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Abstract: The remaining useful life (RUL) of a lithium-ion battery is directly related to the safety and
reliability of the electric system powered by a lithium-ion battery. Accurate prediction of RUL can
ensure timely replacement and maintenance of the batteries of the power supply system, and avoid
potential safety hazards in the lithium-ion battery power supply system. In order to solve the problem
that the prediction accuracy of the RUL of lithium-ion batteries is reduced due to the local capacity
recovery phenomenon in the process of the capacity degradation of lithium-ion batteries, a prediction
model based on the combination of the whale optimization algorithm (WOA)-variational mode
decomposition (VMD) and short-term memory neural network (LSTM) was proposed. First, WOA
was used to optimize the VMD parameters, so that the WOA-VMD could fully decompose the capacity
signal of the lithium-ion battery and separate the dual component with global attenuation trend
and a series of fluctuating components representing the capacity recovery from the capacity signal
of the lithium-ion battery. Then, LSTML was used to predict the dual component and fluctuation
components, so that LSTM could avoid the interference of the capacity recovery to the prediction.
Finally, the RUL prediction results were obtained by stacking and reconstructing the component
prediction results. The experimental results show that WOA-VMD-LSTM can effectively improve the
prediction accuracy of the RUL of lithium-ion batteries. The average cycle error was one cycle, the
average RMSE was less than 0.69%, and the average MAPE was less than 0.43%.

Keywords: lithium-ion battery; remaining useful life; whale optimization algorithm; variational
mode decomposition; long short-term memory neural network

1. Introduction

Lithium-ion batteries are widely used in new energy electric vehicles, power electron-
ics, aerospace, and other fields. Accurately predicting the RUL of a lithium-ion battery
can ensure the timely maintenance and replacement of the lithium-ion battery and avoid
safety accidents caused by the lithium-ion battery reaching the end of its life [1–4]. At
present, the lithium-ion battery RUL prediction is mainly divided into methods based
on physical-mathematical models and data-driven models [5,6]. Data-driven methods
can be subdivided into methods based on shallow models and methods based on deep
learning models.

The predictive methods based on the physical-mathematical model establish dynamic
models by exploring the physicochemical reactions and internal structure of the batteries
and achieve RUL prediction by selecting model parameters by using filtering algorithms
such as particle filtering [7–9] and untraced Kalman filtering [10–12]. However, the internal
reaction mechanism of the batteries is too complex, and it is difficult to establish an accurate
degradation model.

The data-driven prognostics depend on the historical data model and mine the degra-
dation information via various data analysis methods [12,13]. Data-driven methods based
on shallow models usually use support vector regression (SVR) [14,15], support vec-
tor machines (SVM) [16], extreme learning machine (ELM) [17], related vector machine
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(RVM) [18,19], Gaussian process regression (GPR) [2,6], and so on. Fang et al. [20] extracted
battery health factors, established the relationship between health factors and battery capac-
ity using RVM, and built a health factor prediction model based on ELM. Particle swarm
optimization (PSO) has been used to optimize the parameters of RVM and ELM models.
Finally, the prediction results of health indicators are added to the RVM model. The experi-
mental results showed that the PSO-ELM-RVM model could effectively predict the RUL
of lithium-ion batteries. Yan et al. [21] proposed artificial bee colony (ABC) and genetic
algorithm (GA) to optimize the prediction method of SVR core parameters, respectively,
to achieve RUL prediction. Patil et al. [16] established a RUL classification and regression
model based on key features by using SVM. The classification model provides a rough
estimation. If the battery is close to the end of its life, SVR is used to predict RUL. Through
key feature extraction and multi-level methods, RUL prediction is not only realized, but
the prediction time is also reduced. Pang et al. [2] proposed a new method for the RUL
prediction of lithium-ion batteries by integrating incremental capacity analysis (ICA) and
GPR. The peak value of the IC curve and the area under the peak value of the IC curve were
extracted as health factors, and a RUL prediction model of lithium-ion batteries based on
ICA and GPR was established, which realized the RUL prediction of lithium-ion batteries.
However, the prediction method proposed in the above literature still has the problem of a
low RUL prediction accuracy of lithium-ion batteries.

