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Abstract: This paper proposes a denoising method of vibration signal based on improved multiresolu-
tion singular value decomposition (IMRSVD) and effective component selection. A new construction
method of trajectory matrix is used, which can enhance the oscillating component of the original
signal. Next, based on the improved trajectory matrix, singular value decomposition (SVD), which
plays the role of pre-decomposition, is used to obtain multiple one-dimensional components, and the
further decomposition of that is achieved by multiresolution singular value decomposition (MRSVD).
Finally, the effective components selection of a series of decomposed signal components is achieved
based on the proposed feature evaluation index (FEI). The denoising experiments are carried out
using the simulation signal and the vibration signal of planetary gear, respectively. The experimental
results show that the proposed method performs better than the traditional SVD denoising method,
and the weak fault feature in the vibration signal can be extracted successfully. In addition, the
comparison between periodic modulation intensity (PMI) and FEI displays that the proposed method
has better robustness and accuracy than the interference components with similar frequency. Thus,
the proposed method is an effective weak fault feature extraction and denoising tool of vibration
signals for fault diagnosis.

Keywords: denoising; vibration signal; feature extraction; IMRSVD; FEI

1. Introduction

Nowadays, gear is the most important transmission device in mechanical equipment,
and its fault diagnosis research is of great significance to ensuring equipment safety and
operation [1]. Vibration signal analysis is a widely accepted fault diagnosis tool for me-
chanical equipment [2]. By analyzing feature information in vibration signals, the early
faults can be diagnosed while economic losses and casualties can be avoided. However,
the harsh working conditions of the gear cause the vibration signal to contain a lot of noise
and interference components. The fault feature information is generally covered by noise
interference, and the accurate diagnosis result is hard to be gained directly [3]. Therefore, it
is necessary to study the preprocessing denoising method for vibration signals which can
effectively eliminate noise interference and retain fault information.

After years of development, many signal processing methods and theoretical models
have been used for signal denoising and weak fault feature extraction, such as dynamic
analysis [4], computational fluid dynamics [5], wavelet transform [6,7], adaptive time-
frequency decomposition [8,9], blind source separation [10,11], singular value decompo-
sition (SVD) [12], stochastic resonance [13,14], and deconvolution-based methods [15,16].
In addition, their improved methods and other sensor detection methods have also been
explored and studied for better performance. Osornio-Rios [17] is based on the infrared mea-
surement system. The classification and recognition of various faults in the transmission
chain are realized through preprocessing, statistical feature extraction, high-dimensional
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feature generation, and feature reduction. Zamudio-Ramirez [18] proposed a diagnosis
method by analyzing stray flux signals. Statistical time domain-based features, principal
component analysis, and neural networks are used to identify the uniform wear of gear.
In the aspect of the vibration signal process, Hu [19] extracted the bearing fault features
using a ridge extraction algorithm based on dynamic path optimization and enhanced
empirical wavelet transform. The experimental results demonstrate that the proposed
method is robust to noise and effective for bearing fault detection under variable speed
conditions. Xiao [20] proposed a digital speckle pattern interferometry phase denoised
method based on improved variational mode decomposition, which can effectively filter
out noise interference. Hu [21] introduced the dual-tree complex wavelet transform into
the multiscale noise tuning stochastic resonance method to improve the signal-to-noise
ratio of the signal. Laha [22] proposed a modified nonlocal means denoising algorithm
for the rolling element bearing fault diagnosis. The proposed method is compared with
minimum entropy deconvolution, and the results show that it is robust against various
noise levels.

Among the above methods, SVD is concerned and studied. SVD is a kind of matrix
orthogonalization decomposition method which can effectively reflect some properties
of matrices. Because of its remarkable effect in signal denoising and feature information
extraction, it is applied to fault detection as well as many other fields [23,24]. Ye [25]
presented a novel K times singular value decomposition-based denoising algorithm to
separate the Gaussian noise from the division-of-focal-plane image and preserve the details.
Yi et al. [26] proposed a quaternion singular spectrum analysis method based on convex
optimization. The useful signal and noise can be distinguished by quaternion singular value
decomposition to augmented trajectory matrix. Zhao et al. [27] proposed a reweighted
singular value decomposition strategy. A novel information index was introduced to
quantify the diagnostic information, and a truncated linear weighting function was used to
control the contribution of each component during the denoised signal reconstruction. The
results show that the weak fault feature with heavy noise and environmental interferences
can be extracted successfully. Traditional SVD denoising can achieve good results under
ideal conditions. However, in harsh working conditions, the denoising effect can be affected,
and the weak fault information is easy to be lost [28,29]. These remaining problems restrict
the practical application of the method, and further improvement is needed.

