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Abstract: Ammonia removal from wastewater was successfully achieved by simultaneous ni-
trification and denitrification (SND) in a double-chamber microbial electrolysis cell (MEC). The
MEC operations at different applied voltages (0.7 to 1.5 V) and initial ammonia concentrations
(30 to 150 mg/L) were conducted in order to evaluate their effects on MEC performance in batch
mode. The maximum nitrification efficiency of 96.8% was obtained in the anode at 1.5 V, followed by
94.11% at 1.0 V and 87.05% at 0.7. At 1.5 V, the initial ammonia concentration considerably affected
the nitrification rate, and the highest nitrification rate constant of 0.1601/h was determined from
a first-order linear regression at 30 mg/L ammonium nitrogen. The overall total nitrogen removal
efficiency was noted to be 85% via the SND in the MEC operated at an initial ammonium concentra-
tion of 50 mg/L and an applied cell voltage of 1.5 V. The MEC operation in continuous mode could
remove ammonia (50 mg/L) in a series of anode and cathode chambers at the nitrogen removal rate
of 170 g-N/m3.d at an HRT of 15. This study suggests that a standalone dual-chamber MEC can
efficiently remove ammonia via the SND process without needing additional organic substrate and
aeration, which makes this system viable for field applications.

Keywords: bioelectrochemical system; microbial electrolysis; nitrification; denitrification; wastewater
treatment

1. Introduction

Nitrogen is one of the essential nutrients in the aquatic ecosystem. However, unwar-
ranted amounts of nitrogen can promote eutrophication by excessive algae growth [1–3].
This can also lead to changes in the aquatic ecosystem, such as depleting dissolved oxygen
(DO) in the water bodies by undergoing nitrification. Significant nitrogen contamination in
the water comes from manure, fertilizers, industrial wastewater, and domestic sewage [4].
In sewage, nitrogen comprises ammonia and organic nitrogen (ex: proteins). Organic
nitrogen is transformed into ammonia nitrogen through proteolysis and hydrolysis by bac-
teria present in sewage. The removal of ammonia nitrogen in water bodies by a biological
process can be attributed to nitrogen assimilation by microbes for their metabolic needs
and alternatively the employment of the nitrification/denitrification process [5]. In the
nitrification process, ammonia and organic nitrogen are converted into nitric and nitrite
nitrogen under specific conditions. Furthermore, nitrate nitrogen is reduced to nitrogen
gas during the denitrification process [6].

However, the conventional biological nitrogen removal process is often limited by the
dependency on organic carbon (C), C/N ratio, additional aeration, and balance of nitrifica-
tion and denitrification microbes [5]. Moreover, conventional wastewater treatment plants
need separate aerobic nitrification and anaerobic denitrification processes for nitrogen
removal [7]. Moreover, in order to derive nitrification, it is essential to pump air externally
to maintain the desired concentration of DO to pursue the nitrification process, which can
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increase operational costs by up to 45% [8]. Therefore, the scientific community is searching
for alternative technologies for pursuing efficient nitrification and denitrification processes.
In this regard, bioelectrochemical systems (BES) seem attractive due to the requirement of
minimal operational energy compared to the wastewater treatment plant and the possibility
of modifying the system for power generation and nitrogen removal [9–11].

Several researchers have pursued nitrogen removal in BES with algae, which can
assimilate the nitrogen for their metabolic needs [12] and use the autotrophic microbes
at the cathode for denitrification [13]. The external aerated nitrification for conversion of
ammonia nitrogen to nitrites/nitrates and further denitrification using biocathodes of BES
was also tested [14]. In BES, denitrification at the biocathode can be pursued using either
heterotrophic or autotrophic microbes. Autotrophic denitrification is advantageous due to
the independence of the organic carbon requirement for nitrogen reduction and the low
biomass generation [15]. In particular, the autotrophic bacteria accept the electron from
a poised cathode either via the mediated transfer (by H2 and enzymes) or via the direct
electron transfer mechanism as discussed in the literature [16–19]. Overall, the operation of
biocathode in BES for denitrification is sustainable for field-scale applications. However,
ammonia nitrogen at higher concentrations in wastewater needs to be handled to achieve
complete nitrogen removal.

