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Abstract: Transient stability (TS) and short-term voltage stability (STVS) assessment are of funda-
mental importance for the operation security of power systems. Both phenomena can be mutually
influenced in weak power systems due to the proliferation of power electronic interface devices and
the phase-out of conventional heavy machines (e.g., thermal power plants). There is little research on
the assessment of both types of stability together, despite the fact that they develop over the same
short-term period, and that they can have a major influence on the overall transient performance
driven by large electrical disturbances (e.g., short circuits). This work addresses this open research
challenge by proposing a methodology for the joint assessment of TS and STVS. The methodology
aims at estimating the resulting short-term stability state (STSS) in stable, or unstable conditions,
following critical events, such as the synchronism loss of synchronous generators (SG) or the stalling
of induction motors (IM). The estimations capture the mechanisms responsible for the degradations
of TS and STVS, respectively. The paper overviews the off-line design of the data-driven STSS classifi-
cation methodology, which supports the design and training of a hybrid deep neural network RCNN
(recurrent convolutional neural network). The RCNN can automatically capture spatial and temporal
features from the power system through a time series of selected physical variables, which results in
a high estimation degree for STSS in real-time applications. The methodology is tested on the New
England 39-bus system, where the results demonstrate the superiority of the proposed methodology
over other traditional and deep learning-based methodologies. For reference purposes, the numerical
tests also illustrate the classification performance in special situations, when the training is performed
by exclusively using measurements from generation and motor load buses, which constitute locations
where the investigated stability can be observed.

Keywords: transient stability (TS); short-term voltage stability (STVS); recurrent convolutional neural
networks (RCNN); convolutional neural network (CNN); long short-term memory network (LSTM);
real-time prediction

1. Introduction

Transient stability (TS) and short-term voltage stability (STVS) represent a major
concern in weak power systems’ operation and planning [1,2], as major collapses have
been attributed to these types of stability [3]. Since TS and STVS develop over a short-term
period, these two phenomena have an important influence on the overall transient response
after a large disturbance, i.e., both phenomena can contribute to instability development in
the same time window [1]. However, TS and STVS are generally studied separately because
their instability factors are usually considered to have a different nature, i.e., TS is associated
with synchronous generators’ (SGs’) dynamics through their synchronism loss, whereas
STVS is associated with the loads’ dynamics through induction motor (IMs) stalling. As
TS and STVS have different instability mechanisms, the emergency control actions for
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their mitigation also differ. In this sense, it is of fundamental importance to consider both
dynamics, generation and load, to more accurately assess the system’s short-term stability
state (SST) and determine the dominant driving force of instability. Such an assessment is
needed for confidently defining emergency control actions to prevent propagation of the
resulting system instability.

Nowadays, with the fast development of artificial intelligence (AI) techniques and the
use of PMU measurements, different data-driven machine learning methods have proven
to be capable of the predictive assessment of TS and STVS. For example, studies aimed at
assessing TS have used support vector machines (SVM) [4,5], decision trees [6], K-nearest
neighbors [7], and extreme learning machines (ELM) [8,9]. Likewise, researchers that
have assessed STVS have also used SVM algorithms [10], ELMs based on artificial neural
networks (ANN) [10], and random forests [11]. However, since the learning algorithms’
performance is highly dependent on the input data representation, careful engineering and
considerable field experience are of great importance, so that the internal representation
design can allow the algorithm to make correct decisions [12].

Deep learning (DL) solves the limitations of traditional learning methods by allowing a
machine to be fed raw data with the help of more hidden layers and automatically discover
features needed for classification without relying on experience. Due to the improvement in
computational performance and data capacity, various methodologies for assessing system
stability based on deep learning have emerged in recent years. For example, methodologies
that assess TS have used deep neural networks, such as stacked autoencoders (SAE) applied
in two stages (initialization and classification) [13], long- and short-term memory (LSTM)
networks [14] and gated recurrent units (GRU) [15] in the learning of time series correlations,
and convolutional neural networks (CNN) due to their ability to extract spatial features and
fast training convergence [16,17]. Likewise, researchers that have studied STVS have used DL
techniques, such as recurrent neural networks (RNN) based on the LSTM model [18], due to
their ability to extract temporal features, and graphical neural networks (GNN) [19] for their
ability to extract topological information from the network that has undergone adaptation to
topological changes. Additionally, hybrid models have also been proposed, such as [20], that
use graphical convolutional networks (GCN) together with LSTM and form the model called
the recurrent graph convolutional network (RGCN). RGCNs can capture spatial-temporal
features and extract topological information from the network; this information is used to
classify the TS state and determine critical generators that lead to instability development.
The RGCN model has also been used in the study of STVS by [21], where they use this model
to predict and locate unstable buses following a disturbance occurrence.

Although the different methodologies based on AI models that study TS and STVS
have highly reliable, robust, or scalable characteristics, none of them jointly consider the
generation dynamics and the load dynamics. That is, studies focused on TS assume that
only generation dynamics are presented since they model the load only with static char-
acteristics, while studies focused on STVS assume that only load dynamics are presented
since the model generation simply involves ideal voltage sources [22]. In other words, the
investigations start from the assumption that the dominant mechanism of instability is
already known through the limited modeling of the system’s dynamics.

Recently, a few works have considered the joint dynamics of generation and loads and
tried to determine the main driving force of instability. In [23], they use the stable-state
Thevenin equivalent circuit to determine the unstable equilibrium point (UEP) and then
compare this point with IM slips and GS rotor angles; however, this proposal does not
guarantee reliable results. In [22], based on a double generation one-load (DGOL) model,
they establish a two-dimensional index that quantifies the stalling margin of IM and the
angle deviation margin of SG; however, the precision of this methodology depends on
an extensive adjustment process of the DGOL model with parameter determination for
certain contingency cases. In [24], for a few faults, the authors compare the rotor angle
trajectories of SG with the voltage buses of IM, where the greater number of components
(IM or SG) that lose stability the earliest after the failure corresponds to the dominant factor
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of instability; however, this is a criterion that lacks reliability. More recent research [25]
calculates the UEP and analyzes the trajectories of the SG rotor angles and the IM speed
to identify the instability mechanism; this is information that is used to train decision
trees, as a traditional ML algorithm, and in real-time, the STSS can be determined as
stable or unstable due to STVS, or unstable due to TS. The stability status classification
results of this methodology, together with the other studies mentioned, were verified by
shedding motor loads or tripping SG, where, depending on the disconnected component,
the corresponding type of instability was mitigated. The work proposed in [25] is the only
study that focuses on its application in real-time based on ML models; nevertheless, the
selected model requires complex mathematical calculations to obtain the necessary features,
and the decision trees can make correct decisions.

In a departure from the above-discussed state-of-the-art, the present work proposes
a methodology for the joint assessment of TS and STVS, which predicts in real-time the
STSS (stable or unstable performance due to STVS, or unstable performance due to TS). The
methodology is based on a combination of DL algorithms that are able to capture spatial
and temporal features automatically, with a high potential regarding applicability and
performance, particularities that are demonstrated by CNN and LSTM models, which form
the model named the recurrent convolutional neural network (RCNN). The methodology
classifies the STSS offline with a different approach to the traditional methods; that is,
instead of carrying out the development of complex algorithms with calculations that
require high accuracy and computational effort, the results of the component disconnection
responsible for the stability loss, together with the monitoring of a representative variable,
are used.

