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Abstract: Precise motion control remains one of the most important problems in modern technology. It
is especially difficult in the case of two-mass systems with flexible coupling if only the motor position
and velocity are measured. We propose a new methodology of control system design in this situation.
The concept is founded on a robust observer design, based on a linear matrix inequality (LMI) solution.
The observer cooperates with the original nonlinear controller. The presented approach allows us to
solve the position tracking problem for a two-mass drive, with unknown parameters, in the presence
of disturbances (for instance, nonlinear friction-like torques) acting on both ends of the flexible
shaft. Under this set of assumptions, the problem was never solved previously. The closed-loop
system stability is investigated, and the uniform ultimate boundedness of state estimation errors and
tracking errors is proven using Lyapunov techniques. Numerical properties of the design procedure
and characteristic features of the observer, controller, and closed-loop system are demonstrated by
several examples.

Keywords: electric drive; two-mass system; robust control; nonlinear control

1. Introduction

Precise motion control remains one of the most important problems in modern tech-
nology. The accurate tracking of the desired position trajectory is required in numerous
branches of industry, various areas of robot applications, transportation, medical technolo-
gies, and many fields of everyday human activity. Modern servo drives, equipped with
efficient and precise electrical motors, power electronic devices, and fast microprocessor
controllers acting according to advanced control algorithms, usually match all requirements
of accurate motion control. The idea of perfect control is based on the ability of an electric
motor control system to generate the desired torque almost without any delay or inertia.
The mechanical part of the system is responsible for transmitting this propelling torque to
a load machine. Usually, it is assumed that the coupling satisfies the strict assumptions

• the coupling is perfectly rigid and the position and the velocity of the load are the
same as the position and the velocity of the motor shaft,

• the parameters of the load machine are known and constant,
• the acting disturbances are linear functions of state variables, for instance, viscous

friction is proportional to rotational speed.

Under this hypothesis, it is possible to obtain high-quality motion tracking using
standard, linear control algorithms. Unfortunately, in numerous important applications all
these theoretical assumptions are substantially violated. This contribution considers such a
situation, described by the following five assumptions:

(A1) load position tracking is the main control aim,
(A2) the motor is coupled with the load by a flexible shaft,
(A3) the system is modeled by ordinary differential equations, but the parameters of the

shaft and of the load machine are not known exactly,
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(A4) nonlinear disturbance torques are acting on both ends of the shaft independently,
(A5) only the motor position and velocity are measured.

The adopted assumptions (A1–A5) result from the analysis of practical applications.
We will address their significance in the following paragraphs.

Regarding (A1) and (A2):
This type of drive is usually modeled as the so-called two-mass system. The first

mass represents the motor and is connected by a flexible coupling with the load mass. The
torque transmitted by the shaft consists of two components: the first part (stiffness torque)
is proportional to the angle of torsion, and the second (damping torque) is proportional
to the time derivative of the angle of torsion. Therefore, elastic coupling is completely
characterized by two constant coefficients—the stiffness coefficient and the damping co-
efficient. Examples of two-mass drives can be found in numerous applications, starting
from huge industrial drives with a log transmission shaft, belt, or chain, such as rolling
mill drives [1], conveyer belt drives [2], cage-hoist drives [3,4], drilling rigs used in oil
and gas explorations [5], some special drives used in textile [6] and paper machines [7],
space antennas [8] and manipulators [9]. A major problem of such systems, limiting their
performance, is the existence flow-frequency torsional vibrations. A similar phenomenon,
although in higher frequencies, is observed in CNC drives [10], wind turbines [11], and
microelectromechanical systems (MEMS) [12]. An important example of a two-mass drive
is a robotic manipulator with flexible joints [13]. Usually, a kind of harmonic reducer trans-
mission is applied [14]. The high-speed deformation of the flexible wheel in the harmonic
reducer often increases the internal flexibility of the joint.

Although for some of the applications mentioned above, such as drilling rigs and
others, speed control and attenuation of torsional oscillations is the main control problem,
position tracking remains the main control aim for many others (robotic drives, CNC
drives, etc.). The arguments presented above justify why assumptions (A1) and (A2)
are considered.

Regarding (A3) and (A4):
A two-mass system can be modeled using several sophisticated approaches:

• distributed parameter models are used [15,16] if the shaft is long and axial, torsional,
and lateral vibrations occur at the same time,

• neutral-type time-delay models [17,18] can be applied if delays connected with the
oscillatory waves traveling through the shaft are significant,

• fractional order calculus [19] and some very specific techniques [20,21] can be used in
special situations.

However, the majority of practically applicable controllers for two-mass drives were
reported with the use of lumped parameter models, i.e., using ordinary differential equa-
tions (ODEs). The system is modeled as a mass-spring-damper, but the system parameters
(especially the load inertia, stiffness, and dumping coefficients) are not known exactly,
only some approximate values are available as an initial guess. Furthermore, in numerous
applications, one has to consider disturbance torques acting independently at both ends
of the shaft—the motor end and the load end. These disturbances, working against the
motion, may be caused by friction or any other resistance caused by the load mechanism.
It is rational to assume that a general, nonlinear function of the motor/load position and
speed is available to model the disturbance torques, but again, the parameters are not
known exactly. This reasoning explains why assumptions (A3) and (A4) are made.

Regarding (A5):
In a two-mass system, the position and the velocity of the motor end of the shaft are

different then the position and the velocity of the load end. Although the load position
tracking is the control aim, in numerous applications a direct measurement of the load-end
shaft position and velocity is impossible. It is obvious in drilling rigs or CNC machines
when the drill operates cutting a machining substance. Even if installing sensors at each
end of the coupling is technically possible (as in some advanced robotic applications),
numerous sensors may cause problems connected to zero drift, noise, and hysteresis, not



Energies 2022, 15, 9093 3 of 28

to mention cost, fragility, and durability. Therefore, the number of sensors used is limited.
This explains assumption (A5).

Control and state observations in two-mass drives have been hot research topics for
many years. Although plenty of publications are available, it is difficult to find results
concerning all conditions (A1–A5) considered and justified in this paper. Table 1 presents a
comparison of several recently published references. The presented contribution is the only
one taking all conditions (A1–A5) into account.

Of course, controller and observer designs for two-mass drives were investigated in the
literature, under various assumptions, together or separately. Several active control meth-
ods were used to design controllers for two-mass systems, such as classical linear control
techniques—proportional-integral (PI) control, linear-quadratic regulator (LQR), root locus,
etc. [22]; artificial intelligence-based methods—artificial neural networks [23], linear model
predictive control [24], fuzzy controllers [25]; nonlinear control techniques—nonlinear
neural networks [26], adaptive nonlinear control [27–29], and a wave-based disturbance
observer approach [30]. The majority of the described observer design methods concern
load velocity observers. Among them are Luenberger observers (linear or nonlinear) [31],
Kalman filters (extended, unscented) [32,33], moving horizon estimators [34], multilayer
observers [35,36], LQ observers [37], and fixed gain filters (FGFs) [13]. A separate group
consists of observers designed by numerous techniques inspired by artificial intelligence,
but usually, the stability of such solutions was not proven.

Assumptions (A1–A5) determine that we have to cope with problems of state re-
construction (because of A5) and the tracking control (A1) for a nonlinear system (A4)
with unknown parameters (A3). Therefore, an obvious technique to consider is to join an
adaptive observer and an adaptive controller. This problem was investigated in [38] and it
was observed that it requires the active cooperation of two adaptation mechanisms: the
first acting in the observer and the other one in the controller. It is well known that adaptive
observers for nonlinear systems require special conditions [39,40] and that the derivation
of the stability and tuning is complicated.