In recent years, due to the better learning ability of deep learning models in complex
system modeling, data-driven methods based on deep learning models have become a hot
research field in battery health management. Zhou et al. [22] used empirical mode decom-
position to process the capacity attenuation signal of lithium-ion batteries. Subsequently,
LSTM was used as the prediction model. The experimental results showed that EMD
effectively removed the noise signal and improved the prediction accuracy. Li et al. [23]
used EMD to decompose the battery capacity signal into two components: low frequency
and high frequency. Elman and LSTM are used to predict low-frequency components and
high components, respectively, and the prediction results were reconstructed to obtain the
RUL prediction results. However, EMD decomposition is prone to mode aliasing and end-
point effects. Chen et al. [24] adopted ensemble empirical mode decomposition (EEMD)
to preprocess the collected health factors to reduce the impact of capacity regeneration
and noise. Then, phase space reconstruction (PSR) was introduced to realize the selection
of the optimal input components, and a genetic algorithm (GA) was used to determine
the SVR super parameters to achieve RUL prediction, however, the signal processed by
EEMD had residual white noise, and the noise after reconstruction could not be ignored,
which affects the accuracy of RUL prediction. Li et al. [25] used complementary ensemble
empirical mode decomposition (CEEMD) to decompose the original capacity data into two
local fluctuation components with different time scales and one component with long-term
memory characteristics. Then, GPR was used to predict two local fluctuation components,
and LSTM was used to predict the long-term memory feature components. Finally, the
GPR and LSTM prediction results were accumulated and reconstructed to achieve the
RUL prediction. However, the disadvantage of CEEMD is that there are differences in the
number of components generated during EMD decomposition, which makes it difficult
to align components when the final set is averaged or leads to errors in the set average.
Lyu et al. [26] obtained trend signals and capacity regeneration signals from the capacity
degradation sequence by the VMD algorithm. Then, the trend signal and the capacity
regeneration signal were predicted using the particle filter model and the autoregressive
integral sliding average model, respectively, and the prediction results of the two signals
were superimposed on the capacity degradation prediction. Finally, RUL predictions were
made based on the degradation prediction results and failure thresholds. However, because
VMD does not sufficiently decompose the degradation signal of the lithium battery capacity,
the prediction accuracy is reduced.

Based on the above analysis, the prediction model composed of the signal decomposi-
tion algorithm and deep learning model has obvious advantages in prediction performance,
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and selecting the appropriate signal decomposition algorithm and deep learning model can
effectively improve the prediction accuracy of the RUL. Because VMD can effectively avoid
mode aliasing, the endpoint effect, and other problems and has good anti-noise ability and
high decomposition efficiency, this paper selected VMD to process the capacity attenuation
signal of the lithium battery considering that the parameter modal component K and
penalty factor α of VMD affect the decomposition effect of the lithium battery capacity
decay signal [27]. The whale optimization algorithm (WOA) with a simple mechanism,
few parameters, and strong optimization ability was used to optimize the VMD parame-
ters [28]. Therefore, WOA-VMD can separate the dual component representing the global
attenuation trend and a series of fluctuation components representing the capacity recovery
from the lithium-ion battery capacity signal, effectively reducing the reconstruction error
of the capacity signal. The adopted LSTM can obtain long-term relevant features from the
corresponding time series data, which can effectively avoid the problems of gradient disap-
pearance and gradient explosion in the long-sequence training process [29]. LSTM is used
to predict the dual component and fluctuation components decomposed by WOA-VMD,
and the component prediction results are superposed and reconstructed to obtain the RUL
prediction results of lithium-ion batteries.

In summary, the WOA-VMD-LSTM model proposed in this paper can separate the
dual component representing the global attenuation trend and the fluctuation component
representing the capacity recovery from the lithium-ion battery capacity signal. In the
prediction phase of LSTM, WOA-VMD enables LSTM to effectively avoid the interference
of capacity recovery to RUL prediction. The experimental results show that WOA-VMD-
LSTM can significantly improve the prediction accuracy of RUL.

2. WOA-VMD Model Establishment
2.1. WOA Algorithm

WOA is a bionic intelligent optimization algorithm inspired by the hunting behavior
of humpback whales [30]. The humpback whales’ special way of feeding is known as
bubble net predation. WOA simulates the approach of searching for prey and the hunting
mechanism of humpback whales, which mainly includes three important stages: hunting
for prey, prey with a bubble net, and searching for prey [31]. This special predation method
gives the WOA algorithm the advantage of a simple mechanism, a few parameters, and
strong optimization ability.

The algorithm execution process is as follows:
(1) Initializing the whale position parameter, the position of the nth whale is:

Xn = r · (ub− lb) + lb (1)

Formula (1): r is a random variable of [0, 1]; the value range of Xn is [lb, ub]; lb is the
minimum value of the prey range; and ub is the maximum value of the prey range.

(2) Whales have a 50% chance of choosing to round up their prey or prey with bubble
nets. When |A| < 1, the expression corresponding to the whale’s hunting mechanism is
shown in Formula (2): 

A = 2a · r1 − a
C = 2 · r2
a = 2− 2(T/Tmax)
D = |C · X∗(T)− X(T)|
X(T + 1) = X∗(T)− A · D p < 0.5

(2)

Formula (2): r1, r2, p are all random numbers in [0, 1]; T is the current number of
iterations; Tmax is the maximum number of iterations; D is the distance between whales
and their prey; a linearly reduces from 2 to 0; X(T) is the current whale position variable;
X∗(T) is the current whale best position variable; A and C are the coefficient variable of
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coefficients that control the way the whale swims [30]. The expression of the bubble net
predation model is shown in Formula (3):{

X(T + 1) = D′ · ebl · cos(2πl) + X∗(T) p ≥ 0.5
D′ = |X∗(T)− X(T)| (3)

Formula (3): D′ simulates the distance between whales and prey; b is a constant
defining the shape of the spiral; and l is a random number between (−1, 1) [31].