The main contributions of this work are follows:

• A novel real-time predictive assessment methodology of TS and STVS states under
a severe contingency scenario is developed. The methodology is based on the DL
model named RCNN, which combines CNN and LSTM models to capture spatial and
temporal features from the power system variables.

• The predictive assessment model can be implemented in real-time, allowing lead
emergency control actions and preventing the spread of instability in the system.

• The STSS offline classification methodology is performed based on monitoring a
representative variable from the system and the application of emergency control
actions directed at the possible instability mechanism. The approach does not require
high-accuracy calculations or high computational effort.

• An RCNN deep learning model with a high degree of performance that requires, as
input data, electrical variables that are measurable by PMU devices on all buses or only
on strategic buses (generation and motor loads) over a short time period. The model
presents rapid classification results before the development of instability, allowing
emergency control actions to be implemented.

The remainder of this paper is organized as follows. Section 2 presents a brief overview
of the background of the study and the causes of TS and STVS loss. Section 3 presents
the proposed RCNN model. Section 4 gives a detailed description of the model training
process and its real-time application. Section 5 presents the results of the methodology
implemented on the New England 39-bus test system. Finally, Section 6 presents the
conclusions of this work.

2. Short-Term Stability State

In the framework of short-term analysis, transient stability (TS) and voltage stability
(STVS) have drawn increasing concerns for the electric industry sector. Historically, tran-
sient instability has been the dominant factor of many collapses in transmission systems.
Nevertheless, due to the increase in loads with dynamic fast-acting characteristics, such as
induction motors, STVS has also become a determining factor for the short-term stability
condition and, therefore, a greater concern [1,3].
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2.1. Transient Stability (TS)

TS refers to a system’s ability to remain in synchronism following a severe disturbance.
This depends on every SG’s ability to maintain or restore the balance between mechanical
and electromagnetic torques. Transitory instability is reflected through the rotor angle
increase in some SGs, leading to the loss of their synchronism [26]. Generally, in these
situations, the SG tripping due to the action of out-of-step relays as an emergency control
action can be executed to maintain stability and reduce losses resulting from faults [27].

2.2. Short-Term Voltage Stability (STVS)

Short-term voltage stability refers to the attempt of load dynamics to restore power
consumption beyond the capability of the combined transmission and generation sys-
tem [28]. That is, when a severe fault occurs, dynamics loads, such as IMs, begin to stall and
draw excessive reactive power from the grid. If the reactive power resources are not able
to deliver the instantaneous power required by the load, mechanical and electromagnetic
torque curves cannot be intercepted, the voltage cannot be recovered and finally, the system
may culminate in an unstable condition [29]. In this case, the IM load shedding, as an
emergency control action, can avoid the instability propagation [30].

The STVS problem can be reflected through the following three phenomena shown in
Figure 1: sustained low voltage, fault-induced delayed voltage recovery (FIDVR), and rapid
voltage collapse [3]. Among these STVS phenomena, rapid voltage collapse is considered
the most serious unstable condition for the system, and it is also frequently associated with
TS problems. Therefore, in this work, only rapid voltage collapse response is considered as
an unstable voltage condition in the short term.
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Figure 1. Short-term voltage stability phenomena: (a) FIDVR; (b) sustained low voltage; (c) rapid 

voltage collapse. 
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Figure 1. Short-term voltage stability phenomena: (a) FIDVR; (b) sustained low voltage; (c) rapid
voltage collapse.

3. Recurrent Convolutional Neural Network

The DL hybrid model, named the recurrent convolutional neural network (RCNN), is
composed of CNN and LSTM models and is able to establish a relationship between the
power system measurement data (during the fault and a very short time after the clearance)
and the short-term stability state (STSS). Figure 2 shows the overall framework of the RCNN.

As can be observed in Figure 2, first of all, the measurement data are processed in a grid-
like topology (analogous to images). Then, this information is entered into the RCNN model,
where automatic extraction of spatial and temporal features is performed for STSS classification.

The RCNN model, as Figure 2 indicates, consists of the following four cascaded
modules: convolutional layers (CNN), fully connected (FC) layers, long short-term memory
(LSTM) layers, and the classifier. The CNN and LSTM are hierarchical modules, while
the fully connected layers and the classifier are singular modules. On the one hand, the
hierarchical modules represent the RCNN fundamental basis, since they deal with spatial
and temporal feature extraction; in addition, by presenting a stacked structure, they also
contain pooling, dropout, normalization, and FC layers. On the other hand, the singular
modules that correspond to the fully connected layers and the classifier are in charge of



Energies 2022, 15, 9240 5 of 24

establishing a link with the extracted features and detecting the STSS, respectively. Details
of these modules are presented below.

Energies 2022, 15, x FOR PEER REVIEW 5 of 24 
 

 

The RCNN model, as Figure 2 indicates, consists of the following four cascaded mod-

ules: convolutional layers (CNN), fully connected (FC) layers, long short-term memory 

(LSTM) layers, and the classifier. The CNN and LSTM are hierarchical modules, while the 

fully connected layers and the classifier are singular modules. On the one hand, the hier-

archical modules represent the RCNN fundamental basis, since they deal with spatial and 

temporal feature extraction; in addition, by presenting a stacked structure, they also con-

tain pooling, dropout, normalization, and FC layers. On the other hand, the singular mod-

ules that correspond to the fully connected layers and the classifier are in charge of estab-

lishing a link with the extracted features and detecting the STSS, respectively. Details of 

these modules are presented below. 

F
u

ll C
o

n
n

ected
 L

ay
er

F
u
ll C

o
n
n
ected

 L
ay

er

C
lassifier

LSTM

LSTM

LSTM

Convolutional Layer:
Conv, Pooling, Dropout, BN

LSTM Layer:
LSTM, LN

Spatial feature learning Temporal feature 

learning

...

STSS 

output 

RCNN MODEL

...

Time (T)

Buses (B)

Variables

Time Series DataPower System Grid-like Data

Time series in the form of 

samples data by PMUs

Data transformation in the 

observation window into 

grid-like data

INPUT DATA

1               2               3               4              5
0

0.5

1

1.5

V
o

lt
ag

e 
(p

u
)

1               2               3               4              5
    

0

200

T
h

e
ta

 (d
e

g
)

    

100

Time (s)

...
G

G

G

G

G

G
GG

G

G

 

Figure 2. Overall framework of RCNN model. 

3.1. Convolutional Neural Network Layer 

Convolutional neural networks (CNN) are based on the mapping of spatial features 

by convolution operations in multidimensional data [31]. The feature mapping of CNN 

contains k filters that are spatially repartitioned into different channels. The convolutional 

layer 𝑦𝑖 is calculated as 𝑦𝑖 = 𝑓𝑎(∑ 𝑘𝑖𝑗𝑥𝑖𝑗𝑖 ), where 𝑥𝑖, 𝑘𝑖, and 𝑦𝑖 denote the feature input, 

the convolution kernel, and the hidden layer of the 𝑖th iteration, respectively, while 𝑓𝑎 

represents the activation function [32]. 