It is well known that water electrolysis takes place in MEC with the application of ex-
ternal voltage [20–23], and the generated O2 in this process can be used by aerobic nitrifiers
to convert ammonia to nitrate/nitrite. The anodic effluent with nitrate/nitrite then can be
supplied to the biocathode, where the autotrophic denitrifying bacteria can reduce them
directly to nitrogen gas. In earlier SND applications using MECs, the organic substrate was
used at the anode for the nitrifiers to convert ammonia into nitrate, which limits its applica-
tion only to the removal of ammonia from organic-containing wastewater. Therefore, for the
first time, the possibility of SND from synthetic wastewater was explored without organic
substrate via the simultaneous nitrification and denitrification (SND) in a two-chamber
MEC with an external power supply. The primary operational parameters such as applied
voltage (0.7, 1.0, 1.5 V) and initial ammonium concentrations (30, 50, 150 mg NH4-N/L)
were selected in order to evaluate their effect on the MEC performance for nitrification at
the anode and denitrification of anodic effluent at the cathode. The MEC was also tested in
continuous mode for SND at different hydraulic retention times (HRT) viz. 15, 20, and 25 h
in order to verify this technology for future scale-up applications.

2. Materials and Methods
2.1. Fabrication and Inoculation of MEC for SND

The schematic diagram of the double chamber MEC reactor for SND used in this study
is shown in Figure 1. The MEC reactor was fabricated using polyacrylate sheets, with a total
working volume of 420 mL. The anode and cathode chambers of MEC were separated by a
cation exchange membrane (MI 7000, Membrane International Inc., Ringwood, NJ, USA)
instead of a proton exchange membrane (PEM) due to their high rigidity in the corrosive
environment, versatility, and low-cost. A carbon fiber brush having a projected surface area
of ~50 cm2 (Φ: 4 cm × 4 cm × 10 cm, Guemsung Brush21, Seoul, Republic of Korea) with
stainless-steel wire support was used as an anode and cathode. The anode and cathode
chambers of MEC were inoculated with sewage sludge collected from Suwon Sewage
Treatment Plant (Hwaseong-si, Gyeonggi-do) [24,25]. The collected sludge was stored in
refrigerated conditions at 4 ◦C and was diluted with an anaerobic medium (containing the
desired amount of ammonium nitrogen, 30, 50, and 150 NH4-N mg/L, 0.3 g/L KH2PO4,
1.0 g/L Na2HPO4·12H2O, 0.5 g/L NaCl, 2.0 g/L NaHCO3, 0.1 g/L MgSO4·7H2O, 0.01 g/L
CaCl2, and 0.2–0.4 g/L NH4Cl, 1ml/L vitamins, and 10 mL/L trace metal solution) in a
volume ratio of 50% (v/v). The necessary nutrients for the growth of microbes are included
in ammonium solution, as presented in earlier studies [26,27]. The initial properties of
sludge in terms of pH, mixed liquor volatile suspended solids, COD, NH4-N, and DO were
7.2, 1130 mg/L, 13,480 mg/L, 16 mg/L, and 3.2 mg/L, respectively. After inoculation,
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MEC was operated for one month to develop nitrifiers at the anode and denitrifiers at the
cathode. The sludge properties such as chemical oxygen demand (COD), pH, total solids,
volatile suspended solids, total ammoniacal nitrogen, etc. were analyzed by the standard
methods presented in APHA [28]. Prior to the closing of MEC, the anode and cathode were
flushed with argon gas to sustain anaerobic conditions.
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Figure 1. The schematic view (A) and photograph (B) of double chamber microbial electrolysis
cell (MEC) used in this study for pursuing simultaneous nitrification and denitrification (SND) to
remove nitrogen.

