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Abstract: The structural design and operating strategy of a free piston expander–linear generator
(FPE–LG) has a major impact on performance. In this paper, the simulation model of single–piston
FPE–LG was built and verified by combining the structural parameters of the existing test rig with a
set of kinetic and thermodynamic equations. On this basis, the influence of the design and operating
parameters of the device on the performance was studied, while keeping other parameters fixed.
Then, a sensitivity analysis of power output and operating frequency was carried out. The results
show that within a certain range of external load and intake beginning position, increasing the
diameter of the intake and exhaust pipes, or reducing the piston rod diameter can improve the
power output. Within a certain range of frictional coefficient and intake time, increasing the cylinder
diameter and intake pressure, or reducing the piston assembly mass and back electromotive force
(EMF) constant can increase the operating frequency. Both the power output and the operating
frequency are most sensitive to the cylinder diameter among the design parameters. Among the
operating parameters, power output is the most sensitive to intake pressure, and operating frequency
is the most sensitive to intake beginning position. The optimization of structural design and operation
strategy in expander provides important guiding significance for ORC waste heat recovery system.

Keywords: single–piston free piston expander–linear generator; design and operating parameter;
waste heat recovery; sensitivity analysis; simulation model

1. Introduction

In order to achieve the goal of “carbon peaking and carbon neutrality” and create
an environment friendly and energy saving society, new energy construction and energy
conservation are effective ways that have been focused on and researched extensively. In
terms of new energy construction, actively developing and utilizing solar energy [1], wind
energy [2], compressed air [3] and other new energy sources to supplement the shortage of
conventional energy is widely adopted. Meanwhile, the optimization of energy storage
technologies is carried out simultaneously [4,5]. In terms of energy conservation, improving
energy conversion efficiency [6] and enhancing waste heat recovery and utilization [7]
are the main and most effective ways. Scholars from various countries have improved
waste heat recovery devices [8] and non–traditional internal combustion engines (ICEs) [9].
Among them, the organic Rankine cycle (ORC) system has been widely researched in
recent years due to its high efficiency [10], compact structure, low cost, and easy use
in recovering exhaust heat from ICEs [11]. A basic ORC system mainly consists of four
components: expander, condenser, pump, and evaporator. The expander is the main
heat-power conversion component in ORC system and plays a vital role.

Researchers around the world have explored different types of expanders in hopes
of finding better expanders for ORC systems. Bahadori et al. [12] found that there are
problems with turbo expanders in applications where the power output is less than 50 kW,
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such as low efficiency and high cost, as well as erosion of blades. The positive displacement
expander has potential advantages as an expander for low-power engines such as low-
cost, relative high efficiency [13], no large reduction gearbox to change gears, compact
structure, and simple controls. Badr et al. [14] compared the three types of expanders i.e.,
reciprocating piston expander, screw expander, and sliding vane rotary expander, and
found that their applicability is determined by many factors such as power capacity, cost,
and complexity. Although the reciprocating piston expander is relatively well-developed,
it also has certain shortcomings. Compared with reciprocating expanders, the fluid friction
loss of the intake and exhaust ports of the sliding vane rotary expander is smaller, the
structure is more concise, and the generated noise and vibration are smaller, but the loss
and internal leakage and friction dissipation of the intake and exhaust are higher [15].
The screw expander, on the other hand, needs to control the speed due to the high speed.
Ziviani et al. [16] experimentally evaluated a newly designed open oil-free scroll expander.
The performance of the expander was characterized by a semi-empirical model, and the
different loss terms were decomposed to illustrate the main friction losses in bearings, tip
seals, and other friction sources. Tarique et al. [17] experimentally studied the performance
of ORC systems with a scroll extender. The results show that the scroll expander can
effectively use the low-temperature heat source to generate mechanical work or electrical
energy. Zhang et al. [18] applied a single–screw expander with a diameter of 155 mm to an
ORC system for waste heat recovery from diesel engine exhaust. The results indicate that
the maximum power output and total efficiency of single–screw expander are 10.38 kW
and 57.88%, respectively. Yang et al. [19] established and tested a combined vehicle system
of diesel engine-ORC with screw expander, and found that the power output is higher than
that of the diesel engine. Fatigati [20,21] proposed the design concept of a double-inlet vane
rotary expander, compared it with the traditional single-inlet expander under the same
working conditions, and analyzed its potential to simplify size and increase mechanical
efficiency. Oudkerk et al. [22] tested an ORC system with a swash-plate piston expander
obtaining its performance map. The effects of pressure ratio, speed, and mechanical
efficiency on isentropic efficiency were analyzed, and it is found that the weights of the
leakage influencing factors change due to the change in speed. Zheng et al. [23] proposed
a kilowatt–sized rolling–piston expander in a low–temperature ORC power generation
system and conducted a dynamic test for performance evaluation. The results show that the
maximum theoretical efficiency of a CO2 rolling-piston expander is 60%, and the heat and
pressure loss in the flow channel is large. Li et al. [24] proposed a double-piston free-piston
expander-linear generator with high temperature and high-pressure gas as working fluid to
generate electricity and found that it has the potential for small ORC applications due to its
simple and compact structure and no crank connecting rod mechanism. The ORC system
used in ICEs waste heat recovery is of small scale, which has a power output generally
less than 15 kW. Therefore, investigating and designing an applicable small and efficient
expander is of great significance.

