan
model becomes a nonlinear model with a moving boundary where the unknowns are
the temperature field and the location of the Interface. Taking into consideration that the
conservation of energy controls the phase-changing process, the initial state of the PCM
is taken to be in the solid phase. Hence, the initial temperature shall be lower than the
melting temperature during the melting process and is not kept at a constant value.

The exact analytical solution for the one-dimension Stefan problem is the well-known
Neumann solution [10]:

S(t) = b
√

t (5)

where the proportionality constant b is the root of the equation:

ks√
κs

(Tm − Tw)

erf
(

b
2
√

κs

) exp
(
−b2

4
√

κs

)
− kl√

κl

(T0 − Tm)

erf
(

b
2
√

κl

) exp
(
−b2

4
√

κl

)
= ρ∆Hm

√
π

b
2

(6)

where κl =
kl

ρlcl
, κs =

ks
ρscs

.

2.2.3. Model Assumptions

• Heat transfer is dominated by conduction.
• Constant latent heat of fusion/freezing.
• The melting temperature is constant and depends on the nature of the PCM.
• The interface which separates the phases is a sharp front with negligible thickness.
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• Thermo-physical properties are different for each phase, which indicates that the ther-
mal conductivities (kl 6= ks) and the specific heats are not equal as well (Cpl 6= Cps )

• Density is considered to be constant (ρl = ρs)
• Super-cooling and nucleation are not present.
• Surface tension is insignificant.
• All the faces are considered to be insulated except for the bottom heat source.
• To explicitly solve the Two-Phase Stefan problem, the slab is assumed to be semi-infinite.
• The presented methodology in this paper is valid only for moving boundary problems

in rectangular coordinate problems. There are other systems for the other coordinates.

2.2.4. Governing Equations

Heat conduction equation in one space dimension

ρ c Tt = (k Tx)x (7)

Tt = α Txx (8)

Two-phase Stefan problem, melting of the semi-infinite slab (0≤ x < ∞). Initially solid
at (Ts < Tm) and with imposing a constant heat source at (x = 0, Tw > Tm).

Heat equations for obtaining a change of temperature in liquid and solid phases
with time:

Tt = αl Txx for
(

0 < X(t) , t > 0) (9)

Tt = αs Txx for
(

X(t) < x, t > 0) (10)

At the interface (t > 0)
T(X(t), t) = Tm (11)

Stefan condition:

ρ hmX′(t) = −klTx(X(t), t) + ksTx(X(t), t) (12)

Initial condition:
X(0) = 0 (13)

T(x,0) = Ts (14)

Boundary conditions:
T(0,t) = Tw (15)

lim
x →∞

T(x, t) = Ts (16)

Neumann suggests a solution for this problem to get the position of the melting
interface (moving boundary) as shown in the below equations:

X(t) = 2λ
√

αlt (17)

The temperature in the liquid region:

T(x,t) = Tw − (Tw − Tm)
erf
(

x
2
√

αl t

)
er f λ

(18)

The temperature in the solid region:

T(x,t) = Ts − (Tm − Ts)
erfc

(
x

2
√

αst

)
er f c(λv)

(19)
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v =

√
αl
αs

(20)

where the thermal diffusivity for solid and liquid are:

αl =
kl

ρl Cpl

(21)

αs =
ks

ρs Cps

(22)

We can get λ by solving the transcendental equation below:

Stl
exp(λ2) erf(λ)

− Sts

v exp(v2λ2) er f c(vλ)
= λ
√

π (23)

Stefan numbers can be calculated by:

Stl =
Cpl (Tw − Tm)

h_m
(24)

Sts =
Cps (Tm − Ts)

h_m
(25)

The Newton algorithm is selected to solve the transcendental equation for the Stefan
problem to find a unique root lambda. The below equation can be considered to get the
first trial for lambda:

λ =
1
2

 Sts

v
√

π
+

√
2 Stl +

(
Stl

v
√

π

)2
 (26)

2.3. Numerical Solution with Apparent Heat Capacity Method

In this work, the apparent heat capacity formulation method for the phase change is
selected for solving the problem in the heat conduction process since this method considers
the temperature, which is derived from the solution, as the main dependent variable. How-
ever, this approach suffers from singularity characteristics in terms of constant temperature
phase change problems. Hashemi and Sliepcevich developed a mitigation approach for the
singularity problem by assuming that the phase change occurs over a small temperature
interval [20].