Hence, in this contribution, the design is based on the nominal values of parameters
and the effects of parameter mismatches and external disturbances are compensated using
robust control techniques. First, the robust observer design technique is used [41]. It leads to
a linear matrix inequality, which connects the observer’s performance with the uncertainty
constraints. Adopting this design technique makes the Luenberger-type observer the
most appropriate. The observer design is presented in Section 3, and stability (in the
sense of uniform ultimate boundedness of the estimation error) is established. Next, the
estimated load position and speed, together with the measured motor position and speed
are used to design a nonlinear tracking controller. A procedure similar to backstepping is
used, with some smart modifications. The uniform ultimate boundedness of the tracking
error is demonstrated using Lyapunov techniques and the bounds on the tracking error
are investigated. Finally, experiments with the closed-loop system are presented and
conclusions are derived.

Table 1. Recent references.

Assumptions

References (A1) (A2) (A3) (A4) (A5) Approach Is Stability
Proven?

[25]
Violated—
speed
control

Satisfied Satisfied Satisfied

Violated—
motor and load
speed are
measured

Fuzzy controller with
type I and type II fuzzy
sets, tuned by PSO

No

[37]
Violated—
speed
control

Satisfied

Partially
satisfied—
”small” model
inaccuracies

Violated—
linear
model

Partially
satisfied—load
speed
estimation
only

LQ technique for
observer, linear
controller

Yes—under
assumptions of
linearity
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Table 1. Cont.

Assumptions

References (A1) (A2) (A3) (A4) (A5) Approach Is Stability
Proven?

[42] Satisfied Satisfied
Violated—
known
parameters

Violated—
load torque
proportional
to the load
position

Satisfied
Linear state observer
and zero-order
disturbance observer

Yes—under
assumptions
of linearity

[35,36]
Violated—
speed
control

Satisfied
Violated—
known
parameters

Violated—
constant load
torque

Partially
satisfied—
load speed
estimation
only

Parallel connection
of the linear
Luenberger
observers

No

[13] Satisfied Satisfied
Violated—
known
parameters

Violated—
constant load
torque

Satisfied
Steady-state Kalman
filter (KF), the fixed
gain filter (FGF)

Yes

[31]
Violated—
speed
control

Satisfied
Violated—
known
parameters

Violated—
constant load
torque

Partially
satisfied—
load speed
estimation
only

Linear and nonlinear
Extended State
Observer (ESO) is an
essential part of the
Active Disturbance
Rejection Control.

No

[29]
Violated—
speed
control

Satisfied Satisfied
Violated—
constant load
torque

Violated—
motor and
load speed
are measured

Nonlinear adaptive
controller YES

This con-
tribution Satisfied Satisfied Satisfied Satisfied Satisfied Robust observer,

nonlinear controller YES

2. Plant Model and the Problem Statement

We consider a two-mass drive system modeled by ordinary differential equations

.
x1 = x2

J2
.
x2 = c(x3 − x1) + d(x4 − x2)− b2x2 − Tf 2(x2)− d2(t).

x3 = x4
J4

.
x4 = −c(x3 − x1)− d(x4 − x2)− b4x4 − Tf 4(x4)− d4(t) + T

, (1)

where the used symbols represent:

• J2—the inertia of the load,
• J4—the inertia of the motor,
• x1, x2—the angular position and velocity of the load,
• x3, x4—the angular position and velocity of the motor,
• T—the drive torque developed by the motor (the control input),
• c—the stiffness coefficient,
• d—the dumping coefficient,
• b2, b4—the viscous friction coefficients associated with the load and the motor, respectively,
• Tf 2(x2), Tf 4(x4)—the nonlinear friction torque associated with the load and the motor,

respectively,
• d2(t), d4(t)—the unstructured components representing all modeling errors and ex-

ternal disturbances.

We assume that friction, or any other torque acting against the motion, affects both
sides of the shaft. It is modeled as a linear component (ex. viscus friction) bixi, i = 2, 4
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(which will be included into a linear part of the model) and a nonlinear, smooth, and
bounded component Tf i(xi), i = 2, 4. Exemplary functions Tf i(xi), i = 2, 4 may be
given by

Tf i(xi) =

(
fsi + ( fci − fsi)e

−( xi
xsi

)
2)

tanh(Kixi); i = 2, 4 (2)

representing the Stribeck effect on friction [43] and being parameterized by constant
fsi, fci, xsi, Ki, i = 2, 4. The obtained results can be easily generalized to other forms
of friction and load torque models, provided that Tf i, i = 2, 4 remain smooth and bounded
functions of the state variables.

Bounded components d2(t), d4(t) represent any uncertainties due to modelling errors,
parameter mismatch, or external disturbances. In Equations (1)–(4), they have the character
of additional load torques, not included in the parameterized components. As the modelling
is as accurate as possible, it is reasonable to assume that d2(t), d4(t) are bounded. Of course,
motor-side parameters are usually much better known than load-side, and among them,
the motor inertia J4 is assumed to be known exactly.

Only the motor-side position and rotational speed are measured:

y = Gx =

[
x3
x4

]
=

[
0 0 1 0
0 0 0 1

]
x. (3)

The aim of the derivation presented in this contribution is:

1. to design a robust observer able to estimate all state variables of the plant,
2. to propose a controller, which will allow sufficiently fast and accurate tracking of the

desired load position x1d(t).

Adopting notation

C1 = c
J2

, C2 = c
J4

,D1 = d
J2

, D2(t) =
d2(t)

J2
, D4 = d

J4
, D5(t) =

d4(t)
J4

, B2 = b2
J2

,

B4 = b4
J4

, TF2(x2) =
Tf 2(x2)

J2
, TF4(x4) =

Tf 4(x4)
J4

, R = 1
J4

,
(4)

allows us to re-write the plant model (1) in a compact form:

.
x = Ax− F(x) +


0
0
0
1

RT + D(t), x =


x1
x2
x3
x4

, (5)

where

A =


0 1 0 0
−C1 −D1 − B2 C1 D1

0 0 0 1
C2 D4 −C2 −D4 − B4

, F(x) =


0

TF2(x2)
0

TF4(x4)

, D(t) =


0

D2(t)
0

D5(t)

. (6)

As di, Tf i, i = 2, 4 are bounded functions, it is evident that ||F(x)||, ||D(t) || are
bounded as well.

It is assumed that nominal, approximate values of model parameters in Equation (1) are
available for the design. The subscript N denotes these values, i.e., C1N , C2N D1N , D4N , B2N ,
B4N , TF2N(x2), TF4N(x4) are known instead of the exact parameters used in
Equations (5) and (6). Similarly, AN and FN(x) denote values calculated, as in Equation (6)
but with the use of nominal parameters.

If the parameter mismatch is considered, i.e., it is assumed that instead of the exact
values of A and F(x), AN and FN(x) are available, the plant model may be represented as:
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.
x = AN x− FN(x) +


0
0
0
1

RT + Dc(t)

= AN x− FN(x) +


0
0
0
1

RT + ( A− AN)x(t)− F(x(t))

+FN(x(t)) + D(t),

(7)

where

Dc(t) = ∆Ax(t)− ∆F(x(t)) + D(t),
∆A = A− AN

=


0 0 0 0

−C1 + C1N −D1 + D1N − B2 + B2N C1 − C1N D1 − D1N
0 0 0 0

C2 − C2N D4 − D4N −C2 + C2N −D4 + D4N − B4 + B4N

,

∆FN = F− FN =


0

TF2(x2)− TF2N(x2)
0

TF4(x4)− TF4N(x4)

.