In this paper, a new denoising method is proposed. Combined with IMRSVD and
FEI, effective signal components can be selected to reconstruct the denoising signals. The
simulation and experimental results show that the proposed method performs better than
the traditional SVD denoising method. The weak fault feature components in the original
signal can be effectively preserved. Signal component selection is based on signal-to-
noise ratio rather than signal energy. The process of decomposition and reconstruction is
simple and complete, with fewer parameters to be set. These are beneficial to the practical
application of the proposed method. The remainder of this paper is composed as follows:
Section 2 establishes the mathematical model of the improved denoising method based
on IMRSVD and FEI. In Section 3, the performance of the proposed method is tested by
processing the simulation signal, and the results are compared with the traditional SVD
denoising method. In Section 4, the fault signal denoising experiment is carried out, the
vibration signals of the gear are processed and analyzed using the proposed method, and
the effectiveness is further verified. In the last section, many conclusions are summarized.

2. Model Establishment
2.1. The Basic Theory of IMRSVD
2.1.1. The Improvement of Trajectory Matrix

The construction of the trajectory matrix is the key to the denoising method based on
SVD. In this paper, a new construction method of trajectory matrix is applied. Assuming
that the time series is {x1, x2, . . . , xN}, the data length is N, and the embedding dimension
is set to m, the one-dimensional time series can be converted into X =

{
X̂1; X̂2; . . . ; X̂m

}
,
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where X̂i = {xi, xi+1, . . . , xN, x1, x2, . . . , xi−1}, i = 1, 2, . . . , m. For example, if the time series
is {1, 2, 3, 4, 5, 6}, and the embedding dimension m is set as 4, then the obtained matrix
is as follows:

X =


1 2 3 4 5 6
2 3 4 5 6 1
3 4 5 6 1 2
4 5 6 1 2 3

 (1)

Because the matrix diagonalization before SVD can enhance the oscillation components
in the decomposition results of SVD, which contain more feature information and useful
signals. The six elements in the lower right corner of matrix X are placed in the upper left
corner to obtain the improved trajectory matrix, and it is as follows:

X =



1
1 2

1 2 3
1 2 3 4 5 6
2 3 4 5 6
3 4 5 6
4 5 6


(2)

2.1.2. SVD

SVD [30] is an effective matrix analysis tool that can be used to decompose and
transform a matrix. It can be used to obtain a low-rank matrix to approximate the original
matrix. For the improved trajectory matrix X, the existence of two orthogonal matrices,
U ∈ Rm×m and V ∈ Rn×n, allows the following equations to be established [31]:

X = USVT (3)

S =

[
S1 O
O O

]
∈ Rm×n (4)

S1 = diag(σ1, σ2, . . . , σr) (5)

where σ1 ≥ σ2 ≥ . . . ≥ σr > 0 = σr+1 = σr+2 = . . . = σd, and σi(i = 1, 2, . . . , d) is called the
singular value of matrix X, r = rank(X), and d = min(m, n).

Equation (5) is the singular value decomposition of matrix X. Matrix U is the left
singular matrix; matrix V is the right singular matrix. Matrix S is the singular value matrix.
The SVD process of matrix X can also be represented as follows using column vectors ui of
U and column vectors vi of V :

X =
d

∑
i=1

uiσivi
T =

d

∑
i=1

Xi (6)

The above equations indicate that each singular value includes the feature informa-
tion of different components Xi of matrix X. The large singular value indicates that the
corresponding component is the main part of matrix X, whereas the small singular value
corresponds to the detail part.

Meanwhile, some rules must be followed during the process of reconstructing Xi into
a one-dimensional component xi of the original signal. According to the location of element
x(t) in matrix X, xi(t) can be obtained by calculating the mean value of the elements in the
same position in Xi. The specific process is as follows:

xi(t) = Xi(a, b) (7)

where t = 1, 2, . . . , N, a + b = t + 1, 1 ≤ a ≤ m, 1 ≤ b ≤ n.
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From the above, Equation (6) is equivalent to follows:

x =
d

∑
i=1

xi (8)

Equation (8) is still established in the process of obtaining the approximate matrix of X
by discarding some singular value components. This makes the signal decomposition and
reconstruction using SVD only require simple addition and subtraction of one-dimensional
components, which is an important basis for applying SVD in signal denoising, data
compression, and other fields.