Since the first development of free piston expander (FPE) at the Technical University of
Dresden, the device has received great attention from academia and industry [25]. FPE has
the advantages of compact structure, small friction loss, good sealing, and high efficiency,
thus solving the problems of sealing and lubrication existing in most low–power expanders,
and it satisfies the requirements for expanders in ORC applications. Zhang et al. [26]
designed a double acting FPE and verified its operating process. The device improved the
performance of transcritical CO2 cycle system, reaching an isentropic efficiency of 62%.
The optimal operating frequency is found to be from 10 to 17 Hz. However, there are few
investigations of the structural design and operating strategy of the system involved in
their study. Weiss et al. [27] designed a millimeter–scale FPE and discussed the influence
of piston mass on its performance. The results show that decreasing the piston mass can
reduce stroke and increase operating frequency and power output. Then they explored the
effect of design and operating parameters such as piston mass, external load, and heat input
on the performance of FPE [28]. The results show that increasing the heat inputs to FPE can
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reduce operating frequency and increase power output. Moreover, they improved system
performance by optimizing variables including piston mass, FPE size, input pressure, and
lubrication [29]. The results indicate that FPE efficiency, operating frequency, and power
output are sensitive to factors such as input pressure, piston mass, and external load. [30]
However, there are few horizontal comparisons of these parameters involved in this paper,
and the impact of these variables on performance remains to be studied. Li et al. [24]
proposed an FPE–LG integrated unit with a plate-type linear generator (LG) and a cam
plate intake and exhaust mechanism. By means of experiments [31] and simulations, the
operating and output characteristics of FPE–LG were studied. However, due to the fixed
structure of cam plate, the intake and exhaust timing of the device has certain limitations.
Hou et al. [32] improved the intake and exhaust system by adopting a servo motor control
system and conducted further analysis of its performance. The results indicate that the
selection and design of LG have a significant influence on FPE–LG performance. Intake
pressure and external load have a great influence on actual stroke and velocity [33]. It
is feasible to improve the conversion efficiency of the FPE–LG by increasing the intake
pressure [34]. Aziz et al. [35] studied a dual–piston FPE–LG by changing various intake
pressures and generator stator cores. The effect of these variables on the root mean square
power output, as well as the system stability and conversion efficiency were explored.
The results show that when the valve opening duration increases, the indicated efficiency
and power-to-electricity conversion efficiency increase. Also, different generator stator
cores have an influence on operating frequency and power output [36]. Wang et al. [37]
built a test rig of a dual–piston FPE–LG and investigated the output voltage and energy
conversion efficiency of device. The results show that the energy conversion efficiency
increases with higher intake pressure, and can reach up to 55% with an intake pressure of
3.75 bar. Xu et al. [38] established and validated an integrated model of a compressed air-
driven two–stroke free piston engine system using MATLAB/simulink. The power output
and efficiency of permanent magnet linear generators under different intake pressures and
external loads were obtained. The results reveal variation laws of piston displacement,
velocity, and frequency with the intake pressure and piston assembly mass. However, there
are few design parameters involved in this paper, and the effect of design parameters on the
system performance remains to be studied. Peng et al. [39] established a test rig of FPE–LG
system coupled with the drive motor, and investigated the operating characteristics of FPE–
LG under different torques and expansion times. Li et al. [40] presented a single–piston
FPE–LG prototype for a small–scale ORC system, and proposed and verified two control
strategies. Wu et al. [41] investigated the performance of the single–piston FPE–LG using
position–time control method. The results show that the bias displacement and indicated
work increased with increase of intake time or intake pressure. Also, it was found that
the energy loss due to air resistance accounts for the highest proportion, up to more than
50% [42]

The above literature review shows that as a new type of power machine, FPE–LG
has great potential in the field of power and waste heat recovery, which has stimulated
the research of scholars all around the world. However, the research on FPE–LG is still
in the exploratory stage. Due to the limitations of the test rig, the mechanism of some
design and operating parameters on performance of FPE–LG have not been studied in
depth. Therefore, it is necessary to establish a more effective simulation model to conduct
in–depth research on the influence mechanism of main design and operating parameters
on the FPE-LG performance. In this paper, based on existing single–piston FPE–LG test
rig, a simulation model is built and coupled with dynamic and thermodynamic equations.
The influence of design parameters (piston assembly mass, back EMF constant, frictional
coefficient, piston rod diameter, cylinder diameter, and diameter of intake and exhaust
pipes) and operating parameters (intake beginning point, intake time, intake pressure, and
external load) on the FPE-LG performance were studied in depth. The research results have
important guiding significance for the efficiency improvement of the expander in ORC
system, and can provide directions for the optimization of structure design and operation
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strategy. It has great potential for ORC waste heat recovery system to improve energy
recovery efficiency with an optimized FPE-LG.

2. Methodology
2.1. Test Rig Description

The FPE–LG test rig is shown in Figure 1. The test rig mainly includes FPE, LG, signal
acquisition and control system (SACS), flow meter, regulating valve, solenoid valve, various
sensors, and external load. The working fluid is compressed air. There are experiment
data collected on SACS including the velocity and position of the piston assembly, pressure
in-cylinder, voltage, and current of output. The main parameters of the test rig are shown
in Table 1. The schematic of FPE–LG is shown in Figure 2.
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Table 1. Main parameters of FPE–LG.

Parameters Value Unit

Cylinder diameter 40 mm
Working pressure 1–10 bar
Maximum stroke 70 mm

Piston rod diameter 16 mm
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When the piston moves to the position where the volume of cylinder A is minimum,
the position is set as 0 point. When the piston moves to the position where intake regulating
valves in cylinder A/B are opened, this position is considered as the intake beginning
position A/B, as shown in xAin/xBin in Figure 2. Since it takes time to increase the pressure
in the cylinder, there is a time lag between TDC/BDC and xAin/xBin. The displacement
from TDC to BDC is the stroke S. In this paper, we used the position-time control method
on this test rig, which needs to set the intake time tAin/tBin, and intake beginning position
xAin/xBin in advance in SACS to control the solenoid valves to implement the intake and
exhaust process. Among them, solenoid valves 1 is the intake port and solenoid valves 2 is
the exhaust port. The schematic of position-time control method is shown in Figure 3, and
more details of the method can be found in our previous paper [42].
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2.2. Submodel of FPE–LG

In order to find out the performance characteristics of FPE–LG, the FPE-LG sub-model
was built. To simplify the formulas used in this model, the following assumptions need to
be made [38]:

(1) The working fluid behaves like an ideal gas;
(2) The state of working fluid in the same cylinder is uniform, the temperature field and

pressure field of fluid are uniformly distributed, and the intake air flowing into the
cylinder is instantly and completely mixed with the residual air during intake stage;

(3) The pressure drop in the intake and exhaust pipes is neglected;
(4) There is no leakage between the cylinders on both sides of piston, and no leakage at

the connection of each component;
(5) The air in cylinder undergoes a polytropic process during the expansion stage.