(8)

As F(x) is a bounded function, its nominal model FN(x) is also bounded. Therefore,
for any x the difference ∆FN(x) = FN(x)− F(x) is bounded and for any two arguments
x, x̂ FN(x)− FN(x̂) is bounded. As propelling torques acting in the system are limited and
torques acting against the motion increase with the increasing velocities, the maximum
available velocities are limited. Therefore, because of the structure of ∆A, ∆Ax is bounded,
and finally, Dc(t) is bounded as well. The component Dc(t) represents any uncertainty
resulting from modelling errors, parameter mismatches, or external disturbances.

Let us denote another uncertainty-representing signal Dp(t) = Dc(t) + FN(x̂(t))−
FN(x(t)), where x̂(t) states for the estimated state variables. Dp(t) includes a mismatch due
to the state estimation error, and, as explained in the previous paragraph, it is also bounded.

3. The Observer

A robust observer is proposed for system Equation (7) as a simple extension of the
Luenbeger observer and the observer robustness is obtained by the LMI technique. The
observer equation is

.
x̂ = AN x̂− FN(x̂) +


0
0
0
1

RT + LG(x− x̂), (9)

where x̂ denotes the observer state variables and e =: x− x̂ is the state estimation error. The
matrix G, defined in Equation (3) declares that the motor speed and position are measured,
while the matrix L represents the observer gains to be designed. Therefore, the estimation
error dynamics is obtained by subtracting Equation (9) from Equation (7):

.
e =

.
x−

.
x̂ = AN x− FN(x) +


0
0
0
1

RT + Dc(t)− AN x̂ + FN(x̂)−


0
0
0
1

RT − LG(x− x̂)

= (AN − LG)e + Dp(t).

(10)
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where Dp(t) = Dc(t) + FN(x̂(t))− FN(x(t)).
The feedback-gain matrix L is designed to assure the robust stability of Equation (10).

The Lyapunov function
V = eT Pe (11)

with a positive definite matrix P is considered. Let us introduce three more design
parameters—a symmetric matrix M and positive scalars α and ε, which will be used
to tune the observer accuracy and robustness.

The derivative of the Lyapunov function Equation (11) along the trajectories of
system (10) is given by:

.
V =

.
eT Pe + eT P

.
e = eT(AN − LG)T Pe + eT P(AN − LG)e
+DT

p (t)Pe + eT PDp(t).
(12)

Hence, selecting
L = P−1MGT , (13)

and adding and subtracting terms αeTe, εDT
p (t)Dp(t) we obtain

.
V = eT AN

T Pe + eT PANe− eTGTGMe− eT MGTGe + DT
p (t)Pe + eT PDp(t)

+αeTe− αeTe− εDT
p (t)Dp(t) + εDT

p (t)Dp(t).
(14)

This can be transformed into

.
V = γT

[
AN

T P + PAN − GTGM−MGTG + α14 P
P −ε14

]
γ− αeTe + εDT

p (t)Dp(t) (15)

where γ =

[
e

Dp(t)

]
and hence, the observer stability theorem can be formulated.

Theorem 1. If the linear matrix inequality[
AN

T P + PAN − GTGM−MGTG + α14 P
P −ε14

]
≤ 0 (16)

is fulfilled for a symmetric M and positive definite P, for certain ε > 0, α > 0, then for any
uncertainty representing the component fulfilling

DT
p (t)Dp(t) ≤ ε1 (17)

the trajectories of the system (10) are ultimately uniformly bounded (UUB) [44].

Proof of Theorem 1. Indeed, under conditions (16) and (17), it follows from (15) that
.

V ≤ −αeTe + εε1 . (18)

Hence, from (18)
.

V < 0 outside of the set H =
{

e : eTe ≤ εε1
α

}
, and so, the trajecto-

ries of system (10) are ultimately uniformly bounded (UUB) to the set H̃—the tightest
level set of V(e) (11) containing the set H [44]. Moreover, the set H̃ is contained in
H =

{
e : eTe ≤ εε1

λm(P)α

}
, where λm(P) stands for the minimal eigenvalue of the symmetric

matrix P. �

The presented reasoning demonstrates that the state estimation error trajectories are
UUB, and indicate the impact of the parameters λm(P), α, ε on the target set. The constraint
eTe ≤ εε1

λm(P)α is usually very conservative and a better accuracy of the state estimation is
obtained in practice, due to smart tuning.
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The matrix M offers more flexibility while solving the LMI Equation (16). Although it
is possible to solve Equation (16) with the pre-defined M, say M = I, having a symmetric
M as design parameters is a smart trick to improve the obtained solution.

The quadruple of the matrices and parameters {M, P, ε > 0, α > 0} fulfilling the
LMI Equation (16) is not unique. To enhance the accuracy of the observer, it is necessary to
select the minimal value of ε and the maximal value of λm(P) and α among all solutions of
Equation (16). If the value of ε decreases, the set of remaining parameters α, P, M fulfilling
Equation (16) narrows down. Similarly, if α increases, the set of remaining parameters
ε, P, M fulfilling Equation (16) narrows down. Finally, it may be demonstrated that the
biggest eigenvalue of P, λM(P), determines the speed of convergence to the target set. It is

recommended that λM(P) is not too high and so, the ratio λM(P)/λm(P) should be as close
to 1 as possible. The observer is always stable in the UUB sense, but the accuracy of the
state estimation decreases if the disturbance bound ε1 increases. The selected solution of
Equation (16) decides about the important features of the observer, such as the magnitude
of the observer gains.

Some numerical aspects of solving the LMI Equation (16) are presented by Example 1.

Example 1. Numerical aspects of the observer design
The data are taken from the example described in Section 4, where AN =

0 1 0 0
−1.2647 −0.1364 1.2647 0.0027

0 0 0 1
0.2229 0.0005 −0.2229 −0.2008

 and G =

[
0 0 1 0
0 0 0 1

]
.

The eigenvalues of the matrix AN are λ1 = 0, λ2 = −0.1904 and λ3,4 = −0.0734± 1.2172i.

First, Nesterov and Nemirovski’s projective method [45], implemented in the function
mincx from the MATLAB LMI toolbox was used to minimize the ε subject to the LMI
Equation (16) for a given α > 0. For matrices M and P, corresponding to the minimal
value of ε, the minimal and maximal eigenvalues of P, the Frobenius norm of the observer
gain matrix ||L||, and the bound for the ultimate state observation error R = εε1

λm(P)α are
calculated and presented in Table 2. If the solution of the LMI Equation (16) exists, for
any combination of parameters, all eigenvalues of the matrix AN − LG in the observer
error Equation (10) are placed in the left half plane of the complex numbers. The distance
of the closest eigenvalue to the imaginary axis dλ is presented in the last column of the
table. Although the stability of this matrix is not enough for the observer stability under
disturbances and in case of unknown/changed parameters (in this case LMI Equation (16)
must be satisfied), it is sufficient if we know the plant exactly (Dp(t) = 0 in Equation (10)).

Table 2. Minimization of the ε subject to LMI (16) for various values of α.

