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Abstract: Rural energy is an important part of China’s energy system, and, as China’s agricultural
modernization continues, integrated agricultural energy systems (AIES) will play an increasingly
important role. However, most of China’s existing rural energy systems are inefficient, costly to run,
and pollute the environment. Therefore, meeting various agricultural energy needs while balancing
energy efficiency and costs is an important issue in the design and dispatch of integrated agricultural
energy systems. In conjunction with hybrid energy storage (HES), which has been developed and
matured in recent years, this paper proposes a new type of AIES structure and optimal dispatching
strategy that incorporates HES, biogas generation (BG), P2G, and an electric boiler (EB) to provide
new ideas for problem solving. Firstly, the structure of AIES is introduced and the mathematical
model of the equipment of the system is described; then, an economic optimal dispatching model
with the objective of minimizing the comprehensive operating costs of the system is established,
and the output of each piece of energy conversion equipment is controlled to achieve the effect of
improving the system’s operating performance and reducing the operating costs. The results show
that the system with HES and multi-energy coupling equipment has a 20% lower overall cost, 23.2%
lower environmental protection cost, and 51% higher energy efficiency than the original system; the
stored power of energy storage equipment in the HES mode is primarily determined by the change in
demand of the corresponding load, and the number of conversions between different energy sources
is limited. The energy conversion loss is minimal.

Keywords: integrated energy system; agricultural park; hybrid energy storage; optimal dispatch

1. Introduction

According to statistics, over 1.9 billion people live in developing countries in South
Asia and Africa, with rural areas accounting for 80% of the population in these regions [1].
The rise of rural populations and economies in developing nations in recent years has
rendered the traditional power supply model insufficient for power generation and en-
vironmental protection, resulting in a poor energy consumption mix, low consumption
levels, and low energy efficiency. Areas supported by agro-industries in Pakistan and India
are still heavily reliant on traditional energy sources; in remote areas and small islands in
the United States, a relatively small rural population has the highest electricity costs in the
country; and in Western China, although some rural areas have been modernized, clean
energy use is low [2]. In brief, agricultural power system architecture must be based on local
natural resource endowments in order to achieve complementarity between diverse energy
sources and boost energy efficiency [3]. Integrated agricultural energy systems (AIES)
provide creative solutions to this challenge. In recent years, the demand for agricultural
parks to build multi-energy complementary systems with HES has become increasingly
strong. Compared with the extension of the traditional power grid, the development
of renewable energy systems (RES) with multiple energy complements in agricultural
parks has significant economic and environmental benefits [4–7]. Wang et al. [8] took the
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economic and environmental operation of the system as the goal, added various energy
conversion equipment to the distributed agricultural park, and established a mathematical
model of the distributed system. The example proved that the model could well solve
the problems of poor economic benefits and large emissions of pollutants caused by the
extensive operation of the agricultural park. Huang et al. [9] put forward a hierarchical
control framework for AIES based on the cooperation of energy storage and cogeneration,
proving that the system with energy storage can minimize the cost of power purchases
and consume redundant photovoltaic power generation. In terms of system energy storage
forms and parameter selection, Mitali J et al. [10] comprehensively summarized the techni-
cal principles and operating characteristic parameters of thermal, electrical, and methane
energy storage. Kamal M M et al. [11] compared four AIES models based on environmental
and economic indicators and carried out a sensitivity analysis on each parameter. Finally,
according to the results of the example, they gave the reference value for the optimal
allocation of agricultural energy storage. In addition to setting up multiple types of energy
storage in the agricultural park system, the application of biomass power generation and
multi-energy coupling equipment can also achieve low-cost renewable energy consumption
in the agricultural park, which can improve the flexibility of system operation.