When |A| ≥ 1, whales randomly wander and hunt, and the position update is shown
in Formula (4), where Xrand is the randomly selected whale position variable.{

X(T + 1) = Xrand − A · D
D = |C · Xrand − X(T)| (4)

2.2. Variational Mode Decomposition

VMD is an adaptive, quasi-orthogonal, and completely non-recursive signal processing
model. Its central idea is to convert the signal decomposition process into a process of
finding the optimal solution to an unconstrained variational problem, and it is often used in
the processing of non-stationary signals [32]. The VMD principle is to solve the variational
problem. In this algorithm, the intrinsic mode function (IMF) is defined as a bandwidth-
limited AM-FM function. The function of the VMD algorithm is to construct and solve
the constrained variable. The problem is to decompose the original signal into a specified
number of IMF components. The corresponding constrained variational model solves the
equation as follows:

min
{uk}·{ωk}

{
k
∑

k=1

∥∥∥∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωt

∥∥∥2

2

}
s.t.∑

k
uk(t) = f

(5)

Formula (5): {uk} and are the set of all modes and corresponding center frequencies,
respectively; δ(t) is the Dirac function; K is the number of modes; f is the original signal;(

δ(t) + j
πt

)
∗ uk(t) is the spectrum of after Hilbert transform; * is the convolution operation,

and ∂t is the gradient operation.
To solve Formula (5), the Lagrange multiplication operator λ is introduced to transform

the constrained variational problem into an unconstrained variational problem, and the
augmented Lagrange expression is obtained as:

L({uk}, {ωk}, λ) =

α∑
k

∥∥∥∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥2

2
+∥∥∥∥ f (t)−∑

k
uk(t)

∥∥∥∥2

2
+

〈
λ(t), f (t)−∑

k
uk(t)

〉 (6)

Formula (6): α is the penalty factor. The original minimization problem is transformed
into a saddle point problem with augmented Lagrangian functions using the alternating
direction multiplier method.

The specific process of the VMD algorithm is as follows:
(1) According to Formula (7), initialize û1

k , ω1
k , λ1 and n to 0, and select the appropriate

number of modes K and penalty factor α.



Energies 2022, 15, 8918 5 of 20

(2) Iteratively update û1
k , ω1

k , λ1 according to Formula (7)

λ̂n+1(ω)← λ̂(ω) + τ

(
f̂ (ω)−∑

k
ûn+1

k (ω)

)
ûn+1

k =
f̂ (ω)− ∑

i 6=k
ûi(ω)+ λ̂(ω)

2

1+2α(ω−ωk)
2

ωn+1
k =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞
0 |ûk(ω)|2dω

(7)

(3) Judging whether the termination conditions are met:

∑
k

∥∥∥ûn+1
k − ûn

k

∥∥∥2

2
/‖ûn

k ‖
2
2 < ε (8)

Formula (8): ε is the judgment accuracy (ε > 0). If not satisfied, return to step (2); if
satisfied, output K modal components.

2.3. Using WOA to Optimize VMD Parameters

The parameters of the VMD (the number of modes K and the penalty factor α) are
optimized by using the WOA algorithm. The value of K will affect the decomposition of
the original signal in the time domain. If the value of K is too large, it will lead to excessive
decomposition, resulting in some invalid false components. If the value of K is too small,
the decomposition of the original signal will be insufficient [33], while the size of α will
affect the changing trend of the component signal in the time domain, so it is necessary to
determine the optimal combination [K, α] to achieve sufficient decomposition of the signal
by VMD. In this paper, the WOA algorithm was used to optimize the VMD parameters,
and the minimum value of the envelope entropy was used as the fitness function. Envelope
entropy represents a measure of the dynamic information of the original signal [34]. The
higher the entropy value, the less information the component contains. In contrast, the
smaller the entropy value, the more feature information [35].

The envelope entropy Y of the lithium battery capacity decay signal l(i) (i = 1, 2, 3···,
N) can be expressed by Equation (9), where l(i) is the envelope signal of the K component
signals decomposed by VMD after Hilbert demodulation; ε(i) is the probability distribution
sequence obtained by calculating the normalization of l(i); N is the number of sampling
points; and the entropy value of the calculated probability distribution sequence is the
envelope entropy Y. 

Y = −
N
∑

i=1
ε(i)lgε(i)

ε(i) = l(i)
N
∑

i=1
l(i)

(9)

The flowchart of optimizing the VMD parameters using WOA is shown in Figure 1.
The specific steps are as follows:

(1) WOA initialization parameters [K, α] set the parameter value range to avoid the
range setting being too small, resulting in less feature information in the modal components.