α
Minimum Value of

Parameter ε
λm(P) λM(P) ||L|| R= ε

λm(P)α ε1 dλ

0.1 3.7831 0.2163 3.7× 104 4.7·104 174.94ε1 0.40

0.5 18.911 1.0536 8.3× 104 2.1·104 35.897ε1 0.41

1 2.1808 1.2× 105 1.5·104 17.333 0.40

5 189.29 10.851 2.6× 105 6.6·103 3.4889ε1 0.40

10 377.87 21.544 3.7× 105 4.7·103 1.7539ε1 0.41

50 1892.9 109.66 8.2× 105 2.1·103 0.3452ε1 0.39

100 3781.8 218.45 1.2× 106 1.5·103 0.1731ε1 0.39

As shown in Table 2, increasing parameter α increases the minimum value of param-
eter ε, for which there exists a solution of the inequality Equation (16). For larger values
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of α, we obtain a smaller radius of the set H, to which the observer’s error trajectories

ultimately end up. The observer gain may be reduced by constraining λM(P)/λm(P), but
the error bound R increases. The impact of the constraints imposed on the eigenvalues
of P on ||L|| and R is presented in Table 3. In this case, the same algorithm implemented
in the function feasp was used to calculate M and P from LMI Equation (16), subject to
constraints imposed on the eigenvalues of P.

Table 3. Impact of the constraints imposed on the eigenvalues of P on ||L|| and R for ε = 100, α = 3.

λMc(P) λMc(P)/λmc(P) λm(P) λM(P) ||L|| R= ε
λm(P)α ε1 dλ

100 40 10.942 73.249 62.939 6.093 ε1 0.18

200 40 17.219 128.8 39.845 3.872 ε1 0.21

500 40 28.345 297.35 115.48 2.352 ε1 0.19

500 167 24.209 289.24 140.63 2.754 ε1 0.21

500 62.5 26.678 292.19 122.69 2.499 ε1 0.19

500 36 22.164 311.16 703.12 3.008 ε1 0.20

Table 4 shows the impact of the value of parameter ε on the solution of LMI Equation (16)
for the fixed value of parameter α. Again, the function feasp was used.

Table 4. Solutions of LMI (16) for the constant α = 1 and various ε.

ε λm(P) λM(P) ||L|| ε
λm(P)α ε1 dλ

1 1.3471 6.1·104 1.4× 104 47.232ε1 0.20

2 2.3238 8.5·104 1.1× 104 86.065ε1 0.23

5 4.7792 1.4·105 8× 103 104.62ε1 0.26

10 9.7384 1.9·105 5.7× 103 102.69ε1 0.26

20 22.437 2.7·105 3.7× 103 89.14ε1 0.23

50 60.971 4.4·105 2.1× 103 82ε1 0.21

100 126.87 8.6·105 1.1× 103 78.823ε1 0.21

Table 4 shows that, for a constant α, an increase in ε reduces the value of the observer’s
gain matrix L. The change of parameter ε has a small influence on the radius of the set H.

We have to remember that Nesterov and Nemirovski’s projective method implemented
in MATLAB function feasp, provides us with ‘the most robust’ solution of the LMI. It
maximizes the coefficient p such that the left side of the LMI +pI remains a negative
definite. It may offer solutions corresponding to an unnecessary huge p and resulting in an
unnecessary big ||L||. Therefore developing some other methods, for example, minimizing
the performance index which takes ||L|| into account, may be beneficial.

The presented remarks and the example demonstrate the main rules of the observer
tuning. In summary, a good robust observer design requires obtaining a balance between
various requirements.

4. Tracking Controller with the Compensation of the State Estimation Errors

According to the main control aim, the system is supposed to track the desired tra-
jectory xd(t) of the load position x1. As the motor position and velocity are measured, the
third and fourth components of the state estimation error e = x− x̂ =

[
e1 e2 e3 e4

]
can be used to improve the control system, while the load position and velocity must be
substituted by the estimated variables obtained from the observer. The schema of the
control system is presented in Figure 1.
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A recurrent, step-by-step technique similar to backstepping is developed to derive
the controller. At each stage, a tracking error subsystem is considered, a virtual control
signal is pointed, and a Lyapunov function is investigated to propose the desired trajectory
of the virtual control, such that it introduces a stabilizing term and cancels unnecessary
components in the Lyapunov function derivative. Next, the virtual control tracking error is
joined and the procedure is repeated. Finally, the real control is designed. The observer
requires the measurement of motor speed and position while all state variables (motor
position, motor speed, load position, load speed) are estimated. The nonlinear controller
requires all estimated state variables and estimation errors e3, e4, therefore, it uses the
measured motor position and speed indirectly. The main advantage of the proposed
structure is that the nonlinear controller is able to react to tracking errors and observer
estimation errors as well.

Stage 1.
Let us define the observer-based tracking error:

E1 = xd − x̂1 (19)

and use Equation (9), remembering about the structure of G in Equation (3), to formulate
the equation

.
E1 =

.
xd −

.
x̂1 =

.
xd − x̂2 − l11e3 − l12e4 (20)

where l11, l12 are appropriate entries of the observer gain matrix L and e3, e4 are appropriate
components of the state estimation error e.

The error E1 is stabilized by a proper shaping of the signal x̂2 (estimated load velocity
obtained from the observer), which is forced to follow the desired trajectory x2d. Denoting
the tracking error for x̂2 by

E2 = x2d − x̂2 (21)

provides
.
E1 =

.
xd − x2d + E2 − l11e3 − l12e4 (22)

The desired trajectory x2d is proposed as

x2d =
.
xd + w1E1 (23)

and the stabilizing gain w1 will be derived from the Lyapunov function

V1 = V +
1
2

E2
1 (24)
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According to Equations (18) and (23), the derivative of this function along the trajecto-
ries of system (22) is given by

.
V1 =

.
V + E1

.
E1 ≤ −αeTe + εε1 + E1(−w1E1 + E2 − l11e3 − l12e4) (25)

Selecting w1 as

w1 = k1 +
l2
11 + l2

12
4r1

, (26)

where k1 > 0 and r1 > 0 are design parameters, and observing that ‘completing the square
technique’ provides

−l11e3E1 − l12e4E1 = r1
(
e2

3 + e2
4
)
− r1

(
e3 +

l11
2r1

E1

)2
− r1

(
e4 +

l11
2r1

E1

)2

+
l2
11+l2

12
4r1

E1

(27)

and allows to represent Equation (25) as

.
V1 ≤ −αeTe + εε1 +E1

(
−k1E1 +

l2
11+l2

12
4r1

E1 + E2 − l11e3 − l12e4

)
= −αeTe + εε1 − k1E2

1 + E1E2 + r1
(
e2

3 + e2
4
)

−r1

(
e3 +

l11
2r1

E1

)2
− r1

(
e4 +

l11
2r1

E1

)2

≤ −(α− r1)eTe− k1E2
1 + E1E2 + εε1.

(28)

Under conditions that the design parameters are selected to ensure that α − r1 > 0,
k1 > 0 , Equation (28) provides stability after the compensation of the terms E1E2 + εε1,
which will be canceled in the next stage. Moreover, Equation (22) is transformed into

.
E1 = − w1E1 + E2 − l11e3 − l12e4 (29)

Stage 2.
The motion of E2 defined in Equation (22) is given by:

.
E2 =

.
x2d −

.
x̂2 =

..
xd + w1

.
E1 −

.
x̂2 =

..
xd + w1(−w1E1 + E2 − l11e3 − l12e4)

+C1N x̂1 + (D1N + B2N)x̂2 − C1N x̂3 − D1N x̂4 + F2N(x̂2)− l21e3 − l22e4
=

..
xd + w1(−w1E1 + E2 − l11e3 − l12e4) + C1N x̂1

+(D1N + B2N)x̂2 − C1N x3 + C1Ne3 − D1N x̂4 + F2N(x̂2)− l21e3 − l22e4

(30)

The motor position x3 is available and is used as a virtual control stabilizing E2. The
desired trajectory for x3 is denoted by x3d and the tracking error is defined as

E3 = x3d − x3 (31)

Therefore, Equation (30) is transformed into

.
E2 =

..
xd + w1(−w1E1 + E2 − l11e3 − l12e4) + C1N x̂1 + (D1N + B2N)x̂2
−C1N x3d + C1N E3 + C1Ne3 − D1N x̂4 + F2N(x̂2)− l21e3 − l22e4

(32)

Similar techniques as used in stage 1 are applied to stabilize signals e, E1, E2. The
Lyapunov function

V2 = V1 +
1
2

E2
2 (33)
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provides

.
V2 =

.
V1 + E2

.
E2 ≤ −(α− r1)eTe− k1E2

1 + E1E2 + εε1
+E2

( ..
xd + w1(−w1E1 + E2 − l11e3 − l12e4) + C1N x̂1

+(D1N + B2N)x̂2 − C1N x3d + C1N E3 + C1Ne3 − D1N x̂4
+F2N(x̂2)− l21e3 − l22e4).