2.2. Operation of MEC for SND

The anode and the cathode of MEC were connected to the corresponding voltage
terminal of a DC power supply, as presented in earlier studies [29]. The applied potential
was regulated in the range 0.7 V, 1.0 V, and 1.5 V to evaluate the SND performance of
MECs. DO availability in the anode chamber is crucial for the nitrification process. Thus,
prior to the biotic tests, control operations were conducted to estimate the DO availability
at the anode at each applied potential. The DO concentrations at different time intervals
were measured using an ORION STAR probe (Thermo Scientific, Waltham, MA, USA).
After ensuring stable DO concentrations at different impose potentials, the anodic chamber
was inoculated with the enriched nitrifiers at an initial ammonium nitrogen of 50 mg/L
and an applied voltage of 0.7 V across the electrode. After noting a stable ammonium
nitrogen removal, the applied voltages were varied in the range of 0.7 V, 1.0 V, and 1.5 V,
and the optimized voltage based on the ammonia nitrogen removal was selected for the
next experiment. Later, the effect of different ammonia concentrations ranging from 30, 50,
and 150 NH4-N mg/L was tested under optimized voltage conditions, which in this case
was noted to be 1.5 V. The MECs were operated in batch mode with a batch cycle time of
100 h. For denitrification studies, the anode chamber was initially filled with the influent
containing~50 mg/L ammonia nitrogen concentration, and after achieving a considerable
conversion of ammonia nitrogen to nitrate-nitrogen, the effluent was taken out and treated
with 1.5 mg/L of L-Cysteine to mitigate the DO. Next, the nitrate-rich effluent without
further addition of supplements was added to the cathode chamber for denitrification.
Additionally, the solutions at the anode and cathode inlet were purged with argon gas to
minimize the interference of external oxygen.
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After finishing the batch mode operations, the MEC was operated under continuous
mode using a peristaltic pump. The initial ammonia-nitrogen concentration and the applied
voltage across the electrodes were fixed at 50 mg/L and 1.5 V, respectively. The performance
of MECs was evaluated at different hydraulic retention time of 15 h, 20 h, and 25 h by
controlling the flow rate function in the pump. In all the operational conditions (batch or
continuous mode), the MECs were operated in a temperature-controlled environment at
35 ◦C in an incubator. Both the anode and cathode chambers were stirred continuously
at 120 rpm.

2.3. Analysis

Nitrogen components in MEC such as ammonia, nitrate, and nitrite, were analyzed
by using HS kit (HS-NH3(N)-L kit, HS-NO3(N)-H kit, HS-NO2(N)-L kit, TN(CA)-L kit,
Humas, Republic of Korea), as per the protocols provided by the company. Before the
measurement, the liquid samples from both chambers were carefully collected at regular
time intervals and filtered using a syringe filter (0.2 µm, Sartorius stedim, Göttingen, Ger-
many). The filtrates were properly diluted to match the concentration range and mixed
with the reagents provided with kits. Finally, the concentrations were measured the in a
spectrophotometer (OPTIZEN™ POP UV-VIS, Daejeon, Republic of Korea) programmed
with pre-defined protocols and calibration curves for different ammoniacal nitrogen con-
centration measurements. The DO concentration in the anode chamber was measured
using a DO probe (Orion 3 star, Thermo Scientific, Waltham, MA, USA) fixed with the
anode chamber. A pH probe with a datalogger (pH-200L, ISTEK, Seoul, Republic of Korea)
was used to measure the influent and effluent pH.

3. Results and Discussion
3.1. Oxygen Generation in the Anode Chamber at Different Applied Voltages

The concentration of dissolved oxygen (DO) needs to be maintained at a certain level
for biological ammonia conversion to nitrate by the nitrification process [30]. For biological
nitrification, 4.57 g of oxygen is theoretically required for the conversion of one gram of
ammonia. Stenstrom and podusko reported a minimum threshold of DO concentration
as 0.5 mg/L for the nitrification process although, at this DO, the nitrification rate was
limited [31]. They suggested a recommended DO range of 2~4 mg/L to achieve a moderate
rate of nitrification. It is also known that the nitrifiers are primarily distributed in activated
sludge floc particles, and the DO concentration of flocs is lower than the surrounding
liquid [32]. Therefore, maintaining consistent DO concentration throughout the reactor
operation is essential to achieve a successful nitrification process.