(2) Use VMD to decompose the capacity decay signal of the lithium-ion battery to
obtain several IMF components.

(3) Calculate the fitness function value of the corresponding position of each [K, α]
and update the best fitness function value when the fitness function value is greater than
the current value.

(4) Determine if the iteration is complete. If T < Tmax, then update the whale’s position
variable. Otherwise, the iteration terminates and the optimal parameters [K, α] are saved.
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Figure 1. The flow of WOA optimizing VMD.

Taking the B5 battery as an example, its fitness changes are shown in Figure 2. It can
be seen from Figure 2 that after the WOA evolved twice, the optimal fitness function value
was obtained, and the optimization efficiency of the algorithm was obvious.

The optimal parameters of VMD for the B5, B6, B7, and B18 batteries are shown
in Table 1.

Table 1. Optimal parameter of VMD.

Battery Number of Modes K Penalty Factor α

B5 6 400
B6 6 480
B7 6 490

B18 5 366
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3. Predictive Model Building
3.1. Basic Theory of LSTM

The LSTM model can achieve the efficient utilization of long-range information. In
addition to some linear interactions, LSTM models add state vectors, and neurons control
the stored information through the “gate” structure [36]. The LSTM model has three gates,
namely the forget gate, input gate, and output gate [37]. These gates are composed of
a sigmoid nonlinear activation function and point multiplication operation. The model
structure is shown in Figure 3.
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Where xt is the input value of the input layer at this moment and the output value
Ct−1 of the hidden layer at the previous moment [38]. The state update steps of the model
during training are as follows:

(1) Update the forgetting gate value: W f is the forgetting gate weight; b f is the
forgetting gate bias; the expression of ft is shown in Formula (10); ht−1 is the data of the
hidden layer at moment t − 1:

ft = σ
(

Wx f xt + Wh f ht−1 + b f

)
(10)
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(2) Linearly transform input xt at the current moment and input ht−1 at the previous
moment to obtain a new input ĉt:

ĉt = tanh(Wxcxt + Whcht−1 + bc) (11)

(3) Update the input gate value it, the input gate controls the current input xt, it will
store the information of xt to a limited extent, and the expression of it is:

it = σ(Wxixt + Whiht−1 + bi) (12)

(4) Update the current state vector ct:

Ct = ftCt−1 + ittanh(Wxcxt + Whcht−1 + bc) (13)

(5) Calculate the output gate, and output the state vector ot of the hidden layer with
limit through the activation function:

ot = σ(Wxoxt + Whoht−1 + bo) (14)

(6) Memory unit output:
ht = ottanh(Ct) (15)

Because the existence of “gates” and shared parameters make each neural unit have
high stability, it can effectively handle long-distance predictions.

3.2. Prediction Realization Process of LSTM

This paper proposed a lithium-ion battery RUL prediction model based on the combi-
nation of WOA-VMD and LSTM. First, the VMD parameters are optimized by WOA, so
that the VMD can fully decompose the lithium-ion batteries’ capacity decay signal, and
decompose the dual component with the global decay trend, and the fluctuation compo-
nent representing the local capacity recovery phenomenon from the original signal. The
components are divided into a certain proportion of training sets and test sets. After the
training stage is completed, the component data are input into the LSTM model in the
prediction stage to realize the component prediction, and then the component prediction
results are integrated and reconstructed to realize the lithium-ion batteries’ RUL prediction.
The overall method flow is shown in Figure 4, and its specific steps are:

(1) Use the WOA algorithm to optimize the VMD parameters [K, α] to obtain the
optimal parameters [K, α].

(2) Use VMD under the optimal parameters to fully decompose the lithium-ion bat-
teries’ capacity decay signal, a dual component with a global decay trend, and a series of
fluctuation components representing the capacity recovery phenomenon are obtained.

(3) Divide the decomposed components into a certain proportion of training datasets
to train the LSTM network, and use the test datasets to test the prediction results.

(4) Finally, the results of the component prediction are integrated and reconstructed to
obtain the RUL prediction result.
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4. Experimental Verification and Analysis
4.1. Lithium Battery Experimental Data Introduction and Analysis