Because of its low raw material supply cost and environmental protection characteris-
tics, biogas is widely used for heating and power generation in agricultural systems [12,13].
Ding et al. [14] studied the utilization mode of biogas resources, comprehensively evalu-
ated the energy-saving effect of biogas digesters in the multi-energy coupling system, and
proved that the construction of biogas digesters plays an important role in changing the
consumption structure of the AIES. Jamil Ahmed et al. [15] modeled the AIES, including
wind power, photovoltaic, biogas, and energy storage, and the calculation example verified
that the consumption rate of renewable energy in this scenario was close to 100%. Bamisile
O et al. [16] proved that the RES, including innovative CPVT, wind energy, and biomass
power generation, can not only reduce carbon dioxide emissions, but also improve the
overall energy utilization efficiency of the system. The introduction of P2G equipment
and an electric boiler into the integrated energy system (IES) can improve the operational
economy and stability of the system [17,18]. Paper [19] proposed an IES with electric
heating, P2G, and gas storage equipment, and studied the multi-objective optimization
operation method of IES with multi-energy flow coupling. Luo F et al. [20] proposed an IES
optimization strategy with P2G and other equipment, which solves the problems of the op-
eration scheduling scheme and energy storage configuration priority. The promotion effect
of different energy storage configurations is analyzed from the perspective of the operating
economy of IES, which reduces the cost of waste wind power and environmental pollution.
The literature [21,22] discusses the economic optimization under the gas–electricity HES
mode, analyzes the correlation between the energy storage output and various energy load
demands, and considers the complementarity between multi-energy conversion equipment
and multi-energy storage equipment. The above research proves that the development
of RES with multiple energy complementarities has certain economic and environmental
benefits. However, most of the IES models proposed for agricultural parks only consider a
single BES, rarely use P2G and other coupling equipment, and rarely use HES equipment
with heat storage and gas storage equipment.

To summarize, this paper constructs a comprehensive AIES model. The system in-
cludes P2G, EB, BG, an MG-CHP unit, and HES equipment. In order to solve the coordina-
tion and scheduling problems among photovoltaics (PV), wind power (WP), cogeneration,
P2G, and HES, the strategy takes the minimum total operating cost as the objective function
and the wind and solar power generation forecast and load demand forecast curve as the
input, and optimizes the system economy, protects the environment, and improves energy
efficiency by controlling the output of various types of energy conversion equipment.
Finally, the correctness and effectiveness of the method are verified by an example.
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2. AIES Structure with HES and Its Equipment Model
2.1. The AIES Structure

The external input energy of the AIES includes wind energy, solar energy, electricity,
biomass energy, and natural gas. Load types include electric, thermal, and gas loads.
The main energy conversion equipment includes the MG-CHP units, electric boilers, P2G
equipment, etc. The system structure is shown in Figure 1. WP, PV, and BG units are directly
connected to the system, and MG-CHP units provide heat and power for the park; EB and
P2G equipment provides heat and gas, respectively, through electricity consumption. The
energy storage equipment of the system includes BES, HST, and GST.
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2.2. Equipment Model of AIES

1. MG-CHP unit

The MG-CHP unit generates electricity by burning natural gas, and its mathematical
model is as follows:

GGT(t) =
PGT(t) · ∆t
ηGT

E · RG
(1)

where GGT is the consumption of natural gas, m3; PGT is the output electric power of the
MG-CHP unit during the time period, kw; ηGT

E is the generation efficiency of the unit; RG
is the low calorific value constant of natural gas, taken to be 9.7 kWh/m3 [23].

The relationship between the electric and thermal output of the MG-CHP unit in the t
period is as follows:

HGT(t) =
1− ηGT

E − ηGT
LOSS

ηGT
E

ηBPGT(t)∆t (2)

where HGT is the thermal output power of the MG-CHP unit, kw; ηGT
LOSS is the heat

dissipation loss rate of the unit; ηB is the heating coefficient.

2. Electric boiler

HEB(t) = PEB(t)ηEB∆t (3)

where HEB is the heating power, kw; PEB is the power consumption, kw; ηEB is the heat-
ing efficiency.

3. P2G

GP2G(t) =
PP2G(t) · ∆t · ηP2G

RG
(4)
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where GP2G is the natural gas output of P2G equipment in t time, m3; PP2G is the power
consumption, kw; ηP2G is the gas generation efficiency.