(34)

Having in mind that x3d shall provide a negative definite term concerning E2 and
compensate for unnecessary terms in Equation (34), using the square completing technique,
as in stage 1, we see that selecting such x3d that

C1N x3d =
..
xd + w2E2 + w1(−w1E1 + E2) + C1N x̂1 + (D1N + B2N)x̂2 − D1N x̂4

+F2N(x̂2) +
C2

1N
2 E2 + E1,

(35)

where

w2 = k2 +
(w1l11 + l21 − C1N)

2 + (w1l12 + l22)
2

4r2
+

C2
1N
2

(36)

and k2 > 0, r2 > 0 are selected by a designer, provides

.
E2 = −k2E2 − (w1l11+l21−C1N)2+(w1l12+l22)

2

4r2
E2 + w1(−l11e3 − l12e4) + C1N E3

+C1Ne3 − l21e3 − l22e4 − E1 −
C2

1N
2 E2 = −w2E2 + w1(−l11e3 − l12e4) + C1N E3

+C1Ne3 − l21e3 − l22e4 − E1

(37)

and allows to represent the Lyapunov function derivative as

.
V2 =

.
V1 + E2

.
E2 ≤ −(α− r1)eTe− k1E2

1 + E1E2 + εε1

+E2

(
− (w1l11+l21−C_1N)2+(w1l12+l22)

2

4r2
E2 + w1(−l11e3 − l12e4)

)
+E2

(
−k2E2C1N E3C1Ne3 − l21e3 − l22e4 − E1 −

C2
1N
2 E2

)
= −(α− r1)eTe− k1E2

1 − k2E2
2 + εε1 + C1N E3E2 −

C2
1N
2 E2

2

+r2
(
e2

3 + e2
4
)
− r2

(
e3 +

w1l11+l21−C1N
4r2

E2

)2
− r2

(
e4 +

w1l12+l22
4r2

E2

)2

≤ −(α− r1 − r2)eTe− k1E2
1 − k2E2

2 + εε1 + C1N E3E2 −
C2

1N
2 E2

2.

(38)

Stage 3.
As expression (35) is quite complex, the exact derivative of x3d is substituted by an

approximate one provided by a linear filter

.
z1 = z2,

.
z2 = 1

a2
(x3d − z1 − a1z2).

(39)

This technique is called the virtual control command filtering [44] or dynamic surface
method [46]. The filter parameters a1 and a2 are selected to place the roots of the character-
istic polynomial a2s2 + a1s + 1 at two negative real positions to make the filter transient
sufficiently fast and smooth. It is possible to select the initial conditions of the filter, such
that ρ = x3d − z1 is bounded:

|ρ| = |x3d − z1| ≤ ρm < ∞. (40)

When the transient of system (39) is finished, z1 ≈ x3d and so, z2 ≈
.
x3d. Therefore,

two tracking errors are considered at this stage:

E3 = x3d − x3, E3 f = z1 − x3 = −(x3d − z1) + (x3d − x3) = E3 − ρ. (41)
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It follows from Equation (39) and Equation (1), that the trajectories of E3 f are given by

.
E3 f =

.
z1 −

.
x3 = z2 − x4 (42)

and hence, x4 is used as the virtual control at this stage. The desired trajectory for x4 is
denoted by x4d and

E4 = x4d − x4. (43)

stands for the tracking error.
The Lyapunov function, taking into account signals e, E1, E2, E3 f , is

V3 = V2 +
1
2

E2
3 f . (44)

Selecting x4d as
x4d = z2 + k3E3 f + C1N E2. (45)

where k3 > 0, we are able to obtain
.
E3 f = z2 − x4d + E4 = −k3E3 f + E4 − C1N E2. (46)

and
.

V3 =
.

V2 +
1
2 E3 f

.
E3 f ≤ −(α− r1 − r2)eTe− k1E2

1 − k2E2
2 + εε1 −

C2
1N
2 E2

2

+C1N E3 f E2 + C1NρE2 −
C2

1N
2 E2

2 + E3 f

(
−k3E3 f + E4 − C1N E2

)
=

−(α− r1 − r2)eTe− k1E2
1 − k2E2

2 − k3E2
3 f + E3 f E4 + εε1 − 1

2 (ρ− C1N E2)
2 + 1

2 ρ2

≤ −(α− r1 − r2)eTe− k1E2
1 − k2E2

2 − k3E2
3 f + E3 f E4 + εε1 +

1
2 ρ2

m

(47)

Stage 4.
Finally, we are able to use the real control T to stabilize the complete system. We start

with the dynamics of the tracking error Equation (43):

.
E4 =

.
x4d −

.
x4 = x4d −

.
x4 =

.
z2 + k3

.
E3 f + C1N

.
E2 − C2N x1 − D4N x2 + C2N x3

+(D4N + B4N)x4 + FN4(x4)− RT − DC4(t) = 1
a2
(x3d − z1 − a1z2)

+k3

(
−k3E3 f + E4 − C1N E2

)
+ C1N(−w2E2 + w1(−l11e3 − l12e4) + C1N E3)

+C1N(C1Ne3 − l21e3 − l22e4 − E1) + C2N x3 + (D4N + B4N)x4 + FN4(x4)
−C2N x̂1 − C2Ne1 − D4N x̂2 − D4Ne2 − RT − DC4(t)

(48)

where DC4(t) stands for the fourth component of uncertainty representing signal DC(t)
defined in Equation (8) and is bounded: |DC4(t)| ≤ Dc4m ≤

√
ε1.

Selecting the control

RT = 1
a2
(x3d − z1 − a1z2) + k3

(
−k3E3 f + E4 − C1N E2

)
+ C1N(−w2E2 + C1N E3)

+C1N(w1(−l11e3 − l12e4) + C1Ne3 − l21e3 − l22e4 − E1) + C2N x3 + (D4N + B4N)x4

+FN4(x4)− C2N x̂1 − D4N x̂2 +
√

ε1tanh
(

E4
µ

)
+ w4E4 + E3 f

(49)

with

w4 = k4 +
C2

2N + D2
4N

4r3
(50)

where the design parameters are k4 > 0, r3 > 0, µ > 0, we are able to obtain

.
E4 = −k4E4 − E3 f −

C2
2N+D2

4N
4r3

E4 − C2Ne1 − D4Ne2 −
√

ε1tanh
(

E4
µ

)
− DC4(t) (51)
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The final Lyapunov function, taking the complete system and the observer into
account is

V4 = V3 +
1
2 E2

4. (52)

Therefore,
.

V4 =
.