COMSOL Multiphysics FEM software was used for the numerical modeling of the
Stefan problem. Moreover, Smoothed Heaviside step function was successfully used to
overcome the singularity problem. The same key assumptions and boundary conditions
mentioned in the analytical section above will be numerically tested for the validation
against Neumann’s analytical solution.

The energy equation for a two-phase system of pure substance is:(
∂

∂t

)
(ρ1h1φ1 + ρ2h2φ2) +∇.[(ρ1h1V1 + ρ2h2V2) + ( q1φ1 + q2φ2)]−

Dp
Dt

= 0 (27)

φ1 + φ2 = 1 (28)

By using Equation (22) in Equation (21)(
∂

∂t

)
[ρ2h2 + (ρ1h1 − ρ2h2)φ1] +∇.[(ρ1h1V1 + ρ2h2V2) + {q2 + ( q1 − q2)φ1}]−

Dp
Dt

= 0 (29)
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During the phase transition, the phases are at thermal equilibrium, and they are at
the same temperature. Hence, the heat transfer is by conduction only, and consequently;
Fourier’s equation applies:

q = −k∇T (30)

Then from Equation (23) and Equation (24), the apparent heat capacity formulation is
expressed as:{

∂(ρ2h2)

∂T
+

[
∂(ρ1h1)

∂T
− ∂(ρ2h2)

∂T

]
φ1 + (ρ1h1 − ρ2h2)

∂φ1

∂T

}
+∇.{(ρ1h1V1 + ρ2h2V2)− [(k2 + ( k1 − k2)φ1)]∇.T} − Dp

Dt
= 0 (31)

The pressure is assumed to be constant; hence, phases are isotropic and homoge-
nous. Assuming no motion in the phases. The apparent heat capacity formulation can be
simplified to:

ρc
(

∂T
∂t

)
=

(
∂

∂x

)(
k

∂T
∂x

)
(32)

where:
ρl = ρs (33)

k = ks + (kl − ks)φl (34)

c = cs + (cl − cs)φl + hm
dφl
dt

(35)

To calculate the liquid phase fraction for the melting process, and if the transition
occurs instantaneously at a constant temperature, then:

φl = U(T − Tm) (36)

where U is a step function equal to zero if (T < Tm) and one if (T > Tm) as shown in
Figure 4a.
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Variation of the liquid phase fraction with temperature is expressed by the derivation
of Equation (30) with temperature Figure 4b:

dφl
dt

= δ(T − Tm) (37)

To overcome the singularity problem, the Dirac delta function can be approximated as
a uniform distribution over a finite temperature interval (Figure 4c,d):

dφl
dt

=
1

2∆Tm
(38)

In the present study smooth variation is assumed as shown in Figure 4e,f as per [20]:

dφl
dt

=
ε√
π

exp
[
−ε2(T − Tm)

2
]

(39)

The main criterion for the above approach is:

2∆Tm

(Tw − Tm)
< 0.1 (40)

3. Test Case: Ice Melting Inside Finite Slab Heated from Below

Heat transfer with phase change has been checked for a simple case “Ice melting in
semi-infinite slab” for the sake of verification. Stefan’s problem has been solved analytically
by using Neumann approach and was validated numerically using COMSOL Multiphysics
to model the transient heat transfer by conduction with phase change. The physical
properties and boundary conditions for the test case presented in this study are summarized
in Table 1.

Table 1. Test case parameters.