When FPE–LG is operating, piston assembly is the main research object, of which the
movement is determined by the net force acting on it. As shown in Figure 2, during the
operation the piston assembly is affected by gas forces FA and FB that exerted by air on the
left and right sides of piston, frictional force Ff, and electromagnetic force Fe.

According to the above mentioned assumptions, the single–piston FPE–LG system
can be simplified as an integrated system, which is subject to the gas force on both sides of
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piston, the electromagnetic resistance, and the frictional resistance. According to Newton’s
second law, the dynamic formula of piston assembly in single–piston FPE–LG is established:

⇀
F A +

⇀
F B +

⇀
F f +

⇀
F e = m

d2s
dt2 (1)

where FA is the gas force exerted on the piston by the air in cylinder A, FB is the gas force
exerted on the piston by air in cylinder B, Fe is the electromagnetic resistance, Ff is the
frictional resistance, m is the piston assembly mass, s is the displacement of piston, and d2s

dt2

is the acceleration of piston assembly.
This model is built mainly to analyze the forces on the piston. Therefore, it is neces-

sary to calculate the variation of intake and exhaust flow, in–cylinder pressure, induced
electromotive force, and frictional resistance with time.

2.2.1. Cylinder Process Model

According to the assumption (3), the flow areas of air vary with time, and the air flow
process can be approximately treated as a one–dimensional isentropic adiabatic process.
The exhaust stage can be considered as the reverse of intake stage [38].

When pe
p < ( 2

k+1 )
k

k−1 , the cylinder is in a supercritical state, and the change rate of the
intake or exhaust flow is:

dm
dt

= µe · A
p√
RT
· ( 2

k + 1
)

1
k−1
·
√

2k
k + 1

(2)

When pe
p ≥ ( 2

k+1 )
k

k−1 , the cylinder is in a subcritical state, and the change rate of intake
or exhaust flow is:

dm
dt

= µe·A
p√
RT
·

√
2k

k− 1
· [( pe

p
)

2
k − (

pe

p
)

k+1
k
] (3)

where pe is the intake or exhaust pressure, k is the adiabatic coefficient, µe is the flow
coefficient, A is the contact area between air and piston in the cylinder, R is the ideal gas
constant, and T is the temperature of working fluid.

According to the assumption (4), in the cylinder of single–piston FPE–LG, there is no
mass exchange between the working fluid and the outside during the expansion stage, thus
the air mass remains constant at this stage.

The pressure in the expansion stage is calculated by the following formula [43]:

p = p′
(

V′

V

)k

(4)

where p’ is the in–cylinder pressure in the previous step, and V’ is volume of the cylinder
in the previous step.

2.2.2. Generator Model

According to Kirchhoff’s voltage law, the induced electromotive force generated by
the reciprocating motion of motor mover cutting magnetic field lines can be expressed
as [44]:

E(t) = (RS + Re)I(t) + L
dI(t)

dt
+ C

∫
Idt = −Kv · v (5)

where RS is the resistance in stator coil of generator, Re is the external load, Kv is the back
EMF constant which is determined by the design parameters of generator, and v is the
velocity of piston assembly.
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When the linear generator is in working state, since the values of inductance L and
capacitance C are very small, the influence of these two parameters on the induced current
is ignored in the established model. Combining the above formula, it can be obtained that
the induced current generation due to cutting magnetic field lines by the reciprocating
motion of motor mover is:

I(t) = − Kv

(RS + Re)
v (6)

Based on the electromagnetic resistance calculation formula mentioned in our previous
paper [42], the corresponding electromagnetic resistance can be obtained.

2.2.3. Generator Model

The frictional resistance of single–piston FPE–LG consists mainly of the resistance
between the piston and cylinder wall, and the resistance between the connecting plate and
guide rail. Among them, the frictional resistance between the piston and cylinder wall is
impacted by many factors, such as lubrication, working pressure, back pressure, seal design,
and so on. In the test rig in this study, there is no relevant instrument for frictional resistance
measurement. The frictional resistance was obtained indirectly through calculation. From
the analysis [45], it can be seen that the change curve of frictional resistance is consistent
with the velocity curve. Besides, other relevant research also concluded that frictional
resistance is related to velocity. Therefore, the frictional resistance formula used in the
simulation is:

Ff = −Cfv (7)

where Cf is frictional coefficient.

2.3. Integrated Model

According to above analysis, the FPE-LG simulation model is built in MATLAB/simulink
and consists of motion main module, volume calculation module, mass flow calculation
module, state transition control module, gas force calculation module, frictional resistance
calculation module, electromagnetic resistance calculation module, current calculation module,
and voltage calculation module, as shown in Figure 4. And the main parameters of the FPE-LG
model are listed in Table 2. To prevent the displacement of piston assembly from exceeding
the length of the cylinder during the simulation process, a saturation module was used to
control the displacement.
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Table 2. Main parameters of FPE–LG model.

Parameters Value Unit

Thrust coefficient 75 N·A–1

Internal resistance 36.6 Ω
Mass of motor mover 3.7 kg

Cylinder diameter 40 mm
Piston rod diameter 16 mm

Diameter of intake or exhaust pipes 11 mm
Gas adiabatic index 1.4 —
Gas emission factor 0.8 —

2.4. Validity Verification of Model

The MATLAB/simulink simulation model needs to be verified in order to ensure its
validity and accuracy. In this section, the output characteristics calculated by the model are
compared with those obtained by test rig results under the same operating conditions. The
operating condition is shown in Table 3.