The DO concentrations were noted to increase with an increase in the applied voltage
between the anode and cathode due to a high rate of water electrolysis at increased applied
voltages (Figure 2). With the time of operation, the DO concentration increased in all the
conditions and finally reached to 2.6, 3.0, and 3.1 mg/L at 0.7 V, 1.0 V, and 1.5 V, respectively,
after 70 h of the test. This increasing trend of DO might continue until the saturation limit
is achieved, which is about 8 mg/L at standard temperature and pressure conditions. The
lower limit of recommended DO of 2 mg/L for nitrification was obtained after around 10 h
for 1.5 V, 20 h for 1.0 V, and 50 h for 0.7 V [33]. Thus, at all applied voltage conditions, the
DO concentrations were higher than 2 mg/L at some point, which is sufficient to pursue a
nitrification reaction. With applied voltages of 0.7 V, 1.0 V, and 1.5 V, the DO generation
rate was noted to be 0.26, 0.52, and 0.65 mg/l/h, respectively. However, further increase in
applied voltage to 2.0 V, the corrosion of stainless-steel wire was observed, which caused
the failure of nitrification.
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Figure 2. The variation in dissolved oxygen (DO) concentrations with respect to the time noted with
change in applied voltage.

3.2. Nitrification at the Anode of MEC

The possible reaction at the anode is the water electrolysis which generates oxygen,
proton, and electrons and the conversion of ammonia to nitrite/nitrate by nitrifiers by
consuming the oxygen (Table 1). In order to develop nitrifiers at the anode of MEC,
the anode chamber was supplemented with sewage sludge as an inoculum along with
50 mg/L of ammonium nitrogen and 0.7 V of applied voltage (Figure 3A). After one month
of acclimatization, stable removal of ammonium nitrogen was noted. By utilizing the
DO generated by water electrolysis, the nitrifiers catalyzed the decrease in ammonium-
nitrogen concentrations with a parallel increase in nitrate-nitrogen. The initial 55.8 mg/L
of ammonium nitrogen was decreased to 0.7 mg/L, with a simultaneous increase in nitrate-
nitrogen concentrations to 52.1 mg/L. By the end of the operation (50 h), and 93.3%
conversion of ammonium nitrogen to nitrate nitrogen was observed. A concentration-
based diffusion of ammonia nitrogen and nitrate nitrogen was noted from the anode to
the cathode. On average, 5 mg/L of total nitrogen (3.5 mg/L of ammonium nitrogen
and 1.5 mg/L of nitrate-nitrogen) was diffused from anode to cathode (Figure 3B). No
formations of nitrite nitrogen were recorded. At the same time, the DO concentrations have
increased from 0 to 2.1 mg/L, with a generation rate of 0.19 mg/L/h. With the increase
in the operation time, a decrease in pH is also noted due to water splitting (Figure 3C).
Taken together, the variations in DO, with a change in ammonium and nitrate, suggest the
effective nitrification process.

Table 1. The possible redox reactions involved in anode and cathode of MEC.

Anode
(water electrolysis)

10H2O + 10e− → 5H2 + 10 OH−

5H2O→ 2.5O2 + 10H+ + 10e−

Anode
(Nitrification)

NH4
+ + 3/2O2 → NO2

− + 2H+ + H2O

NO2
−+ 1/2O2 →NO3

−

Cathode
(Denitrification)

2NO3
− + 2H2 → 2NO2

− + 2H2O

2NO2
− + 2H2 → N2O− + H2O + 2OH−

N2O + H2 → N2 + H2O
NO3

− + 6H+ + 5e− → 1/2N2 +3H2O
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(B) of MEC by using 50 mg/L of ammonium nitrogen and 0.7 V. The total nitrogen (black squares),
ammonium nitrogen (red circles), nitrate nitrogen (green up triangle), and nitrite nitrogen (blue down
triangle). Changes in pH and DO (C) were noted at the anode of MEC during the nitrification process
at an applied voltage of 0.7 V.