2.1.3. IMRSVD

IMRSVD uses the bisection recurrence principle for multilayers decomposition based
on SVD [32], and the process of IMRSVD is as follows: Based on the construction method of
improved trajectory matrix and basic SVD theory, the trajectory matrix X with embedding
dimension m of the original signal x is obtained. The m matrix components X1, X2,...,Xm are
obtained using SVD, and m one-dimensional components x1, x2, . . . , xm are reconstructed.
This step can be called pre-decomposition. Then, for each signal component xj (j = 1, 2,
. . . , m), the 2 rows trajectory matrix is constructed, and signal components xj-1 and xj-2
are obtained after SVD and reconstruction. The xj-1 with a larger singular value is the
main component of xj, and the xj-2 with a smaller singular value is the detail component.
Each component is decomposed in this dichotomy form, and a total of 2m components are
obtained. The IMRSVD can be realized, which can be used to analyze the signal components
at different scales. Meanwhile, the noise and useful features contained in the original signal
will be decomposed into different signal components. The process of signal denoising can
be realized by making reasonable criteria to select the useful signal components containing
the feature information and reconstructing them. Figure 1 is the structure of IMRSVD.

Figure 1. The structure of IMRSVD.

2.2. Effective Component Selection

In the denoising method based on traditional SVD, the larger singular values are
usually selected to reconstruct the denoising signal, and the smaller singular values are
zeroed. The essence of this idea is selecting signal components based on energy. However,
larger energy does not mean more fault feature information. The fault feature information
in the collected signal under severe working conditions is usually covered by strong noise.
Even if the noise is removed, the remaining components usually include motor rotation
frequency, gear meshing frequency, device resonance, and their harmonic components.



Energies 2022, 15, 9089 5 of 21

This makes selecting components based on singular values easy to ignore and discard the
weak fault feature information. Therefore, a more effective component evaluation standard
needs to be defined.

The envelope analysis based on the Hilbert transform can effectively detect the impulse
components caused by faults. The envelope a(t) of the signal x(t) can be expressed as:

a(t) = abs[z(t)] = abs[x(t) + i·H(x(t))] (9)

where H(x(t)) is the Hilbert transform of the signal x(t), and z(t) is the analytic signal of x(t).
The low-frequency impact feature contained in high-frequency components can be

extracted using the Hilbert envelope. Based on the above, the FEI is used to select effective
components, and it is defined as:

FEI = S(f0)/N(f0) (10)

where f 0 is the fault feature frequency. S(f 0) is the power of the envelope signal at the
first h0 harmonics of f 0. Generally, it is considered that the harmonic component of fault
feature frequency also contains more fault feature information. If the number of harmonics
selected is too small, the necessary fault feature information will be ignored. Through
analysis, it is found that the signal components other than the fifth harmonic of the fault
feature frequency will become very weak. Therefore, in this paper, h0 is set to 5. N(f 0) is
the overall power of the envelope signal.

S(f 0) and N(f 0) can be calculated using the signal envelope spectrum. The fast Fourier
transform of the signal envelope a(t) can be represented as follows:

A(k) =
N−1

∑
t=0

a(t)e−j 2πkt
N (11)

The sampling frequency is fs, and the frequency domain coordinates corresponding to
the fault feature frequency f 0 can be obtained as k0 = f0(N − 1)/ fs. Thus, S(f 0) and N(f 0)
can be calculated as follows:

S(f0) =
h0

∑
h=1

w

∑
i=−w

|A(hk0 + i)|2 (12)

N(f0) =
N−1

∑
i=0
|A(i)|2 (13)

where w is a positive integer.
The fault gear or bearing will produce a periodic impulse feature. The frequency of

impulse depends on the speed, and the strength depends on the load and fault level. The
fault feature information in signal components can be effectively measured using FEI, and
the fault location can be determined according to different f 0. As fault feature energy is not
all included in f 0, the sum of the first h0 harmonics power is calculated to determine the
effective component more accurately, and the interference of the periodic component with
a frequency similar to f 0 is reduced.

2.3. The Proposed Denoising Method

Based on the above, a denoising method based on IMRSVD and effective component
selection is proposed. The flowchart of the proposed denoising method is displayed in
Figure 2, and the specific steps are as follows:
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Figure 2. The flowchart of the proposed denoising method.

Step 1: The construction method of the improved trajectory matrix is established,
which can enhance the oscillation components of the signal, and it is used as the basis for
subsequent decomposition.