CNNs analyze the hidden patterns using pooling layers for scaling, shared weights 

for memory reduction, filters for detecting correlations by convolution operations, and 

also dropout for reducing overfitting that is often shown by networks [32]. 

3.2. Long-Short Term Memory Layer 

As one of the most popular variants of recurrent neural networks (RNN), LSTM is 

known for its excellent ability to extract temporal features from sequential input data [33]. 

In addition, it has the ability to overcome the problem of RNN vanishing gradients, that 

Figure 2. Overall framework of RCNN model.

3.1. Convolutional Neural Network Layer

Convolutional neural networks (CNN) are based on the mapping of spatial features
by convolution operations in multidimensional data [31]. The feature mapping of CNN
contains k filters that are spatially repartitioned into different channels. The convolutional
layer yi is calculated as yi = fa

(
∑i kijxij

)
, where xi, ki, and yi denote the feature input,

the convolution kernel, and the hidden layer of the ith iteration, respectively, while fa
represents the activation function [32].

CNNs analyze the hidden patterns using pooling layers for scaling, shared weights
for memory reduction, filters for detecting correlations by convolution operations, and also
dropout for reducing overfitting that is often shown by networks [32].

3.2. Long-Short Term Memory Layer

As one of the most popular variants of recurrent neural networks (RNN), LSTM is
known for its excellent ability to extract temporal features from sequential input data [33].
In addition, it has the ability to overcome the problem of RNN vanishing gradients, that is,
when the backward gradient becomes very small, and the previous layers cannot change
the settings, which causes the neural network to stop learning [34].

The LSTM structure, as shown in Figure 3, comprises three memory gates called input,
forget, and output gates. These are responsible for selecting and rejecting the information
that passes through the network. xt, ct, ht and σ represent the input vectors, the memory
unit, the hidden states, and the activation function, respectively [34].
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3.3. Fully Connected Layer

The output of an FC layer corresponds to the linear transformation of the inputs [35].
On the one hand, the RCNN’s FC layers allow the spatial features extracted from the CNN
module to enter into the LSTM module and, on the other hand, they enable the temporal
features captured from the LSTM module to predict the STSS results through the classifier.

3.4. Classifier

The STSS prediction can be expressed as a multiclass classification problem in stable
and unstable systems due to SG out-of-synchronism (TS), or unstable systems due to IM
stalling (STVS), with each class being mutually exclusive. The activation function used is
softmax, which gives the confidence c̃i for the category i as follows:

c̃i =
ezi

∑i ezi
(i = 1, 2, 3) (1)

where c̃1 + c̃2 + c̃3 = 1; and zi are the values of each class. Therefore, the STSS was predicted
as detailed in Table 1.

Table 1. Multiclass classifier results of STSS.

STSS Softmax Result Label

Stable c̃1 > 0.5 (1, 0, 0)
Unstable due to TS c̃2 > 0.5 (0, 1, 0)

Unstable due to STVS c̃3 > 0.5 (0, 0, 1)

4. Proposed RCNN-Based Methodology

The methodology that follows the RCNN model implementation is developed in three
stages, which are shown in Figure 4.
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4.1. Database Generation

The RCNN model training requires a database that can be generated from historical
data or from time-domain simulations (TDS) if the historical data are insufficient. The
database comprises (a) a time series of electrical system variables; and (b) sample labeling,
that is, the STSS of each contingency case. Each aspect comprises the database that is
detailed below.

4.1.1. Time Series of Electrical System Variables as RCNN Input Data

The RCNN input data correspond to the time series of the electrical system variables
that allow the STSS assessment task to be developed with great precision and within a small
time window. In other words, it is thought that the selected variables effectively reflect
the problem to be assessed and can be measured using PMU devices for the subsequent
real-time model application.

On the one hand, the TS assessment is usually performed by monitoring the variables
that correspond to the rotor angles or angular speed of the SG; however, different studies,
such as [36,37], indicate that the voltage angle can reflect the SG status, has a much faster
response than the other variables, and possesses the advantage of being measured directly
by PMU devices. On the other hand, the STVS assessment is generally conducted using the
variable that corresponds to the voltage magnitude (U), since it directly reflects the voltage
state and can also be measured directly by PMU devices. Therefore, this work selects the
voltage phasors (U, θ) as input data for the RCNN model.

In the first instance, the voltage phasors measured correspond to the buses of the entire
system within a very short time window from the fault occurrence. In Section 5.4.2, the RCNN
model performance is analyzed, where the training data only contains data of generation and
motor load buses, locations that directly reflect the stability problems under study.

4.1.2. Offline STSS Labeling

As mentioned, the STSS assessment, in the face of a severe disturbance, is used to
analyze whether the system is stable or unstable due to TS, or unstable due to STVS. In this
sense, a methodology that classifies the offline STSS is implemented, which is based on
monitoring a representative variable that indicates when the system is stable or unstable,
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and on applying emergency control actions aimed at the possible instability mechanism.
Each aspect of the methodological basis for STSS classification is discussed below.

• Representative variable

Usually, investigations that study TS or STVS, in order to distinguish stable and
unstable profiles, use the variable that represents the type of stability under study, that
is, the rotor angle (δ) in the case of TS, or the voltage magnitude (U) in the case of STVS.
However, when both types of stability are considered, it is unclear which is the most
appropriate variable to identify stable and unstable cases with the least or no margin error.
In this sense, to determine this variable, tests of different fault cases are performed and the
system’s response is analyzed through SG rotor angles and IM voltage magnitudes, which
are representative variables of TS and STVS, respectively.

Figure 5 shows the results obtained from eight fault cases under different operating
scenarios, where it can be observed that through any of the two variables, (δ) o (U), it is
possible to distinguish stable and unstable cases. Figure 5a shows the system response
is stable for the first four fault cases, since after the disturbances, (U) remains within the
allowed range of stability values; likewise, (δ) presents damped oscillatory characteris-
tics that quickly stabilize. On the contrary, Figure 5b shows the system is unstable for
the remaining four fault cases, as it presents a significant voltage drop with subsequent
oscillations and a rapid growth of (δ) that exceeds the maximum limit of 180◦.
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(b) unstable.

Therefore, since short-term stability or instability is identified through either of the
two variables (U o δ), this work selects the rotor angle trajectory (δ). This variable is selected
because it is possible to use the maximum angular separation threshold after a contingency
of 180◦, where if any SG exceeds this threshold, the system is known to be unstable. On the
contrary, the voltage magnitude does not present a defined threshold for the stability state.
Therefore, the GS rotor angle trajectories are analyzed according to each GS’s maximum
angular separation criterion, with respect to the reference generator.

• Emergency control action application

As can be observed in Figure 5b, although it was possible to identify through any of
the two variables (U or δ) that the system was unstable in the last four fault cases, it was
impossible to recognize the dominant instability force in each case.

In this sense, the application of emergency control actions aimed at the possible
instability mechanism, the IM load shedding or the SG tripping, is used. When IM load
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shedding prevents instability development, it means that IM stalling is the dominant
instability factor with the loss of STVS. On the contrary, when SG tripping mitigates
instability development, the main mechanism causing instability corresponds to the SG
out-of-synchronism with the loss of TS.