Furthermore, the variation in applied voltage was tested on the nitrification process
by maintaining similar ammonium nitrogen concentrations (50 mg/L) (Figure 4). With
an increase in applied voltage, a higher conversion of ammonium nitrogen was noted
due to the availability of higher DO (Figure 4A–C). A similar phenomenon was noted in
other studies of MEC; in their study, the increase in applied current (0 to 0.3 mA/cm2)
has led to an increase in DO concentration (0 to 3 mg/L), thereby enhancing nitrifica-
tion rate by almost 3-times from ~0.11 g-N/m2.h to ~0.34 g-N/m2.h [34]. By applying
0.7 V, 1.0 V, and 1.5 V sequentially on MEC, the nitrification percentages were 87.05%,
94.11%, and 96.80%, respectively. The applied voltage has effectively contributed to the
increase of the nitrification rate. By the end of the operation (50 h), all the ammonium
nitrogen was nitrified to nitrate at all applied voltage conditions with a high nitrification
rate of with corresponding removal rate of 0.95 (57 g/m3.d), 1 (63 g/m3.d) and 1 g-N/m2.h
(62.6 g/m3.d) at 0.7, 1.0 and 1.5V, respectively. In some earlier studies, for instance, Watan-
abe et al., reported ~99% ammonia removal efficiency with a removal rate of 0.34 g-N/m2.h
in a MEC using an applied current of 0.1 mA/cm2 [34]. Zhan et al. (2014) reported an
ammonia removal rate of 60 g/m3.d in a single chamber MEC with an anodic imposed
potential of +800 mV (vs. SHE) [35]. The same group note a relatively lower rate of 25 and
37 g/m3.d in a single chamber MEC at a lower anodic impose potential of +209 mV and
+279 mV (vs. SHE), respectively [5]. Moreover, the ammonia removal efficiency in this
study was noted to be higher than the rate of 96.6%, 66.6 and 96.8% obtained for the
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microbial fuel cells (MFC) using activated carbon, zinc, and carbon black as anode mate-
rials, respectively [36]. However, MFCs are generally utilized for energy extraction from
wastewater in contrast to MECs in this study, which utilized electricity for SND. Therefore,
the overall nitrification efficiency based on the energy calculations can be significantly
different in both systems. At 20 h, with 0.7 V, 1.0 V, and 1.5 V, the effluent ammonium
nitrogen concentrations were 20.4, 13.5, and 10.9 mg/L, respectively. Overall, the total
nitrogen concentration was found to be similar. By the increase in applied voltage, no
nitrite nitrogen generations were noted. This suggests that enriched denitrifiers are efficient
in converting ammonium to nitrate. Overall, the voltage and the nitrification rate showed a
positive correlation.
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Moreover, no nitrification was noted in control experiments without any applied
voltage (Data not shown), thereby suggesting that nitrifiers at the anode efficiently utilized
the DO, generated from electrolysis. In general, even at high DO concentrations in the
bulk liquid, there are anoxic environments in the deeper region of the aerobic biofilm
due to improper oxygen diffusion, thereby limiting the nitrification rate [31]. The oxygen
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in the MEC can be generated from both sides of the biofilm, namely the anode surface
and the bulk solution. This could minimize the anoxic biofilm zone and increase the
rate of nitrification. Additionally, the ammonium nitrogen removal kinetics during the
nitrifications were pursued and exhibited in Figure 4D. As pointed out in earlier studies,
Michaelis–Menten kinetics were implemented to pursue the kinetic evaluation [30]. The
ammonium nitrogen removal at the anode of MEC has followed the first-order kinetics.
With regard to the linear equations of ammonium nitrogen removal with respect to time
and their slopes, the computed constants with the application of 0.7 V, 1.0V, and 1.5 V,
are noted to be 0.044, 0.055, and 0.072 L/h, respectively. Moreover, at all applied voltage
conditions, the regression coefficients (R2) were in a range of 0.98~0.99. Thereby suggesting
a good fit between the experimental data and computed model kinetics.