V3 + E4
.
E4 ≤ −(α− r1 − r2)eTe− k1E2

1 − k2E2
2 − k3E2

3 f + E3 f E4 + εε1 +
1
2 ρ2

m

+E4

(
−k4E4 − E3 f −

C2
2N+D2

4N
4r3

E4 − C2Ne1 − D4Ne2 −
√

ε1tanh
(

E4
µ

)
− DC4(t)

)
=

−(α− r1 − r2)eTe− k1E2
1 − k2E2

2 − k3E2
3 f − k4E2

4 + εε1 +
1
2 ρ2

m + r3
(
e2

1 + e2
2
)

−r3

(
e1 +

C2N
2r3

E4

)2
− r3

(
e2 +

D4N
2r3

E4

)2
−√ε1E4tanh

(
E4
µ

)
− E4DC4(t)

(53)

and this provides the inequality

.
V4 ≤ −(α− r1 − r2 − r3)eTe− k1E2

1 − k2E2
2 − k3E2

3 f − k4E2
4 + εε1 +

1
2 ρ2

m

−√ε1E4tanh
(

E4
µ

)
+
√

ε1|E4| −
√

ε1|E4|+ |E4||DC4(t)|.
(54)

Using the well-known inequality 0 ≤ |u| − utanh
(

u
µ

)
≤ 0.278µ [47] simplifies

Equation (54) into

.
V4 ≤ −(α− r1 − r2 − r3)eTe− k1E2

1 − k2E2
2 − k3E2

3 f − k4E2
4

+εε1 +
1
2 ρ2

m + 0.278µ
√

ε1.
(55)

This derivation can be concluded by the following theorem.

Theorem 2. If the positive design parameters α, ε (for the observer) and k1, k2, k3, k4, r1, r2, r3, µ
(for the controller) are selected to fulfill the condition

α− r1 − r2 − r3 > 0, (56)

the trajectories of the state vector ϑ =
[
e E1 E2 E3 f E4

]T
are uniformly ultimately bounded (UUB).

Proof of Theorem 2. Indeed, it follows from (55) that
.

V4 < 0 outside a compact set D ={
ϑ : ϑ2 ≤ Ω

Km

}
, where Ω = εε1 +

1
2 ρ2

m + 0.278µ
√

ε1 and Km = min{α− r1 − r2 − r3, k1, k2,
k3, k4 }, so the trajectories of ϑ are ultimately uniformly bounded (UUB) to the tightest
level set of V4(ϑ) containing the set D [44].

Moreover, it is possible to reduce the volume of D by increasing Km, i.e., increasing
α, k1, k2, k3, k4. �

The obtained result concerns the tracking gap E1 = x1d − x̂1 between the desired load
position and the estimated load position obtained from the observer. The main aim of
the controller is to diminish the tracking error x1d − x1 between the desired and real load
position. Considering that

|x1d − x1| = |x1d − x̂1 + x̂1 − x1| = |E1 − e1| ≤ |E1|+ |e1| (57)

and that both E1 and e1 are UUB proves that also x1d − x1 is UUB.
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Further investigation of Equation (55) allows to write down:

.
V4 ≤ −(α− r1− r2 − r3)eTe− k1E2

1 − k2E2
2 − k3E2

3 f − k4E2
4 + Ω

≤ −
(

α−r1−r2−r3
λM(P)

)
eTλM(P)e− k1E2

1 − k2E2
2 − k3E2

3 f

−k4E2
4 ≤ −2γm

1
2

(
2eT Pe + E2

1 + E2
2 + E2

3 f + E2
4

)
+ Ω

= −kmV4 + Ω

(58)

where

γm = min
{

α− r1 − r2 − r3

2λM(P)
, k1, k2, k3, k4

}
, km = 2γm. (59)

The inequality (58) is the initial point to the series of transformations:

ekmt
.

V4 ≤ −kmekmtV4 + ekmtΩ
d

dτ [e
kmτV4] ≤ ekmtΩ∫ t

0
d

dτ

[
ekmτV4(τ)

]
dτ ≤

∫ t
0 ekmτΩdτ

ekmtV4

∣∣∣t
0
≤ ekmt Ω

km

∣∣∣t
0

ekmtV4 −V4(0) ≤ Ω
km

(
ekmt − 1

)
V4(t) ≤ e−kmtV4(0) + Ω

km

(
1− e−kmt

)
(60)

Using the last inequality, we obtain

1
2

λm(P)e2
1 ≤

1
2

λm(P)eTe ≤ 1
2

eT Pe ≤ V4 ≤ e−kmtV4(0) +
Ω
km

(
1− e−kmt

)
(61)

and
1
2

E2
1 ≤ V4 ≤ e−kmtV4(0) +

Ω
km

(
1− e−kmt

)
. (62)

As E2
1 + 2e1E1 + e2

1 ≥ 0 and (x1d − x1)
2 = (E1 − e1)

2 = E2
1− 2e1E1 + e2

1 ≤ E2
1− 2e1E1 +

e2
1+E2

1 + 2e1E1 + e2
1 = 2

(
E2

1 + e2
1
)
, inequalities (59) and (60) result in

(x1d − x1)
2 ≤ 2 (E2

1 + e2
1)

≤ e−kmtV4(0) + Ω
km

(
1− e−kmt

)
+ 1

λm(P)

(
e−kmtV4(0) + Ω

km

(
1− e−kmt

))
≤ e−kmt

(
V4(0) +

V4(0)
λm(P)

)
+
(

Ω
km

+ Ω
λm(P)km

)(
1− e−kmt

)
.

(63)

So, for t→ ∞

lim
t→∞
|x1d − x1| ≤

√
Ω
km

+
Ω

λm(P)km
. (64)

The inequalities (63) and (64) derived here may be too conservative to provide practical
constraints for the tracking error, but they clearly indicate the influence of the design
parameters on the transient and quasi-steady-state behavior of the tracking error.

In Figure 2, the schema of the proposed controller is presented. The procedure for
tuning the controller parameters is shown in Figure 3.
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5. Results

The distinctive features of the proposed approach are investigated by a simulation of
a drive with load and motor inertia J2 = 374

[
kg m2], J4 = 2122

[
kg m2]. Such big values

are typical for huge manipulators used in heavy industries. The parameter J4 contains not
only the motor but also the so-called rotary table. A simplified diagram of such a device,
used to manipulate objects in a huge CNC machine is shown in Figure 4.
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The friction torques of the motor T4 and load T2 are described by

Ti(xi) = bixi + Tf i(xi), Tf i(xi) =

(
fsi + ( fci − fsi)e

−( xi
xsi

)
2)

tanh(Kixi); i = 2, 4. (65)

The parameters in Equation (65) are: b4 = 50
[

Nms
rad

]
, b2 = 425

[
Nms
rad

]
, fs4 = 150 [Nm],

fc4 = 400 [Nm], fs2 = 15 [Nm] , fc2 = 24 [Nm], xs2 = xs4 = 0, 1
[

rad
s

]
, K2 = K4 = 100

[ s
rad
]

.

The stiffness and damping parameters of the shaft are: c = 473
[

Nm
rad

]
, d = 1

[
Nm·s
rad

]
. The

exact value of matrix A is:

A =


0 1 0 0

−1.2647 −0.1364 1.2647 0.0027
0 0 0 1

0.2229 0.0005 −0.2229 −0.2008

 (66)

The step response of the motor speed and the load speed is shown in Figure 5. At
t = 100 [s], fs2 , fc2 were multiplied by 10/3. We can observe the oscillatory character of
the two-mass resonant systems. As the moments of inertia J4, J2 are quite big, the plant is
rather slow. The strongly nonlinear friction also contributes to high amplitude oscillations
visible during the first 40 s of the step response. In Figure 6, the open loop position control
is presented. The drive is started with constant torque T = 550 [Nm]. At time t = 40 [s] the
value of the propelling torque T was changed to zero. Torsional vibrations are visible in
both cases—in Figures 5 and 6, during the starting and braking phases. The oscillatory shaft
twisting is visible in plots of the torsion angle. Of course, it is an unacceptable phenomenon
and will be eliminated by the proposed controller.
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red line) and motor speed x4 (dashed black), (b) torsion angle ϕ = x3 − x1.
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Simulation examples, selected from many performed, are presented below. In the
first example, the properties of the proposed robust observer were checked. The second
example presents the results of the designed control algorithm.