The experimental data in this paper came from a public dataset provided by NASA
PCoE. One set of 18,650 type lithium-ion batteries (B5, B6, B7, B18) were selected for the
charge and discharge data collected under the same working conditions, and the rated
capacity of the battery was 2 Ah [39]. The standard charging method was adopted, and the
maximum cut-off voltage was 4.2 V. Initially, the constant current charging was performed
with a current of 1.5 A. When the charging voltage of the battery reached 4.2 V, it switched
to constant voltage charging. When the charging current dropped to 20 mA, the charging
ended, and finally discharged with a constant current of 2 A, and took the corresponding
capacity changes when the voltages of the B5, B6, B7, and B18 batteries dropped to 2.7 V,
2.5 V, 2.2 V, and 2.5 V, respectively, as the discharge capacity of each cycle [40]. The capacity
decay curve of the lithium-ion batteries is shown in Figure 5. It can be seen from Figure 5
that with the increase in the lithium-ion battery cycle period, the overall change in the
capacity continues to decrease, but there was a phenomenon of capacity increase in a
local area, which is the phenomenon of capacity recovery. In Figure 5, part of the capacity
recovery phenomenon is marked. It is generally believed that when the capacity decays to
70% of the original capacity, the battery life reaches the end of life (end of life, EOL) [41].
Therefore, the failure threshold of the B5, B6 and B18 batteries selected in this paper was
1.4 Ah, however, the capacity of the B7 battery did not decrease to 1.4 Ah, so the failure
threshold of the B7 battery was set to 1.45 Ah.
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Figure 5. NASA battery capacity degradation curve.

4.2. Definition of RUL and Evaluation Criteria for Forecasting Methods

The difference between the number of cycles when the capacity of the lithium-ion
batteries was reduced to the failure threshold and the predicted starting point was defined
as the RUL of the battery. Assuming that TSTART is the starting point of prediction, and
TEOL is the cycle period when the battery reaches the failure threshold, the real RUL of the
battery can be defined as:

TRUL = |TEOL − TSTART | (16)

The predicted RUL for the battery is:

TPRUL = |TPEOL − TSTART | (17)

In Formula (17), TPEOL is the number of cycles experienced when the battery reaches
the failure threshold in the predicted case.

The accuracy of the prediction method is measured by four common indicators:
absolute error (AE), mean absolute error (MAE), root mean square error (RMSE) and mean
absolute percentage error (MAPE).

The formula for calculating the four error indicators is as follows:

AE = |TRUL − TPRUL| (18)

MAE =
1
N

N

∑
i=1
|CR(i)− CP(i)| (19)

RMSE =

√√√√ 1
N

N

∑
i=1
|CR(i)− CP(i)|2 (20)

MAPE =
1
N

N

∑
i=1

∣∣CR(i)− Cp(i)
∣∣

CR(i)
× 100% (21)

In Formula (19) to Formula (21), CR(i) is the true value of the battery capacity, CP(i) is
the battery capacity prediction, and N is the predicted number of cycles.

4.3. WOA-VMD Analysis and Prediction of Components

The WOA-VMD was used to decompose the battery capacity decay signal. Taking B5
as an example, the optimized VMD parameters K and α were 6 and 400, respectively, and
the decomposed modal components are shown in Figure 6, among them, IMF1 and IMF2
represent the dual components of the lithium battery capacity decay signal with a global
decay trend, and the remaining components can be regarded as the fluctuation components
that represent the local capacity recovery phenomenon.
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Figure 6. Modal components of WOA-VMD decomposition.

To verify the influence of α on the component signal, K was set to 6, and α was set to
800 and 100, respectively, and the decomposition conditions are shown in Figures 7 and 8,
respectively.
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Figure 7. Decomposition effect when K = 6, α = 800.
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Figure 8. Decomposition effect when K = 6, α = 100.

It can be observed from IMF1 and IMF2 in Figures 6–8 that when the K values were
the same, the size of α will affect the change trend of the component signal. Considering
the characteristics of global attenuation, capacity recovery, and random fluctuation in the
process of battery degradation, the K value of VMD decomposition was set to 3, and the α
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value was set to 400 to verify the influence of the K value on the component signals. The
decomposition effect is shown in Figure 9.
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Figure 9. Decomposition effect when K = 3, α = 400.

By comparing Figures 6 and 9, it can be seen that when α at the same K = 3, the VMD
could only decompose a single IMF1 component with a global decay trend. The WOA-VMD
refactoring signal and the VMD refactoring signal are now reconstructed (at this time, the
VMD parameter K = 3, α = 400) in contrast to the original signal, as shown in Figure 10. As
can be seen from Figure 10, the WOA-VMD reconstructed signal was closer to the original
signal, and the WOA-VMD fit better in local areas where capacity rebound occurred.
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Figure 10. Comparison of the WOA-VMD and VMD reconstruction.

To further illustrate that WOA-VMD could fully decompose the capacity decay signal of
lithium battery, we calculated the Pearson correlation coefficient between the trend component
of Figures 6–8 and the B5 battery capacity, respectively, and the results are shown in Table 2.

Table 2. Correlation coefficient between the component signal and capacity.

Figure IMF B5

Figure 6 IMF1 0.99806
IMF2 0.99779

Figure 7 IMF1 0.90298
IMF2 0.99744

Figure 8 IMF1 0.99686
IMF2 0.77803

Figure 9 IMF1 0.99775
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From the magnitude of the correlation coefficient in Table 2, it can be seen that the
IMF1 and IMF2 fully decomposed by WOA-VMD had the highest correlation coefficient
with the capacity information, which could better express the characteristics of the global
decay trend of lithium-ion batteries.