3.3. Influence of Ammonium Nitrogen Loading on Nitrification

As the application of 1.5 V has achieved higher DO and nitrification rates; there-
fore, further experiments were pursued with an applied voltage of 1.5 V. Considering the
high ammonia concentration in a wide range of wastewater, for example, 429 mg/L for
leachate [37], 158 mg/L for poultry slaughterhouse wastewater [38], and 61 mg/L for tan-
nery wastewater [39], it is necessary to test a wide range of ammonia concentration in MECs
for their field-scale applications. Maintaining the same applied voltage, with variations in
initial ammonium nitrogen concentrations (30, 50, and 150 mg/L), has exhibited different
nitrification rates. By using low concentrations of ammonium nitrogen (30 mg/L), complete
removal was achieved within a short duration of 20h. The initial 30 mg/L was reduced to
1.5 mg/L. With further increase in influent loading to 50 mg/L and 150 mg/L, the total
removal was observed at 50 h and 140 h, with an effluent concentration of 1.8 mg/L and
7.2 mg/L, respectively; this suggests that higher influent ammonium nitrogen concen-
trations require an apparent more extensive operational time. (Figure 5). The increase
in loading rates of ammonium nitrogen has also led to a decrease in nitrification rates.
This is possible because of the lower DO availability for the nitrifiers at a higher ammonia
concentration. In an earlier study, the decreasing trend of nitrification rate in a conventional
nitrification reactor was reported with an increase in the initial concentrations, for example,
an ammonia removal rate was noted to 46 mg-N/L.d at an initial ammonia concentra-
tion of 50 mg/L, which decreased to 38 mg-N/L.d at 500 mg/L initial ammonia concen-
tration [40]. The nitrification rates of ammonium nitrogen during the initial operation
(20 h) with 150 mg/L were noted to be 4.011 mg/L/h (Figure 5A). This was followed by
50 and 150 mg/L of ammonium loading with a nitrification rate of 1.305 and 1.635 mg/L/h,
respectively (Figure 5B,C).

The first-order kinetics were implemented on ammonium nitrogen removal with
variation in loading at an applied voltage of 1.5 V (Figure 5D). The calculated constants
from using 30, 50, and 150 mg/L of ammonium nitrogen in MEC were 0.160, 0.072, and
0.026 L/h, respectively. The rate constants obtained in this study were noted as slightly
matching the reported value of 0.06 1/h obtained for the conventional nitrification process
with an initial ammonia nitrogen concentration in the range of 200–400 mg/L [41]. However,
the nitrification reaction at a higher initial ammonia nitrogen concentration (150 mg/L)
was noted as kinetically slow as compared to the other loadings. This is possible because of
the lower DO availability for the nitrifiers at a higher ammonia concentration. In an earlier
study, the decreasing trend of nitrification rate in a conventional nitrification reactor was
reported with an increase in the initial concentrations, for example, an ammonia removal
rate was noted to 46 mg-N/L.d at an initial ammonia concentration of 50 mg/L, which
decreased to 38 mg-N/L.d at 500 mg/L initial ammonia concentration [40]. Similar to the
difference in applied voltage, no change in byproduct formations was varied with a change
in ammonium nitrogen loading. In contradiction to earlier studies, no formation of nitrate-
nitrogen was noted, which can be due to the selective transformation of nitrifiers [34].
However, diffusion in total nitrogen was noted from anode to cathode with the increase in
influent concentrations of ammonium nitrogen (Figure 5E). It was noted that about 11.2,
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10.4, and 14.3% diffusion of total nitrogen from anode to cathode was noted when the
influent loading concentrations were 30, 50, 150 mg/L, respectively. Thereby suggesting
a requirement for the ion-selective membrane that can mitigate nitrogen diffusion or
operating in continuous mode to minimize the diffusion.
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3.4. Denitrification at Cathode Using Nitrified Anode Solution