Table 3. The operating condition of experimental tests.

Condition Intake Beginning Position
(mm) Intake Pressure (bar) Intake Time (ms)

1 21–45 4 30
2 21–45 4 35
3 21–49 4 30
4 21–49 4 35
5 25–45 4 30
6 25–45 4 35
7 21–45 5 30
8 21–45 5 35
9 21–49 5 30
10 21–49 5 35
11 25–45 5 30
12 25–45 5 35

2.4.1. Operating Characteristics

The validation of operating frequency, velocity v1 (the velocity of piston assembly
from top dead center, TDC, to bottom dead center, BDC), velocity v2 (the velocity of piston
assembly from BDC to TDC), and stroke under the selected operating conditions are shown
in Tables 4–7, respectively. The validation includes simulation results, experimental test
results, and the absolute and relative errors between them. It can be seen that the relative
errors of the parameters discussed under all operating points are within ±10%.

Table 4. The validation of operating frequency.

Condition Simulation
Value (Hz) Test Value (Hz) Absolute Errors

(Hz)
Relative Errors

(%)

1 5.57 5.56 0.01 0.18
2 5.62 5.65 –0.03 –0.60
3 5.13 5.13 0.00 0.04
4 5.18 5.26 –0.08 –1.60
5 5.90 5.92 –0.02 –0.29
6 5.87 5.99 –0.12 –1.99
7 6.31 6.02 0.29 4.83
8 6.24 6.10 0.14 2.23
9 5.88 5.65 0.23 4.07
10 5.83 5.68 0.15 2.62
11 6.49 6.25 0.24 3.90
12 6.37 6.33 0.04 0.63
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Table 5. The validation of v1.

Condition Simulation
Value (m/s) Test Value (m/s) Absolute Errors

(m/s)
Relative Errors

(%)

1 0.5967 0.5634 0.0333 5.91
2 0.6423 0.6150 0.0273 4.44
3 0.5760 0.5556 0.0204 3.67
4 0.6217 0.6077 0.0140 2.30
5 0.5885 0.5707 0.0178 3.12
6 0.6293 0.6162 0.0131 2.13
7 0.7053 0.7157 –0.0104 –1.45
8 0.7435 0.7727 –0.0292 –3.78
9 0.6890 0.6973 –0.0083 –1.19
10 0.7352 0.7666 –0.0314 –4.10
11 0.6904 0.7245 –0.0341 –4.71
12 0.7951 0.7805 0.0146 1.87

Table 6. The validation of v2.

Condition Simulation
Value (m/s) Test Value (m/s) Absolute Errors

(m/s)
Relative Errors

(%)

1 0.5382 0.5444 –0.0062 –1.14
2 0.5582 0.5769 –0.0187 –3.24
3 0.5411 0.5308 0.0103 1.94
4 0.5625 0.5702 –0.0077 –1.35
5 0.5313 0.5313 0.0000 0.00
6 0.5368 0.5748 –0.0380 –6.61
7 0.6395 0.6864 –0.0469 –6.83
8 0.6777 0.7276 –0.0499 –6.86
9 0.6452 0.6683 –0.0231 –3.46
10 0.6577 0.7065 –0.0488 –6.91
11 0.6214 0.6707 –0.0493 –7.35
12 0.6657 0.7137 –0.0480 –6.73

Table 7. The validation of stroke.

Condition Simulation
Value (mm) Test Value (mm) Absolute Errors

(mm)
Relative Errors

(%)

1 34.59 35.43 –0.84 –2.37
2 35.59 37.18 –1.59 –4.28
3 36.08 33.12 2.96 8.94
4 37.03 34.97 2.06 5.89
5 35.60 37.74 –2.14 –5.67
6 37.13 39.58 –2.45 –6.19
7 38.43 42.52 –4.09 –9.62
8 40.54 44.65 –4.11 –9.20
9 37.69 40.01 –2.32 –5.80
10 38.12 42.19 –4.07 –9.65
11 40.75 44.68 –3.93 –8.80
12 42.98 46.65 –3.67 –7.87

2.4.2. Output Characteristics

The validation of power output and single–cycle electric energy output under the
selected operating conditions is shown in Tables 8 and 9, respectively. It can be seen that
the relative errors of the parameters discussed under all operating conditions are within
±10%.
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Table 8. The validation of power output.

Condition Simulation
Value (W) Test Value (W) Absolute Errors

(W)
Relative Errors

(%)

1 16.31 15.36 0.95 6.18
2 17.8 17.71 0.09 0.51
3 15.11 14.60 0.51 3.49
4 16.55 17.09 –0.54 –3.16
5 16.04 15.35 0.69 4.50
6 16.84 17.79 –0.95 –5.34
7 28.03 26.23 1.80 6.86
8 30.08 29.89 0.19 0.64
9 26.99 25.23 1.76 6.98
10 28.04 28.25 –0.21 –0.74
11 27.02 25.20 1.82 7.22
12 27.98 28.87 –0.89 –3.08

Table 9. The validation of electric energy output.

Condition Simulation
Value (J) Test Value (J) Absolute Errors

(J)
Relative Errors

(%)

1 2.93 2.76 0.17 6.09
2 3.17 3.14 0.03 0.94
3 2.94 2.85 0.09 3.31
4 3.20 3.25 –0.05 –1.62
5 2.72 2.59 0.13 4.91
6 2.87 2.97 –0.10 –3.42
7 4.43 4.35 0.08 1.94
8 4.82 4.90 –0.08 –1.56
9 4.59 4.47 0.12 2.69
10 4.81 4.97 –0.16 –3.21
11 4.10 4.03 0.07 1.68
12 4.39 4.56 –0.17 –3.67

In this study, the relative errors between the simulation results and the experimental
test results are within ±10%, therefore, the single–piston FPE–LG model is considered to
be effective. It has high reliability, and can be used to analyze and predict the operating
and output characteristics of FPE-LG under different operating conditions.