Step 2: The embedding dimension is set as m, and the pre-decomposition of the original
signal based on SVD is conducted, and m one-dimensional components x1, x2, . . . , xm can
be obtained after reconstruction. For each reconstructed component, the trajectory matrix
with row 2 is further constructed, the decomposition in dichotomy form is carried out,
and the main feature signal and detail feature signal corresponding to each reconstructed
component can be obtained. The decomposition process of IMRSVD is realized, and a total
of 2m signal components are obtained.

Step 3: The FEI of 2m signal components are calculated, which is used to evaluate
the fault information contained in them. The fault feature frequencies f 0 of different fault
locations can be obtained by analyzing the transmission parameters of the equipment. The
FEI of f 0 can be used to evaluate the different fault feature information contained in the
signal components. The m signal components with higher FEI are preserved, and the others
are abandoned as noise and irrelevant signals.

Step 4: In the reserved m signal components, the maximum and minimum FEI ratio
fei = FEImin/FEImax is used as the index to detect, and the threshold fei0 is set. If fei < fei0,
repeat step 2 to step 4 to deal with the m retained signal components from the previous
round. In this process, the noise and irrelevant components in the signal can be stripped
and discarded, and the effective information can be retained.

Step 5: When fei ≥ fei0, the iteration will be terminated. The M one-dimensional
components obtained by iterative selection are reconstructed, and the final denoising signal
can be reconstructed.

The setting of fei0 is important, and if fei0 is too large and close to 1, it means that
the FEI indexes of the m reserved signal components are very similar. Since each signal
component is reconstructed according to different singular values after IMRSVD, this
situation is very difficult to meet, leading to too many iterations or even impossible to
achieve. If fei0 is set too small and close to 0, the iteration will be terminated quickly, and the
final denoising signal still contains a lot of interference information. In this paper, through
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many experiments and analyses, fei0 is set to 0.4. The denoising process will not fall into
many iterations and will not consume much time. It can also ensure that the main fault
feature information is retained and has a good processing result.

3. Simulation Signal Analysis

In the actual environment, the collected vibration signal is very complex, including
not only environmental noise but also multiple vibration sources inside the equipment,
resulting in a low signal-to-noise ratio. In order to be closer to reality, several main sources
are considered during the simulation signal construction: shaft rotation, gear meshing, fault
impulse, and environmental noise. The simulation signal construction process is as follows:

c1 = 0.1 sin(2× 40πt)
+0.05 sin(2× 2× 40πt + π/3)
+0.02 sin(2× 3× 40πt + π/3)

c2 = 0.1 sin(2× 145.83πt)
c3 = 0.1 sin(2× 666.67πt)

c4 = 0.3
∞
∑

i=1

[
sin(2000π(t− T(i− 1)))·e(−400abs(t−T(i−1)))

]
x0 = c1 + c2 + c3 + c4
x = x0 + n(t)

(14)

where c1 is the component of shaft rotation. c2 and c3 are used to simulate the components
of gear meshing, and their frequencies are 666.67 Hz and 145.83 Hz, respectively. c4 is
the component of fault impulse, which is the periodic modulation of natural frequency
vibration in fault position. The high-frequency vibration frequency of the simulated parts
caused by impulse is 1 kHz, the impulse period is 0.048 s, and the impulse amplitude is 0.2.
The simulation signal x0 formed by these periodic vibration components can be obtained.
Finally, Gauss white noise n(t) is added to simulate the strong noise conditions. The signal-
to-noise ratio of x0 is adjusted to 0 dB, and the noisy simulation signal x is constructed. The
sampling frequency is 10 kHz, and the sampling time is 1 s. Every signal component and
the final constructed simulation signal are shown in Figure 3, and its frequency spectrums
are shown in Figure 4.

Figure 3. The final constructed simulation signal and its components.
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Figure 4. The frequency spectrums of the final constructed simulation signal.

It can be seen from Figures 3 and 4 that the time domain waveform of the simulation
signal is regular before adding noise. The components of shaft rotation and gear meshing
are obvious, while the component of fault impulse is relatively weak and difficult to be
distinguished in the time domain. In the frequency domain, it distributes around the
carrier frequency and is still not obvious. There is no obvious feature near the fault feature
frequency. After adding Gauss white noise, the signal is submerged. In addition to strong
periodic components in the spectrum, most scattered fault features are all disturbed. In
Figure 5, the signal is demodulated directly using the Hilbert envelope. The envelope
spectrum of simulation signal x0 is relatively clean, but the fault feature peaks are rela-
tively weak due to the influence of various irrelevant periodic components. The envelope
spectrum of the final constructed simulation signal x′ is more chaotic, and the obvious
fault feature does not appear. The weak peak position does not correspond to the fault
feature frequency. This means that the noise and interference components greatly influence
the frequency and amplitude feature of fault components, which cannot be resolved or
demodulated directly.