Taking the B5 battery as an example, the first 70 sets of capacity data of the component
were used as the training set, and the capacity prediction value after the 70th set was
used as the output of the LSTM model and compared with the test set; the component
prediction results are shown in Figure 11. It can be seen from Figure 11 that the LSTM
model maintained a high degree of fitting in each component prediction.
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Figure 11. Prediction results of the components of the B5 battery.

From the above analysis, it can be seen that the two most significant features of a
lithium-ion battery are that the capacity signal has the characteristics of a global attenuation
trend and local capacity recovery. How to fully extract the characteristics of the global
attenuation trend is the key to improving the prediction accuracy of RUL. First of all,
WOA-VMD is used to fully decompose the capacity signal of lithium-ion batteries to obtain
the dual component with a global attenuation trend. Compared with a single component,
the correlation coefficient between the dual component and capacity signal is higher, which
can better express the characteristics of the global attenuation trend of a lithium-ion battery;
in addition, the error of the WOA-VMD component signal when reconstituting the original
signal was smaller.

4.4. Comparison and Analysis of Forecast Results

To verify the superiority of the method in this paper, four comparison methods were
designed, as shown in Table 3, and different prediction starting points were set to verify
the stability of the method. The prediction starting points of B5, B6, and B7 were 70 and 90.
The number of B18 battery data samples was small, and the prediction starting points were
set to 55 and 70.

Table 3. Description of the methods.

Method Describe

M1 WOA-VMD-LSTM
M2 LSTM
M3 EMD-LSTM
M4 VMD-LSTM
M5 ELM
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M1 is the method proposed in this paper, M2 is a single LSTM prediction method, M3
is a combination of EMD-LSTM, M4 is VMD-LSTM (parameter K = 3 of VMD, α = 400), and
M5 is the ELM prediction method. The superiority of LSTM in the time-series data was
highlighted by comparing M2 with M5. By comparing M3, M4, and M2, the combined pre-
diction model significantly improved the prediction accuracy. The combination prediction
model of VMD decomposition and LSTM under optimal parameters can further improve
the prediction accuracy by comparing M1 with M3 and M4.

Figures 12–15 show the prediction results of B5, B6, B7, and B18 at different starting
points. Since the B7 battery did not reach the failure threshold of 1.4 A·h, the failure
threshold of the B7 battery was set to 1.45 A·h. Part of the prediction curves of M2 and
M5 did not reach the failure threshold, and the AE value could not be calculated, so the
corresponding part of Table 3 is represented by ‘−’.
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Figure 12. Prediction results of the B5 battery. (a) Prediction starting point: 70. (b) Prediction starting
point: 90.
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Figure 13. Prediction results of theB6 battery. (a) Prediction starting point: 70. (b) Prediction starting
point: 90.
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Figure 14. Prediction results of the B7 battery. (a) Prediction starting point: 70. (b) Prediction starting
point: 90.
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Figure 15. Prediction results of the B18 battery. (a) Prediction starting point: 55. (b) Prediction
starting point: 70.

A comparison of the evaluation indicators under different methods is shown in Table 4.

Table 4. A comparison of the evaluation indicators.

Battery Start Method AE MAE (%) RMSE (%) MAPE (%)

B5

70

M1 0 0.53 0.74 0.37
M2 6 1.03 1.65 0.73
M3 2 1.04 1.45 0.72
M4 0 0.69 1.03 0.48
M5 - 7.04 8.24 5.14

90

M1 0 0.48 0.58 0.34
M2 3 0.96 1.21 0.69
M3 1 0.85 1.08 0.61
M4 0 0.56 0.74 0.40
M5 25 6.22 6.68 4.56

B6

70

M1 1 0.68 0.93 0.50
M2 1 1.28 2.42 0.92
M3 2 1.49 2.21 1.07
M4 3 1.53 2.21 1.12
M5 11 8.86 9.85 6.73

90

M1 1 0.50 0.66 0.38
M2 1 1.11 1.44 0.87
M3 2 0.86 1.11 0.64
M4 2 1.36 1.83 1.03
M5 14 6.25 7.18 4.90

B7

70

M1 1 0.52 0.75 0.34
M2 2 1.19 1.83 0.78
M3 2 1.07 1.66 0.68
M4 0 0.64 1.00 0.42
M5 - 2.70 3.22 1.82

90

M1 0 0.38 0.47 0.25
M2 4 1.01 1.23 0.68
M3 1 0.51 0.80 0.34
M4 0 0.45 0.61 0.30
M5 - 6.43 7.18 4.39

B18

55

M1 1 0.85 0.75 0.58
M2 - 4.02 4.41 2.82
M3 3 2.19 2.61 1.52
M4 5 2.10 2.39 1.45
M5 - 1.71 1.85 12.03

70

M1 0 0.53 0.72 0.36
M2 2 1.95 2.39 1.37
M3 3 1.63 2.14 1.16
M4 2 1.56 2.23 1.10
M5 13 5.95 6.82 4.23
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To further illustrate the superiority of the proposed method, the results of this method
were compared with those of the existing literature, as shown in Table 5. The predicted
starting point of the B5, B6, and B7 batteries was 100, and that of the B18 battery was 80. At
the same time, the influence of training sets of different sizes on the prediction performance
of the model is shown in Table 6.