3. Result and Discussion

In order to eliminate the dimensional influence between data, data standardization
processing is required to solve the comparability between data. After the original data is
standardized, each set of data is in the same order of magnitude, thus being suitable for
comprehensive comparative evaluation. The standardization method used in this paper
is normalization. After the normalizing process, each performance parameter is scaled
between 0 and 1 and retains the distribution of the original data.

The calculation formula of normalization is:

yi =
xi

xmax
(8)

where xi is the value of performance parameters under operating condition i, xmax is the
maximum value of performance parameters obtained, and yi is the normalized value of
performance parameters under operating condition i.

In order to facilitate study, these parameters were analyzed under the operating
conditions of pin = 4 bar, tin = 35 ms, and intake beginning position is 21–49 mm.
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3.1. Design Parameters
3.1.1. Piston Assembly Mass

Figure 5 shows the variation of normalized value of performance parameters with
piston assembly mass m. Figure 5a shows the variation curves of operating frequency f,
stroke S, BDC and TDC with piston assembly mass, while Figure 5b shows the variation
curves of maximum velocity v1max, maximum velocity v2max, mean velocity v (the mean
velocity of piston assembly in one period) and power output p with piston assembly mass.
With the increase of piston assembly mass, v and power output first increase and then
decrease, and the trend of two curves is the same, which means power output is related
to v. With the increase of piston assembly mass, TDC decreases while BDC and stroke S
increase, that is, TDC moves to 0 point, BDC moves away from 0 point, and stroke increases
gradually. Besides, Figure 5 shows that operating frequency, v1max, and v2max decrease,
and the decrease of v1max is smaller than that of v2max. Comparing the operating frequency
with v, v1max, and v2max in Figure 5, it can be found that operating frequency is closer to
v2max, which means that the operating frequency is more affected by v2. The change range
of TDC with piston assembly mass is smaller than that of BDC, which means that the center
of stroke gradually moves away from 0 point. When the piston assembly mass increases,
the inertia of the piston assembly will increase, making the stroke increase. The increased
stroke will increase the energy consumption of air resistance in the cylinder, decrease v1max
and v2max, and increase the period. Due to the interaction of stroke and operating frequency,
v increases first and then decreases, which leads the power output to increase first and then
decrease. The maximum value can reach up to 17.59 W.
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3.1.2. Back EMF Constant

When the external load and internal resistance of the generator are constant, the
electromagnetic coefficient is proportional to back EMF constant [46], so the influence of
the electromagnetic coefficient on performance parameters can be regarded as the effect of
back EMF constant on the performance parameters. Figure 6 shows the variation of the
normalized value of the performance parameters with back EMF constant. It can be seen
that all performance parameters except power output decrease with the increase of back
EMF constant. The increased back EMF constant could increase electromagnetic resistance
generated by LG and reduce the acceleration of piston assembly, thereby reducing the
velocity of the piston assembly and shortening the stroke and operating frequency. Finally,
the influence of back EMF constant is greater than that of velocity, making the power output
increase. The maximum value can reach up to 23.78 W.
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voltage, as well as the power output to reduce. The maximum value of power output can 
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3.1.3. Frictional Coefficient

For FPE, reducing frictional resistance is one of main problems to be solved presently [45].
In real test processes, lubricating oil is commonly used to reduce frictional resistance. In the
simulation model, the effect of the frictional coefficient on the performance parameters is
discussed. Figure 7 shows the variation of normalized value of the performance parameters
with the frictional coefficient. The operating frequency first increases and then decreases,
and all other performance parameters decrease with the increase of frictional coefficient.
The increased frictional coefficient could increase the frictional resistance and reduce the
acceleration of the piston assembly, thereby reducing the velocity of the piston assembly and
shortening the stroke and operating frequency. Thus, the velocity of motor mover cutting the
magnetic field line is reduced, which leads the induced current and voltage, as well as the
power output to reduce. The maximum value of power output can reach up to 20.73 W.
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3.1.4. Piston Rod Diameter

Figure 8 shows the variation of normalized value of performance parameters with
piston rod diameter. The change in the piston rod diameter has almost no effect on the
stroke. When the piston rod diameter increases, TDC and BDC increase, that is, TDC and
BDC are far away from 0 point. With the increase of the piston rod diameter, the proportion
of change in TDC is greater than that in BDC, which results in a tiny change of the stroke.
As the piston rod diameter increases, v1max, v2max, and v tend to decrease. Considering the
stroke has almost no change, the decrease of v causes the operating frequency to decrease.
Also, the decreased v would reduce current and voltage generated by LG, which reduces the
power output. The increased piston rod diameter could reduce the contact area between
the air in cylinder B and the piston. For cylinder B, the resistance provided by air to
piston during the exhaust stage would decrease, so that the acceleration of piston assembly
moving from TDC to BDC increases, and BDC moves away from 0 point. Meanwhile,
decreased contact area could lead the power which is provided by cylinder B to piston
during the intake and expansion stage to decrease. The acceleration of piston assembly
moving from BDC to TDC would decrease and v2max would decrease. Both TDC and BDC
move away from 0 point, and the interaction causes stroke to increase firstly and then
decrease but the change is small. As TDC moves away from 0 point, the maximum pressure
in cylinder A decreases, and the power provided to piston decreases, which makes v1max
and v decrease. With the stroke remaining almost unchanged, the operating frequency
decreases. The decreased v would reduce the induced voltage and current, and thus the
power output is reduced. The maximum value can reach up to 19.58 W.
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3.1.5. Cylinder Diameter