Figure 5. The envelope spectrums of the constructed simulation signal.
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The denoising method based on traditional SVD is adopted to process the constructed
simulation signal, and the first four components with larger singular values are used to
reconstruct the denoising signal. The denoising process is displayed in Figure 6; x1–x6
are the first six components obtained by SVD, and x is the denoising signal obtained by
reconstructing the first four components corresponding to larger singular values. The
frequency spectrum and envelope spectrum of the denoising signal are shown in Figure 7,
and the comparison between singular values and FEI is shown in Figure 8. The high-
frequency components of the original simulation signal are weakened, and the periodicity
is more obvious. In addition, it can be seen from the denoising signal in Figure 6 that
no clear impulse feature appears, and the peak value corresponding to the fault feature
frequency cannot be found both in the frequency spectrum and envelope spectrum. That
is because the retained components are not related to the fault, while x5 and x6, which
mainly contain impulse features, are ignored. It also can be seen from Figure 8 that x5 and
x6 components have larger FEI values, which is the proposed index for the selection of
effective components. If the retained effective components are determined according to
the first four FEI values, x5 and x6 components containing fault impulse feature signals
can be retained and reconstructed. The denoising method based on traditional SVD selects
effective components according to the size of singular values, and the denoising process is
based on energy instead of fault information. Under strong noise conditions, the singular
values of effective components are usually small. The high threshold of singular values
will result in the loss of effective components, while the low threshold will retain a large
number of noise and irrelevant components. In addition, some noise is still included
in the effective components after only one-time decomposition. All of these reduce the
denoising effectiveness.

Figure 6. The denoising process based on traditional SVD and the denoising signal.
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Figure 7. The frequency spectrum and envelope spectrum of the denoising signal. (a) frequency
spectrum, (b) envelope spectrum.

Figure 8. Comparison between singular value and FEI.

The proposed denoising method based on IMRSVD and effective component selection
is used to process the simulation signal, and the denoising process and denoising results
are displayed in Figures 9 and 10. The embedding dimension m is equal to 20, and the
threshold fei0 is set as 0.4. The different components are preliminarily separated in the
pre-decomposition stage and sorted according to singular value size. It can be seen from
Figure 9 that the FEI of most components in the pre-decomposition stage is smaller, except
x1, x5, and x6. The FEI of x5 and x6 with impulse features is 0.2 and 0.08, respectively, while
that of x1 is 0.1, which mainly contains irrelevant periodic components. The sequences of
effective components with obvious fault features are relatively backward. Using IMRSVD
for further processing, the components with low FEI are gradually eliminated, and the
whole FEI level of the retained components is gradually increased.
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Figure 9. Improved SVD denoising method process: (a) pre-decomposition, (b) 1st MRSVD, (c) 2nd
MRSVD, (d) 3rd MRSVD, (e) 4th MRSVD, and (f) 5th MRSVD.

Figure 10. Denoising results: (a) reconstructed signal, (b) frequency spectrum, and (c) envelope spectrum.

The main components of the final retention are mainly from x4 and x5 in the pre-
decomposition stage, and the whole FEI level is above 0.185. It should be noted that
the FEI of x4 is low, which indicates that the proposed method can detect and extract
weak fault impulse components. For the obtained denoising signal in Figure 10, the
impulse features caused by the fault are obvious in the time domain. The impulse period is
about 0.048 s, and the frequency is about 20.83 Hz, which coincides with the fault feature
frequency f 0. The average amplitude of impulse is still quite large compared with the
original fault component. The envelope spectrum of the denoising signal shows that the
peak value at point f 0 is obvious. In addition, the denoising signal’s frequency spectrum
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shows that the other components are completely suppressed except for the high-frequency
vibration of fault information. This indicates that the loss of fault information during
the denoising process is less, and other components are effectively separated to avoid
interference with diagnosis.