4. Biogas power generation unit
EBG(t + 1) = EBG(t)− PBG(t)∆t
0 ≤ EBG ≤ EBG,max
0 ≤ PBG(t) ≤ PBG,max

(5)

where PBG is the output of the biogas power generation unit, kw; PBG,max is the upper limit
of unit power, kw; EBG is the remaining generation capacity of the biogas generator unit,
kw·h; EBG,max is the maximum capacity, kw·h.

5. Battery energy storage
EESS(t) = EESS(t− 1) +

(
PLCηC − PLD

ηD

)
∆t

EESS,min ≤ EESS ≤ EESS,max
0 ≤ PLC ≤ uessPLC,max
0 ≤ PLD ≤ (1− uess)PLD,max

(6)

where EESS is the storage capacity in t period, kw·h; ηC and ηD represent the charging and
discharging efficiency, respectively; PLC and PLD represent the charging and discharging
power of stored energy, kw, respectively; PLC,max and PLD,max represent the maximum
charging and discharging power of stored energy, kw; uess is a binary variable to avoid
simultaneous charging and discharging.

6. Heat storage tank
QHS(t) = QHS(t− 1) · (1− ϑHS) +

(
HIN(t) · ηIN − HOUT(t)

ηOUT

)
· ∆t

0.2QHS,min ≤ QHS ≤ 0.8QHS,max
0 ≤ HIN ≤ uHSHIN,max
0 ≤ HOUT ≤ (1− uHS)HOUT,max

(7)

where QHS is the residual capacity of the heat storage pool, kw·h; ϑHS is the self exothermic
efficiency; HIN and HOUT are the heat transfer and release power in the time period, kw;
ηIN and ηOUT are the heat transfer and heat release efficiency. uHS represents the heat
storage state of the pool.

7. Gas storage tank
VGS(t) = VGS(t− 1) + (GIN(t)− GOUT(t))∆t
0 ≤ GIN ≤ uGSGIN,max
0 ≤ GOUT ≤ (1− uGS)GOUT,max
0 ≤ VGS ≤ 0.9VGS,max

(8)

where VGS is the remaining gas storage capacity of the tank, m3·h; GIN is the intake gas
volume, m3; GOUT is the amount of gas released, m3. uGS represents the gas storage state
of the tank.

3. Optimal Dispatching Model of AIES
3.1. Objective Function

On the basis of satisfying the energy demand of users, this paper considers multiple
types of energy conversion equipment to participate in the energy supply and realize the
complementary supply of multiple energy sources to minimize the system’s comprehensive
cost F. The objective function F includes the energy purchase cost F1; environmental
pollution cost F2; and equipment loss cost F3. The details are as follows:

minF = F1 + F2 + F3 (9)
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F1 =

24
∑

t=1
SEB PEZ +

24
∑

t=1
SEG (GGT + GGZ)

F2 =
m
∑

i=1
vcidci

24
∑

t=1
PGT(t)

F3 = ∑
s,t

Ps,tCs
op

(10)

where SEB is the grid electricity sales price; SEG is the unit price of natural gas; PEZ is
the direct purchasing power; GGZ is the power of directly purchased natural gas; m is
the number of pollutant types; vci is the unit emission control cost of pollutant i; dci is the
emission of j pollutants generated by the unit output of the MG-CHP unit; Ps,t is the output
of equipment S at time t; Cs

op is the unit output loss cost of equipment S.

3.2. Constraints

• Electrical power balance constraint.

PEZ + PPV + PWD + PBG + PLD + PGT = PELOAD + PP2G + PLC + PEB (11)

where PELOAD is the electrical load power, kw.

• Thermal power balance constraint

HGT + HEB + HOUT = HHLOAD + HIN (12)

where HHLOAD is the heat load power, kw.

• Natural gas power balance constraint

GGZ + GOUT + GP2G = GGLOAD + GIN (13)

where GGLOAD is the gas load power, m3.

• Equipment output constraint

Ps,min ≤ Ps,t ≤ Ps,max (14)

where Ps,min and Ps,max denote the minimum and maximum values of the s-th equipment
output, respectively, kw.

• Equipment climbing constraint.

− ∆Ps,down ≤ Ps,t+1 − Ps,t ≤ ∆Ps,up (15)

where ∆Ps,down and ∆Ps,up are the lower and upper limits of the sth equipment output
creep, kw.