Figure 9 shows the variation of normalized value of the performance parameters
with cylinder diameter. TDC, BDC, and stroke all show a slight downward trend with
the increase of cylinder diameter. The other performance parameters all increase with the
increase in cylinder diameter. The increased cylinder diameter could increase the contact
area between the air in the cylinder and the piston, and, thus, increase the force provided
by the air to the piston. The increase in the force when piston assembly moves from BDC
to TDC is greater than that from TDC to BDC, thus BDC and TDC move towards 0 point,
and the interaction causes the stroke to reduce. The gas force in the cylinder on the piston
increases, which increases the velocity of piston assembly. Through the interaction of
decreased stroke and increased velocity, operating frequency decreases. In addition, the
increased v enlarges the induced voltage and current generated by LG, leading power
output to increase. The maximum value can reach up to 16.72 W.
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3.1.6. Diameter of Intake and Exhaust Pipes 
Figure 10 shows the variation of normalized performance parameters with the diam-

eter of intake and exhaust pipes. As can be seen in the figure, BDC, stroke, v1max, and power 
output all show an upward trend with the increase of diameter of intake and exhaust 
pipes. Operating frequency, v2max, and v  all first increase and then decrease. However, 
TDC shows a trend of first decreasing and then increasing. The change in diameter of 
intake and exhaust pipes has a great influence on power output and v1max. The influence 
of pipe diameter changes on FPE is mainly in the intake and exhaust stages. The change 
in pipe diameter directly affects the mass of intake and exhaust, which affects the force 
exerted on piston as well as the velocity and power output of piston assembly. The maxi-
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3.1.6. Diameter of Intake and Exhaust Pipes

Figure 10 shows the variation of normalized performance parameters with the diam-
eter of intake and exhaust pipes. As can be seen in the figure, BDC, stroke, v1max, and
power output all show an upward trend with the increase of diameter of intake and exhaust
pipes. Operating frequency, v2max, and v all first increase and then decrease. However, TDC
shows a trend of first decreasing and then increasing. The change in diameter of intake
and exhaust pipes has a great influence on power output and v1max. The influence of pipe
diameter changes on FPE is mainly in the intake and exhaust stages. The change in pipe
diameter directly affects the mass of intake and exhaust, which affects the force exerted on
piston as well as the velocity and power output of piston assembly. The maximum value
can reach up to 0.8 m/s and 18.98 W, respectively.
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A changes. When intake beginning position A is far from 0 point, the distance between 
the two intake beginning positions will be shortened, and TDC and BDC move away from 
0 point, which leads the stroke to decrease. The moving of TDC and BDC also affects the 
cylinder volume during the intake stage, which causes the change of in–cylinder pressure 
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creases the operating frequency. The interaction of velocity and operating frequency 
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3.2. Operating Parameters
3.2.1. Intake Beginning Position A

Figure 11 shows the variation of normalized performance parameters with intake
beginning position A. As intake beginning position A moves away from 0 point, operating
frequency, TDC, and BDC increase; stroke and v1max decrease; and v2max, v and power
output first increase and then decrease. The trend of v is consistent with v2max but different
from v1max, hence v is more affected by v2 than by v1 when intake beginning position A
changes. When intake beginning position A is far from 0 point, the distance between the
two intake beginning positions will be shortened, and TDC and BDC move away from 0
point, which leads the stroke to decrease. The moving of TDC and BDC also affects the
cylinder volume during the intake stage, which causes the change of in–cylinder pressure
and the velocity of piston assembly. The interaction of the changes in stroke and v increases
the operating frequency. The interaction of velocity and operating frequency makes the
power output increase first and then decrease. The maximum value can reach up to 18.54 W.
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Figure 12 shows the variation of normalized performance parameters with intake be-

ginning position B. As intake beginning position B moves away from 0 point, operating 
frequency, power output, v1max, and v  all increase first and then decrease; TDC, BDC and 
stroke all increase; and v2max first decreases and then increases. When intake beginning 
position B is far from 0 point, the distance between the two intake beginning positions 
increases, and both TDC and BDC move away from 0 point, which leads the stroke to 
increase. The moving of TDC and BDC also affects the cylinder volume during intake 
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3.2.2. Intake Beginning Position B

Figure 12 shows the variation of normalized performance parameters with intake
beginning position B. As intake beginning position B moves away from 0 point, operating
frequency, power output, v1max, and v all increase first and then decrease; TDC, BDC and
stroke all increase; and v2max first decreases and then increases. When intake beginning
position B is far from 0 point, the distance between the two intake beginning positions
increases, and both TDC and BDC move away from 0 point, which leads the stroke to
increase. The moving of TDC and BDC also affects the cylinder volume during intake stage,
which causes the change of in–cylinder pressure and the velocity of piston assembly. The
interaction of the changes in stroke and v leads the operating frequency to increase first
and then decrease. The interaction of velocity and operating frequency makes the power
output increase first and then decrease. The maximum value can reach up to 18.76 W.
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Figure 13 shows the variation of normalized performance parameters with intake 

time. It can be seen that operating frequency increases first and then decreases with intake 
time. BDC, power output, stroke, v1max, v2max, and v  all tend to increase with intake time. 
The increased intake time could increase the in–cylinder pressure and the power provided 
by the air in cylinder, which leads to increase in the velocity of piston assembly and power 
output. The maximum value can reach up to 0.8 m/s and 26.68 W, respectively. Then the 
increase in velocity of piston assembly could cause the frictional resistance and electro-
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3.2.3. Intake Time

Figure 13 shows the variation of normalized performance parameters with intake
time. It can be seen that operating frequency increases first and then decreases with intake
time. BDC, power output, stroke, v1max, v2max, and v all tend to increase with intake
time. The increased intake time could increase the in–cylinder pressure and the power
provided by the air in cylinder, which leads to increase in the velocity of piston assembly
and power output. The maximum value can reach up to 0.8 m/s and 26.68 W, respectively.
Then the increase in velocity of piston assembly could cause the frictional resistance and
electromagnetic resistance to increase. Under the interaction of impetus and resistance,
TDC moves closer to 0 point, BDC moves away from 0 point, and the stroke increases. The
interaction of the changes in stroke and velocity makes operating frequency increase first
and then decrease.
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while all other parameters show an upward trend. Among them, the increase of the intake 
pressure from pin = 6 bar to pin = 7 bar has very little influence on TDC, BDC and stroke, 
where the change range of the normalized value is within 0.01. The increased intake pres-
sure would make more compressed air flow into the cylinder, enhance the power exerted 
on piston, and increase the velocity of piston assembly, resulting in the increase of induced 
current and voltage, as well as the power output. The maximum value of the power out-
put can reach up to 46.71 W. The increased velocity also leads to an increase in the fric-
tional resistance and electromagnetic resistance. Under the interaction of impetus and re-
sistance, TDC moves closer to 0 point, BDC moves away from 0 point, and the stroke in-
creases. The increase in stroke is smaller than that in velocity, which increases the operat-
ing frequency. 
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3.2.4. Intake Pressure