Therefore, by applying the mentioned control actions, it is possible to distinguish the
type of instability of the last four unstable cases shown in Figure 5. First, the total IM load
shedding is applied as a control action, and then the SG tripping with the greatest deviation
in the rotor angle during the first moments after the fault clearance is applied. The control
actions application is performed as quickly as possible before the instability development,
while also considering the latencies that a control scheme implemented in real-time would
imply. Figure 6 shows the system’s response to these control actions.
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shedding; (b) generation tripping.

As can be observed in Figure 6a, after the IM load shedding application, cases 5 and 6
show a stable response, while cases 7 and 8 remain unstable. On the contrary, after the
SG tripping application, as shown in Figure 6b, cases 5 and 6 remain unstable, while
cases 7 and 8 present a stable response. Therefore, it can be concluded that the dominant
instability mechanism in cases 5 and 6 is the dynamic load with STVS loss, while in
cases 7 and 8, it is the SG out-of-synchronism with TS loss. In addition, it can be noted
that with only one control action type, it is possible to determine the dominant instability
mechanism developed.

In this work, we decided to implement control actions that correspond to IM load
shedding in whole cases found as unstable. That is, when these control actions prevent
instability development, the STSS will be classified as unstable due to STVS. Otherwise,
when the control actions have no effect on preventing the instability development, it
means that the instability mechanism was not dynamic loading, but SG with rapid out-of-
synchronism; therefore, the STSS is classified as unstable due to TS.

• STSS labeling summary

The STSS labeling process, as can be observed in Figure 7, is established in two
stages. In the first stage, after setting simulation conditions related to the contingency and
operation scenario, the initial load flow is executed and the time domain simulation is
performed. Subsequently, the rotor angle response is monitored, where if the maximum
angular separation between any generator with respect to the reference generator exceeds
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the maximum theoretical limit of 180◦, |∆δ|max > 180◦, it means that one or more generators
have lost synchronism and the voltage of different buses oscillates between high and low
values. So, this case is defined as unstable, but the STSS classification is not precise, since
the main instability mechanism is unknown. On the contrary, this case is considered stable
when the |∆δ|max < 180◦ throughout the simulation time.
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Furthermore, the second stage aims to distinguish the main mechanism that leads
to instability for the cases defined as unstable. For this, the application of total IM load
shedding located in the buses with the highest IM concentration is added to the simulation
conditions as an emergency control action, together with the execution time adjustment.
The time setting used to execute the control action must consider the latencies involved in
a load-shedding scheme when it is applied in real-time.

Finally, the initial load flow and the time domain simulation are executed. If the
control action helps to recover the system, it means that the elements that led to instability
were effectively dynamic loads; therefore, this case is classified as unstable due to STVS. On
the contrary, when the application of the control action does not affect the system recovery,
it means that the SGs play a more significant role in the instability development; therefore,
this case is considered as unstable due to TS.

The STSS information defined by this methodology is represented by the vector c. This
vector comprises three labels, each corresponding to the STSS (stable or unstable due to TS,
or unstable due to STVS). Therefore,

c =


[1, 0, 0]
[0, 1, 0]
[0, 0, 1]

i f STSS = stable
i f STSS = unstable by TS
i f STSS = unstable by STVS

(2)

4.1.3. Database Generation: Summary

The STSS labeling methodology based on monitoring the rotor angle variable and the
IM load shedding execution, as an action that indicates whether the problem is voltage
instability, is used to classify the STSS in stable, unstable due to STVS, or unstable due to
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TS systems. This classification methodology is developed under offline conditions using
post-mortem analysis.

Once the STSS labeling information has been obtained, together with the time series of
voltage phasors (U, θ) in each contingency, the RCNN model training is performed offline.

After the RCNN has been trained, it can be implemented in real-time. The input data
required by the model will be the same as those used during its training, that is, the time
series of voltage phasors, the variables measured directly by PMU devices.

4.2. Off-Line Training

Figure 4 shows the RCNN model training methodology aimed at assessing the STSS.
As can be observed in this figure, model training requires an input database, which com-
prises the system’s dynamic response in the face of different n-1 contingencies (simulation
data or historical data) and the class to which each one belongs. On the one hand, the
dynamic response is represented through the selected variables (U, θ); on the other hand,
the class is acquired from the STSS labeling methodology.

Then, the RCNN training requires input data pre-processing to perform the classifi-
cation task through spatial and temporal feature extraction, a particular property of the
RCNN deep learning model.

4.2.1. Input Data Pre-Processing

The input data pre-processing involves the following steps: (a) selected variable (U, θ)
organization in a format that the RCNN model can interpret; (b) input data splitting into
two data sets called training and testing; (c) variable value normalization.

• Selected variable organization

Since the RCNN model is composed of convolution layers at the first hierarchical
stage, the variables’ data must be organized in a dimensional tensor that is analogous to
images, that is, in a tensor of three axes. In the case of images, each axis represents the
pixel height (h), the pixel width (w) and the color channels (usually three according to
the RGB color coding); thus, the image tensor takes the form of (h× w× 3). In this case,
each axis represents the parameters that involve the selected variables (U, θ). The first axis
corresponds to the sample number (T) within a given time window (W), starting from
when the fault occurs until very shortly after the clearance. T is calculated from W and
the sampling frequency fs is calculated using T = W fs + 1. The second axis corresponds
to the electrical system buses from which the selected variables are taken (B). Finally, the
third axis considers the number of variables selected as input data, that is, two variables
corresponding to the magnitude and angle of the voltage. Therefore, the RCNN input
tensor has the form (U, θ) ∈ RT×B×2:

U =


U1,1 U1,2 · · · U1,B
U2,1 U2,2 · · · U2,B

...
...

. . .
...

UT,1 UT,2 · · · UT,B

 (3)

θ =


θ1,1 θ1,2 · · · θ1,B
θ2,1 θ2,2 · · · θ2,B

...
...

. . .
...

θT,1 θT,2 · · · θT,B

 (4)

• Database splitting and normalization

The classification task involves splitting the database into the following two parts: the
training dataset and test dataset. The information of each element of the training data set
contains the class or label to which it belongs. In this way, when the training is performed,
a model will be created based on the training data, which allows the class prediction of
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each element of the test data set. The database splitting must be performed randomly and
proportionally to each class.

Additionally, it is necessary to perform a normalization process due to the scale
differences in the input characteristics, that is, in the selected variables (U, θ). For this
purpose, the normalization algorithm called z-score is implemented, which ensures that
each characteristic has a mean of 0 and a variance of 1.

4.2.2. RCNN Model Training

The RCNN model training process aims to find the learning parameters that minimize
the difference between the model predictions and the classification states taken as true. For
this purpose, the loss function and the optimization algorithm of the learning parameters
play an essential role. On the one hand, the loss function measures the similarity between
the network output predictions and the classification states taken as true. On the other
hand, the optimization algorithm iteratively updates the learning parameters to minimize
this loss function.

The cross-entropy (CE) function has been widely used as a loss function due to its
good performance in multiclass classification tasks. However, in problems with unbalanced
data sets, the classification process tends to pay too much attention to stable cases, which
means that unstable cases suffer a loss of fit and generalization. Therefore, the loss function
adopted for the RCNN model is an improved version of the CE function and is called
weighted cross-entropy (WCE), which considers the class imbalance. WCE is defined by
Equation (5).