4. Results and Analysis
4.1. Typical Day Selection

Over the course of a year, the daily variation curves for electricity, heat, and gas loads,
and for photovoltaic and wind turbine generation, are somewhat similar [24]. For the
purposes of this study, a typical day for the load curve, PV generation curve, and WP
generation curve is the day that is “closest” to the average fluctuation over the year.

For each day of the year, the daily curves for electricity, heat and gas loads, photo-
voltaics, and wind turbine generation in the area are first summarized separately.

C(n) =
1
N

N

∑
d=1

C(d, n) (16)
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From C(d, n), the day curve C(d∗, n) that is closest to the above C(n) is then used as a
typical day for load, PV, and WP generation, respectively. The definition of “closest” here
means that the average deviation is minimal and is calculated as follows:

24

∑
n=1
|C(d∗, n)− C(n)| = min

1≤d≤N

24

∑
n=1
|C(d, n)− C(n)| (17)

The daily load, PV, and WT curves are subtracted from the respective average curves,
and the date with the smallest sum of the absolute differences between the 24 moments of
the day is taken as the respective typical day. Ultimately, a typical daily scenic output and
load demand curve for the system is as shown in Figure 2.
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4.2. Simulation Parameters

In this paper, we combine the construction and operation data of an AIES containing
HES and BG in a region with relevant literature data to set various parameters of the
calculation case. The system parameters are shown in Table 1 [25–29]. The initial electricity
storage state of the BES is 0.5, the initial heat storage state of the HST is 0.3, the initial
gas storage state of the GST is 0.3, and the dispatching period is 1 h. The selling price
of electricity at 00:00–06:00, 22:00–24:00 is 0.4 ¥/kw·h; that at 11:00–13:00, 18:00–20:00 is
1.35 ¥/kw·h; and the natural gas price is 3 ¥/m3.

Table 1. System parameters.

Equipment Capacity Parameter Value

MG-CHP/kw 110

ηGT
E 0.4

ηGT
LOSS 0.05

ηB 0.8

CGT
op 0.02

PV/kw 180 CPV
op 0.15

WP/kw 160 CWIND
op 0.03

BG/kw 30
EBG,max 600

CBG
op 0.02

EB/kw 40 ηEB 0.9

P2G/kw 120
ηP2G 0.5

CP2G
op 0.08
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Table 1. Cont.

Equipment Capacity Parameter Value

BES/kw·h 200
ηCηD 0.95

CESS
op 0.096

HST/kw·h 200
ϑHS 0.025

ηINηOUT 0.98

GST/m3 200 - -

4.3. Analysis of Dispatching Results

(1) Electricity, heat, and gas load analysis
The outcomes of this AIES scheduling optimization are depicted in Figures 3–5. In

terms of electrical power, WP, PV, and MG-CHP are the primary power supply devices. The
BES and P2G devices assist in regulating system power. During the hours of 00:00–05:00
and 21:00–24:00, there is more wind power generation at night when the EB runs at full
power. Thus, the output of MG-CHP and BG is smaller. The system purchases electricity
at this time due to the lowest electricity price. Excess wind power is charged by BES and
consumed by the P2G equipment. During the hours of 11:00–12:00 and 18:00–20:00, due to
the highest electricity price and the largest electrical load, the power supply of MG-CHP
and BG is increased and BES is discharged. The system creep is mainly borne by BG and
BES. For the P2G equipment, it mainly works at the time when there is more renewable
energy generation and electrical energy surplus to provide more renewable energy capacity
and reduce the system operation cost. In terms of thermal, the EB and MG-CHP units
bear the thermal baseload during the hours of 00:00–05:00 and 21:00–24:00, when the HST
stores surplus thermal energy due to lower electricity. During the hours of 11:00–12:00 and
18:00–20:00, the MG-CHP units assume the thermal baseload and the HST assists in heating
due to the highest electricity price and low thermal load. In terms of gas load, during the
hours of 00:00–05:00 and 21:00–24:00, the system purchases large amounts of gas. The P2G
unit uses excess clean electricity and low-priced electricity to produce gas, and the excess
natural gas is stored in the storage tank. During the gas peak hours of midday and evening,
the P2G unit and GST assist in supplying gas to reduce the system’s gas purchase cost.
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(2) Comparative analysis of HES
As shown in Figure 6, the HST in the combined BES-HST energy storage has 10 h of