Parameter Value Unit

Cpl 4180 [J/kg K]

Cps 1930 [J/kg K]

kl 0.598 [W/m K]

ks 2.2 [W/m K]

ρl 1000 [kg/m3]

ρs 1000 [kg/m3]

h_m 333 [KJ/kg]

Ts 269.15 [K]

Tw 300.15 [K]

Tm 273.15 [K]

4. Results and Discussion
4.1. Analytical and Numerical Solution Analysis

The results have shown a great agreement between the analytical and numerical
solutions with an error of less than 0.22% as shown in Figure 5.
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The evolution of ice temperature along the slab height with respect to time is shown
in Figure 6. Here the ice is gradually heated at the bottom wall giving rise to increasing the
temperature of the adjacent ice layer and a change in phase from solid to liquid. The latter
uses a latent heat formulation, where the latent heat is defined at the melting front, which
moves in time. On the micro level, the thermophysical properties of the ice are updated
while the heat is transferred from the wall to the ice. At a moment in time, the phase is
changed when the ice temperature approaches the transition/melting point. The complete
melting occurred after eight hours mainly by the effect of heat conduction.
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Figure 7 shows the 2-D temperature profile after one (a), three (b), six (c), and nine
(d) hours of heating; respectively. The figure gives an example of simulation results and
output of postprocessing capabilities in COMSOL. It shows how the melting front moves in
space and time in the axial direction along the slab height, as the side and top boundaries
are assumed to be adiabatic and, hence; the thermophysical properties are homogeneous in
the radial direction. It also shows the increase in temperature within the molten layers and
the continuous update of the temperature field with the displacement in the solid front that
is changing cautiously with time.
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(d) hours of heating.

The specific characteristics of phase change and evolution of heat capacity with the
temperature at different times and locations along the slab height are further depicted in
Figure 8. The phase change is modeled to take place over a mushy region, i.e., narrow
temperature interval, rather than a sharp melting point. The plot shows a good coincidence
of the heat capacity profile and its peak at different times and locations.
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As an example of the research efforts to examine some of these issues, an improved
thermal resistance model has been developed by Ma et al. through applying enhanced
conductivity method to incorporate intra PCM convection effects in a 1-D model, with the
aim of getting a good compromise between accuracy and simplicity [21]. Their numerical
simulation results illustrated that neglecting PCM convective and radiative heat transfer
will cause significant errors, which reveals considerable limitations in their model. Similarly,
Smitha et al. developed a 1-D simulation model with ambient temperature, irradiance,
and wind speed. The simulation model was used to study the effect of varying the PCM
melting temperature from 0 ◦C to 50 ◦C with the objective of identifying the optimal melting
temperature at each geographical location [22]. It has been found that PCM-enhanced
cooling is most beneficial in regions with high solar radiation and little seasonal variations
in weather conditions. With the optimal PCM melting temperature, the annual PV energy
output has increased by over 6% in Mexico and eastern Africa, while over 5% in many
locations such as Central and South America, much of Africa, Arabia, Southern Asia and the
Indonesian archipelago have been numerically predicted. The research outcomes showed
that the increase in energy production varies between 2% and nearly 5% in Europe. It
has been, logically, found that higher average ambient temperatures correlate with higher
optimal PCM melting temperatures.

4.2. Effect of the Transition Range

It is of interest to examine the effect of the phase transition range on the sensitivity
of the apparent heat capacity method. This effect is depicted in Figure 9, where two
temperatures, i.e., 0.2 and 2 ◦K, are arbitrary selected and compared with the exact analytical
solution. It is evident that the error introduced by the difference in the temperature interval
is insignificant in the lower region of the domain, which is closer to the interface with the
heat source and is more pronounced in the upper part of the domain as the melting front
moves in space and time. As the thinner interval conforms more closely to the analytical
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solution, it is obvious that the apparent heat capacity formulation can produce accurate
predictions. However, for the solar PV passive cooling application, the thicker temperature
interval would not have a significant impact on the accuracy. This is valid under the
condition that the criterion in Equation (40) is satisfied, i.e., the effect of latent heat variation
diminishes as long as the ratio of the temperature range to the overall temperature variation
of the PCM is smaller than 0.1.
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4.3. Effect of the Meshing Quality