Loss1 = −∑
i

αi

(
∑

j
ci,jlogc̃i,j

)
(5)

where αi is the balance factor assigned to each class i. Normally, αi of the unstable cases
has a higher value (depending on its proportionality in the entire data set), so that the
accuracy (ACC) for these cases increases. (ci,1, ci,2, ci,3) are the STSS classes taken as true,
while (c̃i,1, c̃i,2, c̃i,3) denotes the STSS prediction, that is, the output of the softmax function
of the ith simulation case.

The WCE function is optimized through the Adam algorithm [38], which has been
widely used in deep learning. Its application is adequate in the problem of STSS classifica-
tion, since it produces excellent generalization results fairly rapidly.

4.2.3. Performance Metrics

Based on the confusion matrix in Table 2 used for binary classification problems, it
is possible to adopt metrics such as accuracy (ACC), security (SS), reliability (CU) and
G-mean, which allow the evaluation of the learning model performance. Although the
RCNN model presents a multiclass classification problem, by considering each class i as
binary subproblems, it is possible to perform the calculation of the mentioned metrics, as
specified in Equations (6)–(9).

ACC =
TP + TN

TP + FP + TN + FN
(6)

SS =
∑

j
i=1

TPi
TPi+FNi

j
(7)

CU =
∑

j
i=1

TNi
TNi+FPi

j
(8)

G−mean =
√

SS× CU (9)

where ACC is a widely used metric because it provides an overall measure of the proportion
of correctly predicted samples. SS represents the proportion of correctly classified samples
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within all stable samples. CU represents the proportion of correctly classified samples
within all unstable samples, which reflects the reliability of the system assessment. Finally,
G-mean is an appropriate metric to evaluate the classification of an unbalanced sample set,
for example, when there are more stable than unstable samples [39].

Table 2. Confusion matrix for binary classification problems.

Stable Unstable

Predicted as stable TP (true positive) FP (false positive)
Predicted as unstable FN (false negative) TN (true negative)

4.3. Real-Time Application

The proposed methodology applied in real-time is shown in Figure 4. As can be ob-
served, the methodology requires synchronized PMU measurements with a high sampling
rate and an n-1 contingency alert for its activation. Then, it is necessary to prepare and
pre-process the information obtained from the PMU measurements that correspond to the
voltage phasors (U, θ), the variables used as input data in the RCNN training and are,
therefore, required for its application in real-time. The preparation and pre-processing
of (U, θ) measurements involve the following steps: (a) variable organization in a multi-
dimensional tensor ((U, θ) ∈ RT×B×2); and (b) tensor normalization based on the same
method (z-score) used offline. Subsequently, this information is delivered to the RCNN
trained model that is capable of quickly classifying the system STSS. Based on the RCNN
response, it is possible to guide emergency control actions, such as generation tripping or
motor load shedding, when the model predicts instability caused by TS or instability by
STVS, respectively.

The components required for STSS assessment based on the RCNN model in real-time
correspond to a telecommunication system with high-speed characteristics that is necessary
to transmit information from PMU devices to the control center, where the proposed
methodology is implemented.

5. Simulation Results

The RCNN model was implemented in the New England 39-bus system, which has
been modified from the original [40] to satisfy the N-1 security criteria. The database
was generated based on time-domain simulations (TDS) in DIgSILENT® PowerFactoryTM,
version 2021 SP2. The DL model was developed in Python version 3.8.8 using the libraries
Keras 2.9.0 and Tensorflow 2.9.2 on a computer with Intel CoreTM i7-9750H @ 2.60 GHz
and 16 GB RAM.

5.1. Test System

The New England 39-bus system consists of 39 buses, 10 generators, 19 loads, and
46 transmission lines. The system is modeled considering the dynamics of both generation
and loads. The generators use the 6th order sub-transient model equipped with automatic
voltage regulators (AVR) and speed control regulators (GOV), which are models taken from
the library of PowerFactory [41]. Likewise, in the case of loads, six induction motors were
incorporated as dynamic loads through the IEEE Type 2 model located in the buses 4, 8, 15,
20, 24, and 28. Figure 8 shows the line diagram of this system.

The TDS consist of many case studies with N-1 contingencies, which are generated
using the Monte Carlo method. Stable and unstable cases occur in these SDTs, where the
driving force for unstable cases may be STVS loss or TS loss. In total, 10,000 study cases
were generated, based on the following aspects:

• Variety in load/generation operation scenarios with the application of random
N-1 contingencies.

• The contingencies correspond to generation output or three-phase faults located
randomly on transmission lines, where the fault clearance occurs after 0.1 s.
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• The simulation time window is established at 5 s, a time period in which the stability
problems under study, STVS and TS, develop.

• The PMU sampling frequency can currently reach a value of 100/120 Hz; therefore, in
this work, an integration step of 0.01 s is established.

The database size is considered to be sufficient due to the complexity of the RCNN
model (number of learnable parameters) and the size selected by other AI-based studies
that analyzed TS or STVS.
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5.2. Off-Line STSS Assessment Results

The STSS assessment results are obtained through the methodology implementation
outlined in Section 4.1.2, which consists of monitoring the SG rotor angle and applying
emergency control actions that correspond to IM load shedding. The control action time
delay was established based on the time a real-time control scheme would take [42,43].
In other words, this refers to a delay time that considers the latencies of (a) PMU data
acquisition and communication system delay (~200 ms); (b) problem assessment based on
AI (t f + ~50 ms); (c) activation signal transfer from the control center to the local substations
(<10 ms); circuit breaker operation (<40 ms). Therefore, the control action execution time is
set to 400 ms from the start of the contingency, as the fault time (t f ) is 100 ms.

The STSS assessment results for the 10,000 study cases generated are presented in
Table 3, where it can be observed that the system response is mostly stable with 8407 cases,
unstable due to TS with 1178 cases, and finally, unstable due to STVS with 415 cases.

Table 3. Off-line STSS assessment results.

STSS Number of Cases Percentage

Stable 8407 84%
Unstable due to TS 1178 12%
Unstable due STVS 415 4%

In the literature, it can be observed that other methods to classify stable and unstable
cases in the study of TS or STVS have been widely used, where the maximum Lyapunov
exponent (MLE) estimation stands out. The MLE approach is based on trajectory behavior
analysis, where the exponential variations experienced by a power system in the transient
process are quantified [44]. When the MLE sign is positive, it means that there is an
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exponential divergence problem with an unstable system response. In this sense, for
comparative purposes with the proposed classification methodology (PCM), we decided to
analyze, based on the MLE approach, the voltage magnitude values from all buses in the
study cases to classify STSS as stable or unstable. When the MLE sign is negative for all
buses, the system is identified as stable; otherwise, when at least one bus is positive, the
system is classified as unstable. Table 4 summarizes the STSS assessment results (stable
and unstable) for the 10,000 study cases based on MLE and PCM.

Table 4. STSS assessment results based on MLE and PCM.