non-operation and the total heat energy exchange and storage is reduced. Moreover, the
charging and discharging power of BES fluctuates a great deal and it works for a long time.
The power output of BES is dispersed during high electrical load hours. The reason for this
phenomenon is that the addition of BES causes part of the electrical energy to be converted
into thermal energy through EB, which causes the HST storage energy to decrease. The
HST energy storage system is not active. As illustrated in Figure 7, with the combined
BES-GST energy storage, the BES operates for an extended period of time, the capacity
changes greatly, and electrical energy is converted into natural gas via P2G more frequently.
Before the peak in gas load, BES discharges and GST stores natural gas to cope with the
demand, but the fast charging and discharging of BES and GST will reduce the equipment
life. Similarly, Figure 8 shows that in the HST-GST co-storage scenario, the actual release of
HST equipment decreases and part of the demand is met by the GST equipment. Analyzing
Figure 9, it can be seen that the charging period of BES-HST-GST joint storage occurs when
the load is low and the electricity price is low. BES, HST, and GST follow the dynamic
changes in the corresponding load. Compared with the rest of the combined energy storage,
BES, HST, and GST can perform the system’s peaking task better. Due to the addition of
HST and GST, the conversion of electrical energy to heat and natural gas is reduced and
the energy utilization efficiency is improved. Meanwhile, since the operating power of P2G
and EB is positively correlated with the excess WP and PV generation, they can be regarded
as an adjustable load on the grid side and an adjustable gas and heat source on the gas and
heat network sides. The complementary operation of different energy systems not only
makes it possible to reduce the cost of accommodating renewable energy generation, but
also makes it possible to increase the system’s backup capacity and flexibility significantly.
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(3) Operating cost analysis
An analysis of Table 2 shows that compared to an AIES with a single energy supply and

no HES with the same parameters, the integrated cost of the optimized AIES is significantly
reduced by around 20%. The environmental protection cost is reduced by around 23.2%
because the system takes environmental protection into consideration. However, in order
to ensure the energy demand of multiple loads, the AIES needs to purchase additional
energy, and the cost of energy purchase increases by 4.1%. The energy efficiency coefficient
is calculated with reference to the literature [30,31], and the optimized energy efficiency
is improved by 51%, which shows that the AIES with HES can balance the economy and
energy efficiency.
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Table 2. Comparison of scenarios before and after optimization.

Comparison Items AIES without HES AIES with HES Rate of Change

Comprehensive cost/¥ 1.48 × 105 1.23 × 105 −20%

Energy purchase cost/¥ 2.96 × 104 3.08 × 104 4.1%

Environmental protection costs/¥ 2.43 × 104 1.87 × 104 23.2%

Energy efficiency factor/(kW·h)·kg–1 6.791 10.236 51%

5. Conclusions

In this paper, considering the economic and environmental friendliness of AIES with
HES, an optimal scheduling model of multi-energy complementarity is established with
the maximum PV and WP accommodation as the premise, the minimum total cost of AIES
operation as the objective function, and the PV and WP output prediction and load demand
prediction curves as the input. By controlling the output of each piece of energy conversion
equipment, the optimal system economy and environmental friendliness are improved.
The main conclusions are as follows:

• Compared with the original system, the optimized system reduces the comprehensive
cost by 20%, reduces the environmental protection cost by around 23.2%, and improves
the energy efficiency by around 51%. The system can balance economy and energy
utilization efficiency after introducing HES, P2G, and EB equipment.

• Under the HES mode, the output power of energy storage equipment is mainly based
on the change in demand of the corresponding load, with fewer transformation times
between different energies and less energy transformation loss.

• Multi-energy coupled AIES can realize low-cost renewable energy accommodation
and can enhance the flexibility of system operation. At the same time, the efficiencies
offered by AIES can lead to energy independence, economic competitiveness, job
creation, and the more intelligent use of resources.
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