With the main goal of reducing the computational time and expenses, the effect of
the meshing quality of the numerical simulation on the sensitivity of the apparent heat
capacity method is investigated. Three different qualities were used as shown in Figure 10,
and the effect on the simulation results is depicted in Figure 11. Similar to the effect of
temperature interval, it is evident that the error introduced by the coarser meshing quality
is more pronounced in the upper region of the domain and is diminishing in the vicinity of
the interface to the heat source.
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5. Conclusions

In the present paper, a simulation model for the PCM layer in the PCM Matrix Ab-
sorber that is used for passive thermal management of PV modules has been developed
and validated against an analytical solution for ice melting in a semi-finite slab. The model
neglects intra PCM convection heat transfer and assumes that the solid-liquid phase change
takes place over a mushy region rather than a sharp melting temperature. A simplified
modeling approach and numerical procedures have been implemented in COMSOL Multi-
physics FEM software using the apparent heat capacity formulation and homogenization
based on volume averaging techniques. The simulation model has been developed to de-
termine the macroscopic transport and time history of the PCM temperature field, through
which the phase change phenomenon can be captured without the need for tracking the
melting front during melting and solidification. The model has been validated against a
benchmark analytical solution, i.e., Neumann’s solution, which was originally developed
to solve the classical Stefan Problem.

The simulation results were in good agreement with the results obtained from the
analytical solution. The effect of the phase transition range on the sensitivity of the apparent
heat capacity method is examined and compared with the exact analytical solution. It is
found that the error introduced is insignificant in the lower region of the domain. Moreover,
the thinner temperature interval conforms more closely to the exact analytical solution,
which is evidence on the accuracy of the apparent heat capacity formulation predictions.

The effect of the meshing quality of the numerical simulation on the sensitivity of
the apparent heat capacity method was examined. Similar to the effect of temperature
interval, there is evidence that the error introduced by the coarser meshing qualities is
diminishing in the close vicinity of the interface with the heat source and more pronounce
as the distance from the interface increases.

The simplified model successfully and accurately captures underlying sophisticated
physics of phase change problems inside the PCM layer with minimal computational efforts
and requires a short convergence time. This simplified and robust model is extremely
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important to bridge the large-scale gap between the macroscale level within the PCM layer
with moving melting front/solidification front and the length scale of PV modules without
the need to track the moving boundary.

Future research utilizing this model can focus on extending the simulation to hybridize
the PCM layer with a cellular metallic heat-conducting structure for enhancing its thermal
conductivity. The complete model will then be used as a design and optimization tool for
performing systematic numerical experiments and sensitivity analysis of PCM-MA under
climatic conditions in hot arid areas. The PCM-MA model can then be integrated with
the PV panel’s model to simulate the complete system of PV passive cooling setup. The
complete model will be used as a design and optimization tool for performing systematic
numerical experiments and sensitivity analysis that will be discussed comprehensively
under climatic conditions in hot regions.
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Nomenclature

X(t) Interface position [m]
λ A dimensionless number used in solving Neumann problem
αl Liquid thermal diffusivity [m2/s]
αs Solid thermal diffusivity [m2/s]
t Time [s]
ρl Density in the liquid phase [Kg/m3]
ρs Density in solid phase [Kg/m3]
µ Viscosity [mPa. S]
kl Thermal conductivity in the liquid phase [W/m K]
ks Thermal conductivity in solid phase [W/m K]
Cpl Heat capacity for liquid phase [J/kg K]
Cps Heat capacity for solid phase [J/kg K]
Tw Wall temperature [k]
Tm Melting or transition temperature [K]
Ts Solid initial temperature [K]
Stl Stefan Number for liquid phase
Sts Stefan Number for solid phase
h_m Latent heat of fusion [J/Kg]
v Dimensionless number
h Enthalpy
φ Phase fraction
p Pressure
q Heat flux
V Volumetric flux
k Thermal conductivity tensor
dφl
dt Dirac delta function
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