STSS
PCM MLE

# Cases (%) # Cases (%)

Stable 8407 84 8238 82

Unstable due to TS 1178
16 1762 18

Unstable due to STVS 415

As can be observed in Table 4, the classification results for PCM and MLE are very
similar, with 84% and 82% stable cases, and 16% and 18% unstable cases, that is, only
a 2% difference between both methodologies. However, it is known that the MLE will
always present a classification error margin, since its calculation is based on numerical
methods. In this sense, although the MLE has been a useful tool to discriminate between
stable and unstable profiles, it has several limitations, such as the error associated with
its classification, the lack of ability to explain the dominant instability factor, and also its
heavy theoretical basis. Therefore, the PCM has a clear implementation advantage, since
it not only allows for STSS classification, including the dominant instability mechanism,
but also accomplishes this purpose without the development of complex algorithms and a
significant computational effort.

5.3. RCNN Training

RCNN model training requires input data pre-processing and the adjustment of its
design. The procedure for performing the model training is detailed below.

5.3.1. Input Data and Pre-Processing

The RCNN input database comprises a time series of the voltage magnitude and voltage
angle (U, θ) of all the system buses within a very short time window from the fault occurrence.

Based on the time delay considered in Section 5.2 that corresponds to the problem
assessment using learning models, t f + 50 ms, it was established that the time window (W)
is t f + 40 ms, i.e., W = 100 ms + 40 ms = 140 ms, where 10 ms is reserved for calculations
that imply the methodology application in real-time. Once W is defined and considering a
sampling frequency fs = 100 Hz, the sample number T associated with the time window
results in T = 0.14 × 100 + 1 = 15. Therefore, the RCNN input tensor is (U, θ) ∈ R15×39×2

in each contingency.
Then, the entire database was divided into the following three parts: training

(60% ≡ 6000 cases), validation (20% ≡ 2000 cases), and testing (20% ≡ 2000 cases), where
the percentage of stable cases, unstable due to TS, and unstable due to STVS in each data
set has the same proportionality.

Additionally, the database must undergo a normalization process before the model
is trained due to the scale difference between the model characteristics. Therefore, as
indicated in Section 4.2.1, data set normalization is performed by the z-score algorithm.

5.3.2. RCNN Model Design

Based on the design of deep learning models aimed at studies of transient or voltage
stability and at achieving good classification performance in the learning process, the
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architecture design shown in Figure 9 was obtained. The hyperparameters adjusted in this
figure correspond to the number of convolutional layers, in addition to the size and number
of filters, max pooling operation, dropout probability, number of LSTM layers, number of
fully connected (FC) layers, activation functions, and finally, normalization layers.
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Additionally, the hyperparameters related to loss function, the optimization algorithm,
initialization technique, batch size, and epoch number must be adjusted to perform the
model training. Table 5 summarizes the settings for these hyperparameters.

Table 5. RCNN hyperparameter settings.

Training Hyperparameters Function/Selected Values

Loss function Weighted cross-entropy (WCE),
α= (0.4, 2.8, 8.0)

Optimization algorithm Adam algorithm, learning rate = 0.0001

Initialization technique Glorot uniform

Batch size 120

Epoch number 2000

As can be observed in Table 5, the WCE loss function adds a balance factor of α among
all classes according to the assignment of weight, which is determined as αj = n/knj, where
αj is the weight of class j, n is the total number of study cases (10,000), nj is the number of j
class study cases (stable: 8407, unstable due to TS; 1178, unstable due to STVS: 415), and k
is the total number of classes (3).

5.3.3. Training Process

The training process determines the weights of each layer that comprises the RCNN
model, where the multidimensional input data are clustered according to the corresponding
classification class. The t-distributed stochastic neighbor embedding (tSNE) technique
allows the visualization of this classification process through the use of its non-linear
dimensionality reduction feature to aggregate high-dimensional data in a two- or three-
dimensional space [45]. In this sense, in order to observe the clustering process of the
multidimensional input data during the model training, the t-SNE technique is used in the
following three different locations: (a) input space, before entering the model; (b) output of
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the hierarchical convolutional module; and (c) after the LSTM module, before the last fully
connected layer. Figure 10 shows the RCNN learning process in a scatter plot, where the
sample point clustering of the input database in each indicated position can be observed,
representing the stability state class by means of colors, and the sample points’ proximity
through the similarities that can be observed among them.
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It can be observed in Figure 10a that the stability classes overlap with each other because
the RCNN model has not yet processed the data set. This changes significantly in Figure 10b
as the dataset has already been processed by the hierarchical convolutional module, where a
clustering of the three stability classes can be distinguished to some extent, which demonstrates
the module’s great ability to extract spatial features. In addition, in Figure 10c, it can be
observed that the clustering of the three stability classes is much more evident, since, at this
stage, the data set has also been processed by the LSTM module, which verifies the importance
of temporal feature extraction for a more precise classification of STSS.

5.3.4. RCNN Results and Comparison with Other Models

The RCNN and other ML models’ performance results for the test data set are shown in
Table 6. The models correspond to (1) SVM (support vector machines); (2) MLP (multilayer
perceptron), whose hidden layer size is 390 neurons; (3) LSTM with a setting of 128 neurons
as its memory unit; and (4) CNN with 3 hidden layers composed of 64, 32, and 4 filters and
common size of 3 × 3.

Table 6. Metrics comparison among different models.

Model ACC (%) SS (%) CU (%) G-Mean (%)

SVM 91.80 95.44 91.80 93.60
MLP 93.87 96.07 93.87 94.96

LSTM 95.73 96.94 95.73 96.33
CNN 96.47 97.34 96.46 96.90

RCNN 98.13 98.33 98.07 98.20

It can be observed from Table 6 that the traditional ML methods, SVM and MLP,
have the lowest performance metrics, with values between 91% and 94%. Deep learning
methods such as LSTM and CNN can significantly improve these metrics. The DL methods
show a performance increase of at least 1.37% in ACC and G-mean, where CNN is the
singular DL method that presents the best performance. However, although LSTM and
CNN show evidence of great performance, their metrics are lower when a hybrid DL model
that combines the capabilities of extracting temporal and spatial features, such as the RCNN
model, is implemented. The performance metric results obtained from the RCNN are much
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better than for the ML and DL methods, with a significant increase of 1.3% in G-mean,
proving the advantage of combining singular DL capabilities from CNN and LSTM.

Additionally, the RCNN model training process’s efficiency was compared with the
other three deep learning models based on neural networks (MLP, LSTM, and CNN).
Figure 11 shows the validation curves during the training epochs.
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It can be observed in Figure 11 that the RCNN loss minimization is the smallest
compared to the other models and the RCNN also presents a faster convergence rate with a
smaller number of epochs. Therefore, the RCNN model, in addition to providing excellent
performance metrics, involves a training process that is more efficient compared to the
other learning models based on neural networks.

5.4. Robustness Analysis
5.4.1. Measurement Loss

The RCNN performance results are based on the assumption that measurements from
all buses are always available. However, some measurements may be missing in practice due
to measurement loss, delay, or communication loss. In this sense, the RCNN performance is
analyzed while considering the unavailability of measurements for different buses.

As there may be information redundancy in the measurements from all system buses,
the measurement from one or more missing buses can be estimated based on other avail-
able information, for example, by state estimation. In order to simplify and accelerate the
calculations when the model is applied in real-time, in this work, the missing measurement
of any bus is calculated simply through the average value of the adjacent buses’ measure-
ments. Although this calculation may seem inaccurate, tests have shown that a model
trained with complete data can tolerate this error and achieve great performance.