Figure 14 shows the variation of normalized performance parameters with intake
pressure. With the increase of intake pressure, TDC first decreases and then increases,
while all other parameters show an upward trend. Among them, the increase of the intake
pressure from pin = 6 bar to pin = 7 bar has very little influence on TDC, BDC and stroke,
where the change range of the normalized value is within 0.01. The increased intake
pressure would make more compressed air flow into the cylinder, enhance the power
exerted on piston, and increase the velocity of piston assembly, resulting in the increase
of induced current and voltage, as well as the power output. The maximum value of the
power output can reach up to 46.71 W. The increased velocity also leads to an increase in
the frictional resistance and electromagnetic resistance. Under the interaction of impetus
and resistance, TDC moves closer to 0 point, BDC moves away from 0 point, and the
stroke increases. The increase in stroke is smaller than that in velocity, which increases the
operating frequency.
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can be seen that the external load has a greater influence on power output. The increased 
external load would reduce the electromagnetic coefficient, thus, the electromagnetic re-
sistance would decrease, which increases the acceleration of piston assembly, stroke, and 
velocity. The increased external load could also reduce the induced current. Under the 
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3.2.5. External Load

Figure 15 shows the variation of normalized performance parameters with external
load. With the increase of external load, TDC first decreases and then increases, power
output first increases and then decreases, and other parameters show an upward trend. It
can be seen that the external load has a greater influence on power output. The increased
external load would reduce the electromagnetic coefficient, thus, the electromagnetic
resistance would decrease, which increases the acceleration of piston assembly, stroke,
and velocity. The increased external load could also reduce the induced current. Under
the interaction of external load and the current, the power output first increases and then
decreases. The maximum value can reach up to 17.08 W.
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3.3. Sensitivity Analysis 
From the value of power output, it can be seen that the power output of FPE-LG is 

acceptable compared with other positive displacement expanders [47]. In addition, from 
the above trend, there are many factors affecting the performance of FPE-LG, so it is nec-
essary to analyze its sensitivity from two aspects, that is, design and operating parameters. 
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3.3. Sensitivity Analysis

From the value of power output, it can be seen that the power output of FPE-LG is
acceptable compared with other positive displacement expanders [47]. In addition, from the
above trend, there are many factors affecting the performance of FPE-LG, so it is necessary
to analyze its sensitivity from two aspects, that is, design and operating parameters.

3.3.1. Design Parameters

Figure 16 shows the influence of various design parameters on the power output. The
abscissa represents the normalized value of design parameters, and the ordinate represents
the normalized value of the power output. In order to better analyze the sensitivity of power
output to design parameters, we mainly focused on the overlapping part in Figure 15. The
order of power output sensitivity to design parameters from largest to smallest is cylinder
diameter, back EMF constant, diameter of intake and exhaust pipes, piston rod diameter,
frictional coefficient, and piston assembly mass. The power output is most sensitive to
cylinder diameter, and increases with cylinder diameter. From an overall view, power
output increases with increase of back EMF constant, cylinder diameter, and diameter of
intake and exhaust pipes. In future structural design, it can be considered to increase the
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values of these parameters to obtain higher power output. Power output decreases with the
increase of piston rod diameter and frictional coefficient, so a smaller piston rod diameter
and frictional coefficient can generate higher power output. For piston assembly mass,
there is an optimal value to maximize power output.

Energies 2022, 15, x FOR PEER REVIEW 23 of 28 
 

 

power output increases with increase of back EMF constant, cylinder diameter, and diam-
eter of intake and exhaust pipes. In future structural design, it can be considered to in-
crease the values of these parameters to obtain higher power output. Power output de-
creases with the increase of piston rod diameter and frictional coefficient, so a smaller 
piston rod diameter and frictional coefficient can generate higher power output. For pis-
ton assembly mass, there is an optimal value to maximize power output. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.6

0.7

0.8

0.9

1.0

0.75 0.80 0.85 0.90 0.95 1.00
0.95

0.96

0.97

0.98

0.99

1.00

 Piston assembly mass
 Back EMF constant
 Frictional coefficient
 Piston rod diameter
 Cylinder diameter
 Diameter of intake and exhaust pipes 

N
or

m
al

iz
ed

 v
al

ue
 o

f o
pe

ra
tin

g 
fr

eq
ue

nc
y

Normalized value of design parameters  
Figure 16. Influence of design parameters on power output. 

Figure 17 shows the influence of various design parameters on the operating fre-
quency. The abscissa represents the normalized value of the design parameters, and the 
ordinate represents the normalized value of the operating frequency. In the overlapping 
part, the sensitivity of the operating frequency in descending order is: cylinder diameter, 
piston rod diameter, piston assembly mass, diameter of intake and exhaust pipes, fric-
tional coefficient, and back EMF constant. The operating frequency is most sensitive to 
cylinder diameter and increases with cylinder diameter, so a larger cylinder diameter can 
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increase of piston assembly mass, back EMF constant, and piston rod diameter. In future 
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a higher operating frequency. 

Figure 16. Influence of design parameters on power output.