Denitrification at the biocathode of MEC can be achieved by bioelectrochemical re-
duction reactions via direct electron transfer or indirect electron transfer with hydrogen.
(Table 1) [42–44]. The nitrified solutions from the anode of MEC containing 55 mg/L of
nitrate-nitrogen are submitted to the cathode to pursue denitrification. At the anode, the
nitrification reaction was pursued 100 h with an applied voltage of 1.5 V. Prior to submit-
ting anode effluents to the cathode, the solutions rich in nitrate-nitrogen were sparged
with argon gas to remove DO as the presence of DO can limit the denitrification rate.
Additionally, L.Cystein was added to anode effluents to mitigate/minimize the DO at
1.5 V [5]. The typical variation in nitrate-nitrogen is presented in Figure 6. By the end of
the operation (170 h), the 55 mg/L of nitrate-nitrogen was decreased to 4.2 mg/L, thereby
achieving an SND process in MEC. No change in nitrate-nitrogen concentrations was noted
in the control experiments without an applied voltage (Data not shown). This suggests
that denitrification is dependent on the applied voltage, as it is presumed that denitrifiers
require an electron source to convert nitrate to nitrogen [44]. The final concentration of
total nitrogen, nitrate, and ammonium nitrogen noted at the cathode after denitrification
was 3, 2.5, and 0.3 mg/L, respectively. Therefore, the MEC demonstrated comparable
denitrification rate of 0.25 g-N/m2.d (16.4 g-N/m3.d) and an overall total nitrogen re-
moval rate (15.9 g-N/m3.d) to the reported values of 18 g-N/m3.d (initial nitrate-nitrogen
~20 mg/L) in a conventional reactor [45] and higher than the value of 8.2 g-N/m3.d in a
single chamber MEC operated at an applied voltage of 0.4 V [5]. Moreover, the obtained
ammonia removal rate without any organic substrate in this study was noted to be compa-
rable to the recent studies conducted in microbial fuel cells with organic substrates (Table 2).
Throughout the denitrification process, the concentrations of nitrite nitrogen were less than
2.5 mg/L. Additionally, the diffusion of nitrogen ions from the cathode to the anode is also
evaluated. The total nitrogen concentrations noted at the anode chamber due to diffusion
were less than 2.9 mg/L (Figure 6B). Overall, 44.5 mg/L or 80.9% of total nitrogen was
converted to nitrogen gas. Here the residual amount of nitrate-nitrogen and nitrite nitrogen
in catholyte can be due to the DO diffusion from anode to cathode (Figure 6C), thus limiting
the denitrification. The earlier studies noticed a reduction in the denitrification rate by 85%,
with a DO concentration of more than 2 mg/L [34]. A similar phenomenon was noted in
other studies of the single-chamber SND process due to increased DO concentration [44].

Table 2. The simultaneous nitrification and denitrification in BESs.

BES Type
Volume, mL *

Main Substrate Operating
Conditions Microbes

NH4-N rem.
Rate (g-N/m3.d)

NH4-N rem.
eff. (%) Ref.

Anode Cathode

Dual chamber MFC 336 336
0.393 g/L

CH3COONa and
0.407 g/L NH4Cl

Continuous,
6.86 h HRT

Mixed
bacteria

enrichment
104 94 [46]

Dual chamber MFC 4.1 L 4.1 L

decomposed
cyanobacteria

solution of
800–1000 mg/L

COD and
0.06–0.1 g/L

NH4-N

Batch mode
Mixed

bacteria
enrichment

64 [47]

Triple chamber with
multianode design 2.8 L 2.8 L

1 g/L
CH3COONa and
0.06 g/L NH4−N

sequencing
batch, 3-day

HRT

Mixed
bacteria 12 78 [48]

Triple chamber with
multicathode design 120 120

0.55 g/L
CH3COONa and
0.05 g/L NH4-N

Batch mode,
6-day

Mixed
bacteria 6.4 96 [49]

Single chamber
air-cathode MFC 150

1.2 g/L
CH3COONa and
0.25 g/L NH4Cl

Continuous
mode, 2.5 h

HRT

Mixed
bacteria 620 94 [50]
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Table 2. Cont.

BES Type
Volume, mL *

Main Substrate Operating
Conditions Microbes

NH4-N rem.
Rate (g-N/m3.d)

NH4-N rem.
eff. (%) Ref.

Anode Cathode

Dual chamber MFC 250 250
0.64 g/L

CH3COONa and
0.23 g/L NH4Cl

Batch mode,
4-day

Mixed
bacteria

enrichment
55.2 ~100 [51]

Dual Chamber MEC 420 420 0.030–0.15 g/L
NH4-N

Batch mode at
1.5 V applied
potential, 50 h

Mixed
bacteria

enrichment
15 85 This

study

Dual Chamber MEC 30–150 mg/L
NH4-N

Continuous
mode at 1.5 V

applied
voltage, 15 h

HRT

Mixed
bacteria

enrichment
170 81 This

study

* Stated otherwise, MFC-Microbial Fuel Cell, MEC-Microbial Electrolysis Cell.