5.1. Example 2—Observer Performance

First, the features of the observer proposed in Section 2 are presented. The tuning of
the observer begins with selecting parameters α and ε and solving inequality (16). The gain
matrix L is calculated from Equation (13).

In the first experiment, the influence of the design parameters on the performance
of the observer was checked. The initial conditions for the observer were selected as
x̂(0) = [1 0 1 0]T and for the two mass system as x = [0 0 0 0]T . The constant torque
T = 2000 [Nm] is applied. It was assumed that all plant parameters are known, so the
nominal matrix AN was equal to the true matrix A. The tests were carried out for three
values of the parameter α: α1 = 1; α2 = 3 and α3 = 7, while ε remains constant ε = 100.
Following the solution of LMI (16), the gain matrices L were obtained:

L1 =


0 498

37.9 −6.3
69 30
−6.7 179

; L2 =


0 1169

12.6 437
69 10
−2.2 186

; L3 =


0 1870

10 1568
16 1
−0.22 4.4

 (67)

The results of the experiment are shown in Figure 7. All errors converge to zero, so
x̂ → x . The proposed observer provides the perfect estimation of state variables x if the
exact parameters of the plant are known. A faster error convergence is obtained for higher
values of parameter α.
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In the second experiment, the observer robustness was tested against the parametric
uncertainty. The observer errors e1 and e2 are shown in Figure 8 for two different values
of parameters α. The observer is started knowing the actual values of parameters J1, J2,
fs4, fc4, fs2 , fc2, xs2, and xs4. The real parameters c, d, b2, and b4 used in the observer were
equal to 110% of the nominal parameters. The constant torque T = 2000 [Nm] was applied.
At t = 60 [s], the actual value of J2 (load inertia) was increased to 120% of the nominal
value (J2 = 449

[
kg m2]). Finally, at t = 120 [s], the actual fs2 and fc2 (load-end friction

parameters) were increased to 120% of the nominal values ( fs2 = 18 [Nm], fc2 = 29 [Nm]).
The initial conditions of the observer and the drive were equal.
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The proposed observer is working correctly. The influence of the plant parameter
changes is stronger if the design parameter α is smaller. For a wide range of parameter
changes, the proposed observer is stable in the UUB sense, the steady-state errors are small
(less than 0.25% of the steady-state values), and will be compensated by the nonlinear
tracking controller.

5.2. Example 2—Closed-Loop System Performance

The closed-loop system is designed, starting with the selection of parameters α and ε.
Next, the LMI Equation (16) is solved and therefore the observer is designated. The design of
the controller requires the selection of the parameters of the filter—a1 and a2 Equation (39),
and next, the controller parameters k1, k2, k3, k4, r1, r2, r3, µ must be adjusted, having in
mind inequality (56). The gains k1, k2, k3, k4 are especially important, as they influence the
speed of convergence and the quasi-steady-state behavior of the tracking errors.

For all presented experiments, the observer was designed using α = 0.5 and ε = 300.
The gain matrix L was calculated from Equation (13)

L =


0 223.4

1.2647 231.04
4.6 1

−0.2229 12263

 (68)

The filter parameters in Equation (39) are a1 = 0.02 and a2 = 10−4. The controller
parameters r1 = r2 = r3 = 0.05, µ = 0.01 are constant, while a few variants of the gains
k1, . . . , k4 are tested.

During the first experiment, the position tracking of a continuous reference trajectory
is studied. The desired position is x1d = 0.3 sin(0.3t). The observer initial condition is
x̂(0) = [0 0 0 0]T and the drive initial condition is x(0) = [0.3 0 0 0]T .

Nominal values of parameters J2, fs2, and fc2 are equal to 120% of the true val-
ues. Other parameters are known exactly. The results of the experiments are shown in
Figures 7–9.
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Figure 9 demonstrates the internal controller tracking errors E1 = xd − x̂1 and
E2 = x2d − x̂2 for the different values of control parameters k1, . . . , k4. Filtered error E3 f
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and error E4 are shown in Figure 10 (only initial and quasi-steady state parts of the time
history are presented in Figure 10b). The proposed controller is working correctly in a wide
range of controller gains k1, . . . , k4. The internal signals of the controller are UUB. For the
bigger values of parameters ki the steady-state tracking errors Ei are smaller.
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Of course, the control aim is to minimize the tracking errors x1d − x1 and
.
x1d − x2. It

is demonstrated in Figure 11 (again, only initial and quasi-steady state parts of the plots
are presented) that these tracking errors are sufficiently small (quasi-steady state error
amplitude is smaller than 1.7% of the reference amplitude) and increasing gains k1, . . . , k4
of the controller reduces the quasi-steady state errors. In the interval [40, 80][s], both the
mean and the extremal quasi-steady state error for k1 = k2 = k3 = k4 = 15 (solid red line
in Figure 11) are evidently smaller than for k1 = k2 = k3 = k4 = 5 (dashed black line in
Figure 11).
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The reference x1d = 0.3 sin(ωt), ω = 0.3
[

rad
s

]
results in the reversal motion between

[−0.3, 0.3] [rad] with the speed in the range [−0.09, 0, 09]
[

rad
s

]
. Although the quasi-steady

state tracking error is small |x1d − x1| < 10−3 [rad], the extrema of this error occur close to
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extremal values of x1d, so, when the desired speed is close to zero. To check the impact of
the variable desired speed on the accuracy of tracking, the same experiment was repeated
with different values of ω. Two quality measures were used to evaluate the operation of
the control system during the transient: the maximum absolute error (MAE) and integral
squared error (ISE). Results are presented in Table 5. It may be observed that bigger ω
(faster reversal motion) results in a bigger MAE and ISE, while the quasi-steady state
tracking error remains at the same level.

Table 5. Comparison of the quality indices ISE and MAE for the different values of ω.

ω ISE(x1d−x1) MAE(x1d−x1) ISE(
.
x1d−x2) MAE(

.
x1d−x2)

0.6 0.0023 0.008 0.0017 0.01

0.4 0.0008 0.005 0.0007 0.008

0.2 0.0006 0.003 0.0003 0.005

0.1 0.0005 0.002 0.0001 0.003

0.05 0.0004 0.0015 0.00007 0.001

In the second experiment, the main control aim is to follow the desired position
trajectory shown in Figure 12. Initially, the reference position x1d starts from 0 to 0.2[rad].
At t = 10 [s], x1d is changed from 0.2[rad] to 0.1[rad]. Next, at t = 20 [s], x1d is changed
from 0.1[rad] to −0.2[rad]. For the end, at t = 30 [s], x1d is changed from −0.2[rad] to 0[rad].
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Figure 12. The desired trajectory x1d (solid red line) and derivative
.
x1d (dashed black line).