Figure 17 shows the influence of various design parameters on the operating frequency.
The abscissa represents the normalized value of the design parameters, and the ordinate
represents the normalized value of the operating frequency. In the overlapping part, the
sensitivity of the operating frequency in descending order is: cylinder diameter, piston rod
diameter, piston assembly mass, diameter of intake and exhaust pipes, frictional coefficient,
and back EMF constant. The operating frequency is most sensitive to cylinder diameter
and increases with cylinder diameter, so a larger cylinder diameter can produce a higher
operating frequency. Besides, operating frequency decreases with the increase of piston
assembly mass, back EMF constant, and piston rod diameter. In future structural design, it
can be considered to reduce the values of these parameters to obtain a higher operating
frequency.
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3.3.2. Operating Parameters

Figure 18 shows the influence of various operating parameters on the power output.
The abscissa represents the normalized value of the operating parameters, and the ordinate
represents the normalized value of the power output. In the overlapping part, the sensitivity
of the power output to operating parameters from largest to smallest is: intake pressure,
intake beginning position A, intake beginning position B, intake time, and external load.
The power output is most sensitive to intake pressure and increases with it. The power
output also increases with the increase of intake pressure and intake time. In future
operation strategy, it can be considered to increase the value of these parameters to increase
the power output. While for external load, intake beginning position A and B, there is an
optimal value to maximize the power output.
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Figure 19 shows the influence of various operating parameters on operating fre-
quency. The abscissa represents the normalized value of the operating parameters, and 
the ordinate represents the normalized value of the operating frequency. The order of op-
erating frequency sensitivity in the overlapping part from largest to the smallest is intake 

Figure 18. Influence of operating parameters on power output.

Figure 19 shows the influence of various operating parameters on operating frequency.
The abscissa represents the normalized value of the operating parameters, and the ordinate
represents the normalized value of the operating frequency. The order of operating fre-
quency sensitivity in the overlapping part from largest to the smallest is intake beginning
position B, intake pressure, intake beginning position A, intake time, and external load.
Operating frequency increases with the increase of intake beginning position A, intake
pressure, and external load. In future operation strategy, it can be considered to increase
the values of these parameters to obtain a higher operating frequency.
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4. Conclusions 
Based on single–piston FPE–LG test rig, this paper builds a simulation model with 

MATLAB/simulink software. The validity and accuracy of the model are verified by the 
comparison and error analysis between the simulation results and experimental data. The 
influence mechanism of the design and operating parameters on FPE-LG performance is 
explored. By performing parameters normalization and sensitivity analysis, the sensitiv-
ity of design and operating parameters to power output and operating frequency is dis-
cussed. This research puts forward a new view of the structural design and operation 
strategy of single–piston FPE–LG, and lays the foundation for research on single–piston 
FPE–LG. The main conclusions are as follows: 

(1) Among the involved design parameters, most parameters mainly affect the force 
exerted on the piston during operation, and the diameter of intake and exhaust pipes af-
fects the mass of intake and exhaust. With the change of design parameters, the change 
range of power output is the largest among all performance parameters; when back EMF 
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4. Conclusions

Based on single–piston FPE–LG test rig, this paper builds a simulation model with
MATLAB/simulink software. The validity and accuracy of the model are verified by the
comparison and error analysis between the simulation results and experimental data. The
influence mechanism of the design and operating parameters on FPE-LG performance is
explored. By performing parameters normalization and sensitivity analysis, the sensitivity
of design and operating parameters to power output and operating frequency is discussed.
This research puts forward a new view of the structural design and operation strategy of
single–piston FPE–LG, and lays the foundation for research on single–piston FPE–LG. The
main conclusions are as follows:

(1) Among the involved design parameters, most parameters mainly affect the force
exerted on the piston during operation, and the diameter of intake and exhaust pipes affects
the mass of intake and exhaust. With the change of design parameters, the change range of
power output is the largest among all performance parameters; when back EMF constant
changes, the change range of power output is 80% of the maximum value.

(2) Among the involved operating parameters, intake beginning position A and B,
intake time, and intake pressure mainly affect intake air mass; and external load affects the
electromagnetic coefficient. With the increase in intake pressure and intake time, power
output increases and the change range is up to 80% of the maximum value.

(3) Power output is most sensitive to cylinder diameter in design parameters and to
intake pressure in operating parameters, and increases with the two parameters. Operating
frequency is most sensitive to the cylinder diameter in the design parameters and increases
with it. Operating frequency is most sensitive to the intake beginning position B in operating
parameters, and first increases and then decreases with it. When intake beginning position
B sites about 40 mm from 0 point, the operating frequency is the maximum.

Presently, the FPE-LG test rig has the limitation of small size and large vibration of the
free piston. However, the advantages are also obvious, such as simple mechanical structure,
low friction loss, and operational flexibility without crank linkage. Meanwhile, its control
method has the advantages of simple and strong operability.

In the future, we will build the models of the ORC system and efficiency calculation,
improve the current model with them, and study the ORC waste heat recovery system with
an optimized FPE-LG in a more suitable operation strategy to improve its energy recovery
efficiency as much as possible.
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Nomenclature

A contact area between air and piston in cylinder (m2)
C capacitance (F)
Cf friction coefficient (N/(m·s−1))
f operating frequency (Hz)
E induced voltage (V)
FA,FB gas force exerted by the air in cylinder A, B (N)
Fe electromagnetic resistance (N)
Ff friction resistance (N)
I induced current (A)
k adiabatic coefficient
Kv back EMF constant (V/(m·s−1))
L inductance (H)
m piston assembly mass (kg)
p in–cylinder pressure (bar)
pe intake or exhaust pressure (bar)
P power output (W)
R ideal gas constant (J/(mol·K))
Re external load (Ω)
RS internal resistance of LG (Ω)
s displacement (m)
S stroke (mm)
t time (s)
T temperature (K)
v velocity of piston assembly (m/s)
v mean velocity of piston assembly (m/s)
Acronyms
FPE free piston expander
LG linear generator
SACS signal acquisition and control system
TDC top dead center
BDC bottom dead center
EMF electromotive force
Greek letters
µe flow coefficient
Subscript
1 from TDC to BDC
2 from BDC to TDC
max maximum value
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