4. Experimental Analysis

(1) Experimental setup

The original vibration signals of the real experiment are collected on the DDS me-
chanical fault comprehensive simulation bench made by Spectra Quest Company from
the United States. The simulation bench is displayed in Figure 11 and comprises a motor,
planetary gearbox, parallel shaft gearbox, magnetic brake, data acquisition system, and
laptop. The motor can be set to any output speed through the control software. The plane-
tary gearbox has a two-stage planetary gear structure; its specific parameters are shown
in Table 1. The parallel shaft gearbox has a two-stage spur gear transmission structure,
and the magnetic brake provides load simulation. The data acquisition system collects the
vibration signal generated by the simulation bench and transmits it to the laptop computer
through the USB interface for storage and analysis. In this experimental setup, its fault
usually appears due to the frequent mesh of sun gear of the planetary gearbox. Therefore,
the normal sun gear and sun gear with the second stage planetary gear breakage in the
planetary gearbox are simulated, and the measured sun gears are displayed in Figure 12. A
triaxial sensor and several uniaxial sensors are used to collect vibration signals, and the
sampling frequency is set as 10,240 Hz. The motor output frequency is set to 40 Hz, and
the load is set to 13.5 N·m by a magnetic brake. The meshing frequency and fault feature
frequency of the planetary gearbox can be calculated and shown in Table 1.

(2) The analysis of the proposed method

The vibration signals of different gear states can be collected on the basis of the
simulation bench. The vibration signals and spectrums of normal gear and gear with
breakage are displayed in Figure 13, respectively. It can be seen from Figure 13 that there is
no obvious difference in vibration signals between normal signal and gear with breakage
in the time domain. The vibration signal of gear with breakage has an impulse feature, but
its period is not corresponding to fault feature frequency. There are a few differences in
the low-frequency band in the frequency domain, and more features appear in the high-
frequency band. However, the fault cannot be directly diagnosed as happening. Compared
with simulation signals, the components of the collected experimental signals are more
complex. The FEI of the vibration signals of the normal gear and gear with breakage are
0.028 and 0.034, respectively, which coincides with the unsatisfactory signal condition
before denoising.

Figure 11. The simulation bench and the installation position of sensors.
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Table 1. Basic parameters of two-stage planetary gearbox.

First Stage Second Stage

Sun
Gear

Planet
Gear

Ring
Gear

Sun
Gear

Planet
Gear

Ring
Gear

Number of teeth 20 40 100 28 36 100
Fault feature frequency (Hz) 100 16.67 20 20.83 4.05 5.83

Meshing frequency (Hz) 666.67 145.83

Figure 12. The measured sun gears.

Figure 13. The vibration signals and spectrums of normal gear and gear with breakage: (a) vibration
signal of normal gear, (b) vibration signal of gear with breakage, (c) frequency spectrum of normal
gear, and (d) frequency spectrum of gear with breakage.

The denoising method based on traditional SVD is used to deal with the vibration
signals of normal gear and gear with breakage. The first 6 components with larger singular
values are selected to reconstruct the denoising signals, which are displayed in Figure 14.
Compared with the original vibration signals, the denoising signals of normal gear and
gear with breakage have little improvement except for a slight amplitude decrease in the
time domain. The frequency spectrum shows that low-frequency interference is suppressed.
Although there is a peak at f 0 in the envelope spectrum, the harmonic components do
not appear. Thus, it is hard to determine if there is a fault. According to Figure 15,
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the signal components corresponding to the first 6 maximum FEI values are selected for
reconstruction, many interference components are still retained, and x7, x16, and x19 which
mainly contain impact features, are abandoned. The FEI of the denoising signal of normal
gear and gear with breakage are 0.032 and 0.04, respectively. That causes the loss of the
fault feature information.

Figure 14. Denoising results based on traditional SVD.

Figure 15. Comparison between singular value and FEI.

The proposed method based on IMRSVD and effective components selection is used
to process the vibration signals. If the embedding dimension m is set too small, the
number of signal components obtained by IMRSVD will decrease, making the fault feature
information gather in a few signal components. However, the fault feature information is
relatively weak. If one of the signal components is eliminated, the fault feature information
may be lost. If the embedding dimension m is set too large, a large number of signal
components will be obtained. The weak fault feature information may be decomposed
into a large number of signal components, which also easily leads to false elimination of
fault feature information. In this paper, the embedding dimension m is set to 20 through



Energies 2022, 15, 9089 15 of 21

many experiments, and the threshold fei0 is set as 0.4. The denoising process is shown
in Figures 16 and 17, and the denoising result is shown in Figure 18. For the vibration
signal of gear with breakage, the iteration is stopped after three times IMRSVD. The signal
components, which are independent of the fault feature, are separated gradually, and the
FEI value of the obtained denoising signal is 0.125, which is higher than that obtained
based on traditional SVD. Finally, the time-domain waveform of the denoising signal has a
more obvious impulse feature corresponding to the fault period of 0.048 s. Although there
are still some interference components in the denoising signal of gear with breakage, its
envelope spectrum is cleaner and has more obvious peaks at fault feature frequency and
harmonic points than that of normal gear. At the same time, the signal spectrum keeps
some high-frequency characteristics, and the rest are obviously weakened. It should be
noted that the periodic impulse of the signal has the characteristics with some amplitude
and frequency modulation, which is related to the special structure of planetary gear.