Table 5. A comparison of the prediction performance with the existing results.

Method
B5 B6 B7 B18

RMSE AE RMSE AE RMSE AE RMSE AE

Proposed method 0.0048 0 0.0051 1 0.0036 0 0.0055 0
PSR-GASVR-EC [23] 0.0191 0 0.0081 1 0.0101 1 0.0051 0

ALF-PF-LSTM [6] 0.0116 1 0.0161 2 0.0110 0 - -
VPA [25] 0.2562 - 0.2367 - 0.6267 - 0.6575 -

Table 6. Comparison of the prediction performance with different amounts of training data.

Start
B5 B6 B7 B18

RMSE MAPE AE RMSE MAPE AE RMSE MAPE AE RMSE MAPE AE

60 0.96% 0.59% 2 1.02% 0.54% 0 0.82% 0.42% 2 0.86% 0.47% 1
70 0.74% 0.37% 0 0.93% 0.50% 1 0.75% 0.34% 1 0.72% 0.36% 0
80 0.64% 0.36% 1 0.81% 0.46% 1 0.68% 0.32% 1 0.51% 0.30% 1
90 0.58% 0.34% 0 0.66% 0.38% 1 0.47% 0.25% 0 - - -
100 0.48% 0.30% 0 0.51% 0.30% 1 0.36% 0.19% 0 - - -

By comparing the predicted results with the evaluation indicators, the results can be
summarized as follows.

(1) From Figures 12–15 and Table 4, it was shown that the prediction results of the
methods presented in this paper were significantly better than those of LSTM, ELM, EMD-
LSTM, and VMD-LSTM. The prediction curve of M1 was closer to the original signal in
different groups and different starting points, and the prediction effect was stable, even
below the failure threshold.

(2) From Table 6, we can see that the prediction accuracy will be different under
different prediction starting points. The more backward the starting point, the more
training periods there are, and the lower the prediction error. In the prediction of four
batteries, the maximum AE of the proposed method was only 2 when there were few
training set samples. Under the test of all training sets, the maximum RMSE was 1.02%, the
minimum RMSE was 0.36%, and the average RMSE was less than 0.69%. The maximum
MAPE was 0.59%, the minimum MAPE was 0.19%, and the average MAPE was less
than 0.43%.

(3) It can be seen from Figures 12–15 and Table 4 that the deep learning model LSTM
had a better prediction effect than the shallow model ELM. Further analysis of the prediction
results of M2 and M3 showed that EMD decomposes the capacity signal to avoid the
impact of capacity rebound on M2, making M3 better than M2. Comparing M3, M4, and
M1, it was found that the method proposed in this paper (M1) avoids the interference
of EMD mode aliasing, the VMD super parameter influence, and the capacity rebound
phenomenon on prediction, making the prediction effect of M1 significantly improved. At
the same time, according to Table 5, the method in this paper had obvious advantages in
prediction accuracy.

5. Discussion

The WOA-VMD-LSTM model proposed in this paper can separate the dual component
representing the global attenuation trend and the fluctuation component representing the
capacity recovery from the lithium-ion battery capacity signal. In the prediction phase of
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LSTM, WOA-VMD enables LSTM to effectively avoid the interference of capacity recovery
to the RUL prediction. The experimental results showed that WOA-VMD-LSTM could
significantly improve the prediction accuracy of the RUL. The innovation of this method is
that WOA-VMD is used to fully decompose the capacity signal of the lithium-ion battery,
and the dual component with a global attenuation trend is obtained. Compared with the
single component, the correlation coefficient between the dual component and the capacity
signal is higher, which can better express the characteristics of the global attenuation trend
of a lithium-ion battery. Moreover, the component signal of WOA-VMD has less error
when reconstituting the original signal.