In this sense, for all P-1 loss scenarios (if the voltage phasor of any one bus is not
available), in the test data set, the missing measurements of each bus are calculated as the
average values of the adjacent buses. Then, the RCNN model is evaluated with the modified
data and the performance results can be observed in Figure 12 through the representative
metric G-mean.

As can be observed in Figure 12, the RCNN performance is greater than 96% in any
case of loss of measurements (P-1). In addition, it can be noted that there is a particular
decrease in performance when a measurement loss is reported for buses 19, 20, 23, 24, and
28, where some MI are located, and for buses 33 to 39, where some synchronous generators
are located. Therefore, it can be affirmed that the measurements for the motor load and
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generation buses are of fundamental importance to achieve great performance in RCNN
classification tasks.

This approach could also be used when there is a greater measurement loss. In this
case, it is shown that the RCNN model under P-1 loss scenarios can yield great performance
simply by using the average values of the adjacent buses for the missing information. A slight
decrease in performance demonstrates the excellent robustness against the measurement loss
in the STSS assessment.
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5.4.2. Noise

Once the model is applied in real-time, the input damage problem led by load fluctua-
tion or poor measurement must be considered. In this sense, the signal/noise ratio (SNR)
is used in the RCNN input data.

When the SNR has small values, it means that there is a high distortion of the signal.
Thus, the RCNN performance under different SNR values was evaluated using the test data
set. Table 7 summarizes the performance results obtained under these distortion conditions
for the model input data.

Table 7. RCNN metrics under noise conditions.

Noise Conditions ACC SS CU G-Mean

Ideal 98.13 98.33 98.07 98.20

SNR (dB)

40 97.84 97.94 97.68 97.81

30 97.15 97.35 97.09 97.22

20 96.73 96.86 96.54 96.70

As can be observed in Table 7, the metrics present a slight decrease when the SNR has
large values, including 40 dB. On the contrary, when it is assumed that the SNR = 20 dB,
the metrics CU and G-mean decrease by around 1.5%. Therefore, the model demonstrates
competitive performance under large noise interference. It is worth mentioning that the
SNR values analyzed are fairly demanding, since the noise levels recorded by PMU using
its different measurement signals are much lower, around 70–80 dB, which means that
despite considering extreme noise conditions in all PMU measurement signals, the RCNN
model is capable of great classification performance.
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5.5. Sensibity Analysis

The RCNN model was developed using input data under different conditions, such
as a certain time window and data from all power system buses. Sensitivity analysis was
performed when the RCNN was trained under different conditions on its input data in
order to verify that the established conditions result in the best performance of the model.

5.5.1. Time-Window Length

The time window (W) was established based on the latencies involved in execut-
ing automatic control actions and considering the average assessment delay required by
learning models. In this sense, W was established as 140 ms, a time that includes fault
duration, where the performance results were excellent at around 98%. However, to verify
that the established time-window length could achieve the highest performance metrics,
systematic training tests with different values of time-window length were performed.
The tests included the following values: 100 ms (11 samples considering only t f ), 110 ms
(12 samples), 120 ms (13 samples), 130 ms (14 samples), and 140 ms (15 samples, which
was the time window initially set). Table 8 shows the performance metrics results with the
mentioned changes in time-window length.

Table 8. Metrics comparison among different time-window lengths.

W (Samples Number) ACC (%) SS (%) CU (%) G-Mean (%)

100 ms (11) 95.34 95.23 95.44 95.34
110 ms (12) 95.80 95.70 96.84 96.27
120 ms (13) 96.27 96.17 97.31 96.74
130 ms (14) 97.42 97.31 98.47 97.89
140 ms (15) 98.13 98.33 98.07 98.20

As shown in Table 8, as the time-window length increases, the performance metrics
tend to increase, especially when the time-window length is greater than the fault time.
The highest performance metrics, which exceed 97%, have a window length of 130 ms and
140 ms. Although a window length of 130 ms provides more time for emergency control
action execution, the 140 ms window is preferred, since this time also allows the execution
of control actions and additionally presents the best performance over all other cases.

The results also show that the minimum performance obtained is around 95% in all
metrics, i.e., under a data window with only the fault time, the RCNN model has competitive
performance. In addition, this model based on deep learning does not require information
about the contingency (type, location, and magnitude) or the system operation state. Therefore,
it is evident that the RCNN single application, even with the worst conditions in the input
data set during the training process, is superior and has significant advantages.

5.5.2. Input Data Location

The RCNN model was developed assuming that voltage phasor measurement data
for all system buses are always available; however, systems generally do not have all
measurements available in practice. In this sense, the RCNN is trained with only data on
generation and motor load buses, in which the short-term instability mechanisms are more
closely reflected.

In this context, as the test system has 10 generation buses and 6 IM load buses, instead
of considering 39 buses for the input tensor dimension setting, only 16 generation and load
buses are considered, which results in a dimension tensor of (U, θ, ω) ∈ R15×16×2 in each
contingency. Additionally, tests are also performed when there are only measurements on
generation buses with a dimension tensor of (U, θ, ω) ∈ R15×10×2, and measurements on IM
load buses with a dimension tensor of (U, θ, ω) ∈ R15×6×2 available. Table 9 summarizes
the performance results for the test data set.
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Table 9. RCNN performance metrics with measurements of generation and/or motor load buses.

Measurements ACC SS CU G-Mean

Total (39 B) 98.13 98.33 98.07 98.20
GS-MI (16 B) 97.38 95.93 98.94 97.42

GS (10 B) 91.57 89.47 93.94 91.68
MI (6 B) 93.46 92.63 94.03 93.33

As can be observed in Table 9, when the RCNN is trained only with generation
and motor load buses, the metrics performance decreases by a small percentage of 0.8%
compared to the model trained using the total measurements. Therefore, the importance of
the bus data located in elements associated with the types of stability under study, i.e., SG
and IM, is evident.

However, when the model is trained only with generation buses or IM load buses, the
model performance noticeably decreases by around 5–7%.

Therefore, when a power system has limited measurements, it is recommended that
the available PMU is found in generation and dynamic load buses, where the short-term
stability problems are directly reflected. Then, excellent results can be achieved following
the training of the learning model with these data and the STSS prediction.

5.6. Real-Time Application

The RCNN real-time application requires PMU information to be pre-processed, meaning
that it is organized and normalized, so that the trained RCNN model can classify the STSS.
Figure 13 shows the total timeline required for RCNN real-time application, from fault occur-
rence to STSS classification. It can be observed in this figure that the delay time is 343.7 ms,
which considers the selected time-window length (140 ms), the computational processing
time (3.7 ms), and the PMU data acquisition, together with the system communication delay
(200 ms). This time, which includes the fault duration, is quite fast and ensures emergency
control actions have the time to mitigate instability cases. This is demonstrated in Figure 14,
where an unstable case and the real-time model’s delay are shown. Time (1) is the total
delay of 343.7 ms, and time (2) is the time remaining between the classification result and the
collapse, where an automatic control scheme has the necessary time to execute an emergency
control action and prevent instability propagation in the system.