Figure 16. Denoising process based on IMRSVD for gear with breakage: (a) pre-decomposition,
(b) 1st IMRSVD, (c) 2nd IMRSVD, and (d) 3rd IMRSVD.

Figure 17. Denoising process based on IMRSVD for normal gear: (a) pre-decomposition,
(b) 1st MRSVD.
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Figure 18. Denoising results based on the proposed method.

For the vibration signal of normal gear, the iteration is stopped after only one-time
IMRSVD. Some irrelevant signal components are also separated, and the final denoising
signal has a larger amplitude. However, the whole level of its FEI is obviously lower
than that of gear with breakage, and the FEI of the denoising signal of normal gear is
0.048. There is no periodic impulse feature of denoising signal in the time domain, and
the envelope spectrum has no obvious peak value at fault feature frequency. Hence,
the gear can be considered to be in normal condition. In addition, although the motor
rotation frequency is similar to the second harmonic of the fault, it is eliminated in the
IMRSVD stage. On the one hand, FEI realizes the accurate detection and recognition of fault
features. On the other hand, the multiple selections of signal components by IMRSVD can
improve the signal-to-noise ratio. In order to compare the embedding dimension setting’s
effectiveness in the proposed method, the denoising results of gear with breakage when
the embedding dimension is set to 10 and 30, respectively, are shown in Figure 19. By
comparing Figures 18 and 19, it can be found that when the embedding dimension is 10,
the time-domain waveform of the denoising result does not show the signal periodicity
of gear with breakage. Through the analysis of its frequency spectrum, it can be seen that
there are still many signal components in the frequency band greater than 4000 Hz. From
its envelope spectrum, it can be found that the retained outstanding signal components
are motor rotation frequency and its harmonic frequency, and the fault feature frequency
information corresponding to gear with breakage has been completely eliminated, so there
is no way to judge the occurrence of fault through the envelope spectrum. When the
embedding dimension is 30, the time domain waveform of the denoising results shows
weak periodicity, and there are many signal components in the frequency band around
3000 Hz in its spectrum. In its envelope spectrum, although the fault feature information
of gear with breakage is retained, the motor rotation frequency interference is eliminated.
However, the harmonic component of the fault feature frequency corresponding to the
gear with breakage is also eliminated, and there is no corresponding peak value at the
harmonic part.
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Figure 19. Denoising results of gear with breakage when embedding dimension m is set to 10 and
30, respectively.

In order to further quantitatively compare the effectiveness of the proposed method,
the FEI of the original signals of normal gear and gear with breakage, the FEI of the
denoising results by traditional SVD method and the FEI of the denoising results by the
proposed method are compared and shown in Table 2. It can be seen from Table 2 that the
FEI values of the original signals are small. After processing the traditional SVD denoising
method, the FEI values increase, but the increase is not obvious. The FEI value of the
fault feature frequency of gear with breakage only increases from 0.034 to 0.04. After the
processing by the proposed method in this paper, the FEI value of the normal gear increases
from 0.028 to 0.048. The FEI value of gear with breakage is greatly improved from 0.034 to
0.125. This means that the denoising results obtained by the proposed method contain more
fault feature information. The FEI value of gear with breakage is obviously higher than
that of normal gear, and the state of the gear can be judged according to the FEI value and
spectrum analysis. From the above analysis, it can be seen that the proposed method can
effectively extract and retain signal components containing fault information and obtain
better denoising effect.

(3) Discussion

The essence of fault feature information in vibration signals is the periodic modulation
caused by fault impulse. Therefore, effective component selection requires the demodula-
tion and measurement of fault feature information. However, except for noise interference,
the original vibration signal usually contains many components which are independent of
the fault. They may have considerable energy, and the effective fault information can be
disturbed. Envelope demodulation based on the Hilbert transform is an effective method,
and SVD combined with the Hilbert transform can better separate noise and interference.
As shown in Figure 20, the low-frequency impulse contained in high-frequency vibration
can be displayed using an envelope.
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Table 2. The comparison of FEI with different processing method.