Figure 13 demonstrates the tracking errors E1 = xd − x̂1 and E2 = x2d − x̂2 for
different values of control parameters k1, . . . , k4. The tracking errors x1d − x1 and

.
x1d − x2.

are demonstrated in Figure 14—again only the initial and quasi-steady state parts of the
plots are presented. In the interval [10, 40][s], both, the mean and the extremal quasi-steady
state error for k1 = k2 = k3 = k4 = 15 (solid red line in Figure 14) are evidently smaller than
for k1 = k2 = k3 = k4 = 5 (dashed black line in Figure 14), so increasing the gains k1, . . . , k4
reduces the quasi-steady state errors. Despite the rapid changes in the desired speed

.
x1d

presented in Figure 12, the proposed controller offers a fast response to any change of
the reference and a small steady-state error. The control system is stable. The torsional
oscillations of the shaft are eliminated. Good tracking and transient performances are
maintained, although the desired trajectory is not smooth at the isolated points.
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The aim of the third experiment is to demonstrate the robustness of the proposed
controller against the friction changes. The drive started knowing the actual values of
the friction parameters. The reference position x1d = 0.3 sin(0.3t) is applied. At time
t = 50 [s], the actual values fs2 and fc2 were increased, achieving 130% of initial values
( fs2 = 19.5[Nm], fc2 = 31 [Nm]) and at t = 100 [s], the real values fs4 and fc4 were
increased to 110% of the initial values ( fs4 = 165[Nm], fc4 = 440 [Nm]). The simulation
results obtained with k1 = k2 = k3 = k4 = 5 are presented in Figures 15 and 16.
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Following the change of the actual friction parameters, the system remains stable. All
tracking errors are bounded. As it may be expected, more differences between the actual
and nominal parameters increase the tracking errors, but the tracking is still sufficiently
accurate and fast.

The aim of the last experiment is to demonstrate the robustness of the proposed
regulator to the unstructured disturbances d2(t) and d4(t), which represent the external
disturbances, modelling inaccuracies, etc. The drive started knowing the actual values of
all parameters. The reference position x1d = 0.3 sin(0.3t) is applied. The controller gains
are k1 = k2 = k3 = k4 = 5. At time t = 50 [s], the disturbance d2(t) = 4 sin(0.5t) appears.
At t = 150 [s], the disturbance d2(t) disappears and the disturbance d4(t) = 6 sin(0.1t)
appears. Such disturbances are quite big, compared with the reference x1d and

.
x1d. The

internal controller’s tracking errors are presented in Figure 17a,b, while the resulting
tracking errors x1d − x1,

.
x1d − x2 in Figure 18.
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Again, it is demonstrated that the proposed controller is robust against the external
disturbances. When a disturbance occurs, the tracking error increases but remains bounded
and the tracking accuracy is satisfactory.

6. Conclusions

A two-mass system considered here, was modelled by ordinary differential equations.
A robust control approach was applied, which means that the nominal parameters were
considered, and the system uncertainty represents a modelling gap between a nominal
model and a real plant. The model includes nonlinear reactive torques, acting against
the motion on both ends of a flexible shaft. Furthermore, the unstructured disturbances
representing the external signals and modelling errors are included into the considered
model. The only critical assumption concerning the model is that any uncertainty consid-
ered is bounded, however knowing the bound is not necessary. Thanks to this approach,
the model used can be very general, flexible, and useful in numerous applications.

As the only measured signals are motor speed and position, an observer was necessary
to control the load position effectively. Having considered several possibilities, a robust
observer, based on the LMI solution, was designed to obtain the state estimation. It was
formally proven that the estimation error is uniformly ultimately bounded (UUB), despite
any bounded uncertainties. The observer design methodology was discussed and the
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impact of the design parameters on the observer performance was clearly established. The
problem of testing several different algorithms to solve the LMI (16) will be the topic of
further research.

A nonlinear controller was designed to cooperate with the observer and to assure suf-
ficiently the accurate tracking of a desired position by the load. The controller was derived
using a creative modification of backstepping. The control command filtering technique
was used to avoid an ‘explosion of complexity’. Finally, it was proven that the closed-loop
observer-controller system trajectories are UUB despite any bounded uncertainties.

Several constraints on the state estimation errors and tracking errors, concerning the
speed of convergence and the quasi-steady-state behavior, were derived. Although the
obtained bounds are rather conservative, the derived formulae clearly indicate the influence
of design parameters on the system performance. Therefore, the obtained controller,
although containing 10 design parameters, is easy to tune.

Finally, the system performance was investigated by several examples concerning a
huge manipulator. It was demonstrated that:

• the state estimations became accurate if the real system agrees with the model exactly,
• it is easy to obtain sufficiently accurate state estimations in the presence of any bounded

parameter gap and bounded disturbances, by straightforward parameter tuning,
• the obtained closed-loop system tracks the desired load position sufficiently accurately

and its UUB stability remains robust against the changes of parameters and the
presence of bounded (but necessarily small) external disturbances, even if the reference
trajectory is not smooth at the isolated points.

In summary, the problem of load position tracking by a two-mass system with incom-
plete state measurements was solved under a unique, never reported in references, set of
assumptions. The proposed novel approach, connecting a robust, LMI-based technique
to design an observer and a nonlinear controller derivation assuring the UUB stability,
proved to be effective and comfortable and may be recommended for practical applications.
The same observer-controller eliminates effectively two main difficulties occurring in a
two-mass system control problem: the torsional oscillations of the flexible shaft and the
degrading influence of the nonlinear friction or friction-like disturbance acting on both
ends of the shaft.

A reliable study of the practical implementation of the described theory is left to the
next paper. The obtained results make the practical implementation plans realistic, the
controller is tunable and robust. The preliminary results are promising. The practical
implementations depend on several factors neglected during the theoretical design, such as
the sampling time, the digital position measurement, the digital speed calculation method,
the unmodeled dynamics (inertia, delay) in propelling the torque generation, etc. The
impact of all of these factors on the overall performance of the system is complicated. It
is well known that some of them, such as increasing the sampling time, deteriorate the
quality of the control. The control of so-called “imperfect systems” has been studied only
recently and it has been noticed that in some electromechanical systems, it is possible to
exploit the inevitable imperfections associated with the physical realizations, by stimulating
the hidden dynamics associated with them [48]. For the discussed system, it may be the
unmodeled dynamics of sensors and actuators. Thus, the problem remains complex, and
the study of the qualitative and quantitative impacts of all of these factors on the system
performance requires separate research and will be presented soon.
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38. Kabziński, J.; Mosiołek, P. Adaptive, Observer-Based Synchronization of Different Chaotic Systems. Appl. Sci. 2022, 12, 3394.
[CrossRef]

39. Dimassi, H.; Said, S.H.; Loria, A.; M’Sahli, F. An Adaptive Observer for a Class of Nonlinear Systems with a High-Gain Approach.
Application to the Twin-Rotor System. Int. J. Control 2021, 94, 370–381. [CrossRef]

40. Pourgholi, M.; Majd, V.J. An LMI-Based Adaptive Resilient Observer Design for a Class of Nonlinear Systems. In Proceedings
of the 2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC), St. Petersburg, Russia, 8–10 July 2009; pp. 643–647.
[CrossRef]

41. Chen, M.-S.; Chen, C.-C. Robust Nonlinear Observer for Lipschitz Nonlinear Systems Subject to Disturbances. IEEE Trans.
Automat. Control 2007, 52, 2365–2369. [CrossRef]

42. Bo, T.X.; Ohishi, K.; Miyazaki, T.; Yokokura, Y. Sensor-Less Torque Control Considering Contact Phase for Two-Mass System. In
Proceedings of the 2018 IEEE 15th International Workshop on Advanced Motion Control (AMC), Tokyo, Japan, 9–11 March 2018;
pp. 687–692. [CrossRef]

43. Pennestrì, E.; Rossi, V.; Salvini, P.; Valentini, P.P. Review and Comparison of Dry Friction Force Models. Nonlinear Dyn. 2016, 83,
1785–1801. [CrossRef]
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