3.5. MEC Operation in Continuous Mode for Ammonia Removal

The MEC was further operated in the continuous mode at different HRT of 15, 20,
and 25 h with an initial ammonia nitrogen concentration of 50 mg/L and applied voltage
of 1.5 V across the electrodes. Under this condition, the SND performance of MEC was
evaluated for 200 h. The ammonia and nitrate profiles at different HRT in the anode and
cathode chambers are shown in the Figure 7A,B, respectively. In each HRT, the ammonia-
nitrogen was less for the first few hours (~50 h) and then became stable at an average
removal efficiency of 81%, 95%, and 97.8%, respectively, at an HRT of 15 h, 20 h, and
25 h (Figure 7A). The ammonia oxidation was significantly lower at a lower HRT possibly
because of the high flow rate, which limited the nitrification process as also notice in
conventional nitrification reactors [38]. For example, Moulick et al., reported a significant
decrease in ammonia nitrogen removal from 68% to 28% when the influent flow rate was
increased from 3 to 10.5 L/min [38]. Similarly, average nitrate accumulation in the anode at
the lower HRT was found to be the least (42.8 mg/L) followed by the HRT 20 (52.3 mg/L)
and HRT 25 (53.5 mg/L).

The cathode chamber initially received a low concentration of nitrate-nitrogen at
all the HRTs due to low nitrification at the anode which gradually increased in the first
few hours and then decreased via the denitrification process (Figure 7B). However, the
nitrate-nitrogen concentration became stable to an average value of 10.5 mg/L, 3.8 mg/L,
and 1.6 mg/L at 15 h, 20 h, and 25 h, respectively. Similar to ammonia oxidation, the
denitrification rate was also noted higher at a high HRT possibly due to the low flow
rate, which increased the microbe substrate contact time [39]. However, the overall total
nitrogen removal (combining SND) was noted to be higher in HRT 15 at 170 g-N/m3.d as
compared to what was obtained for HRT 20 (149 g-N/m3.d) and HRT 25 (122.9 g-N/m3.d).
This removal rate at the continuous mode of operation was noted to be higher than the
obtained values at the batch mode of operations in this study. This implies that a continuous
mode of operation for ammonia removal from wastewater is more efficient than the batch
mode of operation. Moreover, the MEC does not require external aeration for nitrification,
which makes this system energy efficient. Thus, the apparent ammonia removal cost in
MECs is expected to be significantly low as compared to conventional treatment systems.
However, additional research on the life-cycle cost analysis to select the best design and
operational conditions for SND in MEC is highly warranted for a better understanding of
MEC economics [52,53]. Therefore, this novel MEC process utilized in this study is highly
feasible for scale-up applications for SND, especially, from wastewater with relatively low
COD concentration.
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Figure 7. The nitrification and denitrification at anode and cathode, respectively, under continuous
mode at different HRT with an applied voltage of 1.5 V. The ammonia-nitrogen removal and nitrate-
nitrogen generation at the anode (A) and ammonia and nitrate-nitrogen profile at the cathode (B).
The pink, green, and blue lines represent ammonia nitrogen at HRT of 15, 20, and 25, respectively, and
the black, red, and light-blue lines represent nitrate-nitrogen at HRT of 15, 20, and 25, respectively.
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4. Conclusions

A dual chamber MEC operated under an imposed voltage could efficiently remove am-
monia via the SND process from synthetic wastewater without having an organic substrate
for the microbes at the anode and the cathode. The increased nitrification in batch mode
was noted when the applied voltage was increased from 0.7 V to 1.5 V across the electrodes,
whereas the nitrification rates decreased at higher initial ammonia concentrations. This
suggests that low ammonium nitrogen loading with higher applied voltage is beneficial.
Upon using the anode effluent enriched with nitrate as catholyte, the total ammonia re-
moval could be reached 85% at an operating voltage of 1.5 V. Under the continuous mode of
operation, the MEC could achieve an excellent total nitrogen removal rate of 170 g-N/m3.d
at 15 h HRT. This study suggests that a standalone MEC can successfully remove ammonia
from wastewater without having organic substrate at a high rate; however, more research
on reactor configurations, electrode materials, and cost analysis are warranted to further
improve the performance for commercial applications.
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