Original Signals Denoising Result by
Traditional SVD

Denoising Result by
the Proposed Method

Gear state Normal Breakage Normal Breakage Normal Breakage

FEI 0.028 0.034 0.032 0.04 0.048 0.125

Figure 20. Envelope demodulation of fault impulse.

A reliable index that can measure fault feature information is needed to realize effective
component selection. The proposed FEI is based on envelope spectrum analysis and the
signal-to-noise ratio at the feature frequency f 0, which can be used to achieve effective
component selection. Similarly, [27] proposed a component selection index called PMI
based on autocorrelation detection, and it is shown in Equation (14):

PMI =
Ep

En
=

Ra(T)
Ra(0)− Ra(T)

(15)

where Ep and En are the power of periodic components and noise, respectively. Ra is the
autocorrelation function of signal envelope a. T is the first peak location of Ra, i.e., the
period of periodic components in envelope a. Based on the autocorrelation function, the
periodic components in the signal envelope can be detected, and their contents can be
calculated according to PMI. The PMI of fault feature frequency f 0 can be used to determine
whether the signal component contains obvious fault feature information. However, PMI
also has some problems. On the one hand, the PMI of effective components is still small
due to noise interference. On the other hand, PMI has a weaker distinguishing ability on
irrelevant periodic components. The envelope autocorrelation function of component x13
of gear with breakage and the comparison between PMI and FEI are shown in Figure 21,
and it can be seen that the calculated PMI at fault impulse period T will be large enough
because the motor frequency is similar to the fault feature frequency harmonics. This will
interfere with the effective component selection. By comparing the FEI and PMI of gear with
breakage, it can be seen that PMI gives an overestimate to motor rotation vibration. Thus,
although PMI has some advantages in analyzing the pure signal, it will be affected when
the signal components are complex and noisy. On the contrary, FEI shows better accuracy
and robustness against these problems. It can limit the assessment scope to the fault feature
frequency more accurately. As the energy of typical impulse attenuates with harmonic
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sequence, FEI only takes the power sum of the first few harmonics during calculation.
This both ensures effective component selection accuracy and avoids the misjudgment of
other components.

Figure 21. The autocorrelation function of component of gear with breakage and the comparison
between PMI and FEI.

Based on the effective component selection using FEI, further component decompo-
sition and selection using IMRSVD can be achieved. The components with low FEI are
constantly abandoned to avoid unnecessary calculations. The components with high FEI
will be further decomposed and purified during the next iteration. These improve the
whole FEI level of the components left in each round of IMRSVD. As also can be seen
from Figures 9 and 16, the components with high FEI at the early stage have abandoned
subcomponents after further processing. This indicates that the components with high
FEI still contain some interference, and the proposed method can effectively exclude them.
Finally, when the whole FEI level reaches the set threshold, the final denoising signal can
be obtained and shows obvious impulse features corresponding to fault feature frequency.
It should be noted that although the proposed method has a good effect as a thought of
signal decomposition and denoising, it still has some limitations. In the proposed method’s
application process, some parameters still need to be set, which is not a completely adap-
tive noise reduction process. Therefore, the adaptive adjustment of parameters is a key
point of subsequent research. In addition, because the fault feature frequency components
generated by different types of faults at the same location are similar, which may bring
differences in amplitude and other aspects, the proposed method in this paper is mainly
based on FEI value for component screening. Moreover, the accurate diagnosis methods
for different types of faults at the same location need to be further studied.

5. Conclusions

The vibration signals of the gear contain strong noise and much interference, which
affect the extraction of fault feature information. Therefore, a denoising method of vibration
signals based on IMRSVD and effective component selection is proposed in this paper.
In the proposed method, SVD is used to achieve the pre-decomposition and the recon-
struction of the signal, and multiple one-dimensional components are obtained. Further
decomposition and effective component selection are achieved by using IMRSVD and the
proposed FEI index. The experiments were carried out by using a simulation signal and
a real vibration signal of planetary gear, respectively. After processing the real vibration
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signal by the proposed method, the FEI value of the normal gear increases from 0.028 to
0.048, and the FEI value of the gear with breakage is greatly improved from 0.034 to 0.125.
That verified that the proposed denoising method could detect and retain fault feature
information from noisy fault vibration signals, the noise interference and irrelevant compo-
nents can be effectively eliminated, and the state of the gear can be judged according to
the FEI value and spectrum analysis. In addition, the performance and difference between
FEI and PMI are discussed, and the accuracy and robustness of FEI are demonstrated.
Therefore, the proposed method is a reliable and effective tool for signal preprocessing and
interference elimination.
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