Energies 2022, 15, x FOR PEER REVIEW 21 of 24 
 

 

measurements on IM load buses with a dimension tensor of (𝑈, 𝜃, 𝜔) ∈ ℝ15×6×2 available. 

Table 9 summarizes the performance results for the test data set. 

Table 9. RCNN performance metrics with measurements of generation and/or motor load buses. 

Measurements ACC SS CU G-Mean 

Total (39 B) 98.13 98.33 98.07 98.20 

GS-MI (16 B) 97.38 95.93 98.94 97.42 

GS (10 B) 91.57 89.47 93.94 91.68 

MI (6 B) 93.46 92.63 94.03 93.33 

As can be observed in Table 9, when the RCNN is trained only with generation and 

motor load buses, the metrics performance decreases by a small percentage of 0.8% com-

pared to the model trained using the total measurements. Therefore, the importance of 

the bus data located in elements associated with the types of stability under study, i.e., SG 

and IM, is evident. 

However, when the model is trained only with generation buses or IM load buses, 

the model performance noticeably decreases by around 5–7%. 

Therefore, when a power system has limited measurements, it is recommended that 

the available PMU is found in generation and dynamic load buses, where the short-term 

stability problems are directly reflected. Then, excellent results can be achieved following 

the training of the learning model with these data and the STSS prediction. 

5.6. Real-Time Application 

The RCNN real-time application requires PMU information to be pre-processed, 

meaning that it is organized and normalized, so that the trained RCNN model can classify 

the STSS. Figure 13 shows the total timeline required for RCNN real-time application, 

from fault occurrence to STSS classification. It can be observed in this figure that the delay 

time is 343.7 ms, which considers the selected time-window length (140 ms), the compu-

tational processing time (3.7 ms), and the PMU data acquisition, together with the system 

communication delay (200 ms). This time, which includes the fault duration, is quite fast 

and ensures emergency control actions have the time to mitigate instability cases. This is 

demonstrated in Figure 14, where an unstable case and the real-time model’s delay are 

shown. Time (1) is the total delay of 343.7 ms, and time (2) is the time remaining between 

the classification result and the collapse, where an automatic control scheme has the nec-

essary time to execute an emergency control action and prevent instability propagation in 

the system. 

0                      100                     200                     300                    t (ms)       

PMU data acquisition and 

transmission

RCNN window lenght

Data pre-processing

RCNN assessment

Fault

140 ms

200 ms

100 ms

0.2 ms

3.5 ms

Total time delay: 343.7 ms  

Figure 13. Time delay summary for RCNN real-time application. Figure 13. Time delay summary for RCNN real-time application.



Energies 2022, 15, 9240 22 of 24
Energies 2022, 15, x FOR PEER REVIEW 22 of 24 
 

 

(1) (2)

 

Figure 14. RCNN time delay in real-time for an unstable study case. (1) Total delay time assessment. 

(2) Remaining time between assessment result and unstable condition. 

5.7. Discussion Results 

The proposed methodology based on the combination of deep learning methods has 

advantages not only in the joint assessment of TS and STVS with a high-performance de-

gree above 98%, but also in the predictive assessment that can take place before instability 

occurs. These aspects are of fundamental importance for automatic control actions, since 

they are required to be effective through their orientation to the main driving force of 

instability and executed in time before the development of instability, thus being able to 

avoid the instability propagation in the electrical system. 

On the other hand, throughout this work, the methodology developed for the joint 

assessment of TS and STVS has been implemented in an electrical system composed only 

of synchronous generators as energy sources. However, this does not mean that the meth-

odology presents restrictions for systems with renewable power generation, such as wind 

or solar, since it would only be necessary to obtain a database under the new generation 

conditions with the corresponding STSS labeling. This is the necessary information for 

deep learning RCNN training and its subsequent real-time application. 

6. Conclusions 

This work proposes the joint assessment of transient and short-term voltage stability 

to address the early warning of the short-term stability state (STSS) in stable or unstable 

due to SG out-of-synchronism, or unstable due to IM stalling, based on the RCNN deep 

learning model and WAMS-PMU measurements. The work develops a novel STSS offline 

classification methodology based on analyzing the SG rotor angle trajectories and apply-

ing emergency control actions directed towards the instability mechanism. The classifica-

tion results, together with the time series information of the voltage’s magnitude and an-

gle, allow the deep neural network RCNN training, which is capable of automatically cap-

turing spatial and temporal features of the database and predictively classifying the STSS 

with a high degree of performance when the RCNN is applied in real-time. The proposed 

methodology was implemented in the New England 39-bus system, where a series of 

studies and comparisons with other traditional and deep learning models were exhaust-

ively performed. The results showed that the RCNN performance is at least 2% higher 

than the other learning methods; in addition, it has a competitive performance of over 

97% when the model uses measurement data only from generation and dynamic load 

buses. Likewise, it was demonstrated that the delay time associated with the real-time 

application of the RCNN (343.7 ms, including the fault duration time) allows the guidance 

and execution of effective emergency control actions that prevent system instability de-

velopment. 

Figure 14. RCNN time delay in real-time for an unstable study case. (1) Total delay time assessment.
(2) Remaining time between assessment result and unstable condition.

5.7. Discussion Results

The proposed methodology based on the combination of deep learning methods has
advantages not only in the joint assessment of TS and STVS with a high-performance degree
above 98%, but also in the predictive assessment that can take place before instability occurs.
These aspects are of fundamental importance for automatic control actions, since they are
required to be effective through their orientation to the main driving force of instability
and executed in time before the development of instability, thus being able to avoid the
instability propagation in the electrical system.

On the other hand, throughout this work, the methodology developed for the joint
assessment of TS and STVS has been implemented in an electrical system composed only of
synchronous generators as energy sources. However, this does not mean that the method-
ology presents restrictions for systems with renewable power generation, such as wind
or solar, since it would only be necessary to obtain a database under the new generation
conditions with the corresponding STSS labeling. This is the necessary information for
deep learning RCNN training and its subsequent real-time application.

6. Conclusions

This work proposes the joint assessment of transient and short-term voltage stability
to address the early warning of the short-term stability state (STSS) in stable or unstable
due to SG out-of-synchronism, or unstable due to IM stalling, based on the RCNN deep
learning model and WAMS-PMU measurements. The work develops a novel STSS offline
classification methodology based on analyzing the SG rotor angle trajectories and applying
emergency control actions directed towards the instability mechanism. The classification
results, together with the time series information of the voltage’s magnitude and angle,
allow the deep neural network RCNN training, which is capable of automatically capturing
spatial and temporal features of the database and predictively classifying the STSS with
a high degree of performance when the RCNN is applied in real-time. The proposed
methodology was implemented in the New England 39-bus system, where a series of
studies and comparisons with other traditional and deep learning models were exhaustively
performed. The results showed that the RCNN performance is at least 2% higher than the
other learning methods; in addition, it has a competitive performance of over 97% when
the model uses measurement data only from generation and dynamic load buses. Likewise,
it was demonstrated that the delay time associated with the real-time application of the
RCNN (343.7 ms, including the fault duration time) allows the guidance and execution of
effective emergency control actions that prevent system instability development.
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In future work, research must be directed at diagnosing the system elements that cause
instability after a fault; therefore, it will be possible to develop a control scheme that avoids
instability development with minimal element shedding.
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