In Table 5, the ALF-PF-LSTM model uses adaptive Levy flight to optimize the PF
and LSTM networks. However, when using ALF to optimize PF, the capacity rebound
phenomenon and noise of the lithium-ion battery capacity signal are eliminated, which
reduces the prediction accuracy. This is because the capacity rebound phenomenon is
the most prominent feature information in the lithium-ion battery capacity signal. The
advantage of this method is that it reduces the complexity of prediction and can achieve
better prediction results without too many training samples, but the prediction accuracy
is reduced. The VPA model in Table 5 first uses VMD to decompose the capacity sig-
nal, decomposing a component signal of attenuation trend and two component signals
representing the capacity regeneration phenomenon, respectively, using PF and Auto Re-
generative Integrated Moving Average Model to predict the attenuation trend signal and
capacity regeneration signal, and reconstruct the prediction results of each component to
obtain the RUL prediction results. The VPA model has some similarities with the method in
this paper. First, we both use VMD to decompose the capacity signal, but the WOA-VMD
in this paper decomposes the capacity signal more fully, so the method in this paper can
achieve a better prediction effect in the subsequent prediction. The main advantage of the
VPA model is its better generalization ability. The PF and ARIMA prediction models are
respectively used to predict the components of two different trends. However, this paper
only used LSTM as a prediction model to predict the components of different trends. The
generalization ability of the model is not strong enough, and it may not be applicable to
the datasets of lithium-ion batteries of other types. The PSR-GASVR-EC model in Table 5
extracts a health factor that can represent the capacity signal from the historical data of the
lithium-ion battery, uses EEMD to decompose the health factor to obtain multiple sequence
signals, and PSR to select the best input sequence. Then, genetic algorithm is used to
optimize the kernel function of SVR, and the optimal input sequence is used as the input of
GA-SVR to obtain the preliminary prediction results. Finally, error compensation is used to
stack the preliminary prediction results to obtain the RUL prediction results. Traditional
lithium-ion battery capacity value acquisition requires the use of precision instruments to
go deep into the battery for measurement. Although an accurate capacity value can be
obtained, it also destroys the internal structure of the battery. Therefore, it is more valuable
to extract a health factor that can represent the capacity signal from the historical data
of lithium-ion batteries in practical applications. However, PSR-GASVR-EC model uses
EEMD to decompose the capacity signal and discards high-frequency components to reduce
the prediction difficulty, resulting in a lower prediction accuracy of RUL. Ding et al. [27]
used the Cuckoo algorithm to optimize the VMD parameters to achieve the decomposition
of the component signals, and then used the GRU model to predict the component signals.
Finally, the RUL prediction results were obtained by superimposing and reconstructing
the component prediction results. This CS-VMD-GRU method has many similarities to
the WOA-VMD-LSTM method in this paper, but the prediction accuracy in this paper
was significantly higher than the former. For example, the average RMSE of this paper
when using a 35% sample size as the training set was only 0.69%, while the average RMSE
of CS-VMD-GRU when using the 70% sample size as the training set was 0.86%. This is
because CS-VMD-GRU pays more attention to the generalization ability of the model and
ignores the prediction accuracy of the model. CS-VMD-GRU has been used to carry out
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experiments with 18650 type batteries and CS-32 type batteries, respectively, to verify the
stability of the model. Therefore, the model can be well applied to other types of batteries.

However, the method proposed in this paper also had some limitations. For example,
this paper only used NASA 18650 batteries for the experiments, and did not consider
whether this method was applicable to other types of batteries. At the same time, by only
using the LSTM prediction algorithm, the generalization ability of signals with different
trends was not strong enough. Therefore, future research will consider the generalization
ability and stability of the model under different types of batteries (such as CS2 batteries at
the University of Maryland). The authors will also consider using the historical degradation
data of lithium-ion batteries to extract the health factors to predict the RUL.

6. Conclusions

This paper presents a prediction model for the remaining useful life of lithium-ion
batteries based on a combination of whale algorithm optimization variational mode de-
composition and long-term and short-term memory neural networks. Through the lithium
battery dataset published by NASA, it was verified that the proposed method can effectively
improve the prediction accuracy of RUL, and the following conclusions were drawn:

(1) The capacity attenuation signal of the lithium-ion battery belongs to time-series
data, and the LSTM model can effectively realize long distance time-series prediction. At
the same time, compared with the shallow layer model ELM, the depth model LSTM had a
better prediction effect than ELM. The maximum AE of LSTM was 6, while the minimum AE
of ELM was 11. The average RMSE of LSTM and ELM was 2.07% and 6.37%, respectively.

(2) The two most significant characteristics of the lithium-ion battery were that the
capacity signal had a global attenuation trend and a local capacity recovery phenomenon, of
which the capacity recovery phenomenon was the main reason for the reduced prediction
accuracy of the RUL of a lithium battery. How to sufficiently separate the fluctuation
component that represents the global attenuation trend component signal and the capacity
rebound phenomenon is the key to improve the prediction accuracy of the RUL. By using
WOA to optimize the VMD super parameters, the WOA-VMD fully decomposes the capac-
ity signal of the lithium-ion battery, obtaining a dual component with a global attenuation
trend and a series of fluctuation components representing the increase in the local capacity.
Compared with the single component with a global attenuation trend decomposed by
VMD, the correlation coefficient between the dual component decomposed by WOA-VMD
and the capacity signal was higher, which can better express the characteristics of the global
attenuation trend of the lithium-ion battery.

(3) The LSTM model was used to predict the dual component with a global attenuation
trend decomposed by WOA-VMD and a series of fluctuation components representing the
local capacity recovery, and the prediction results of each component were superimposed
to form the final RUL prediction results. The experimental results showed that the AE
was 2, the minimum value was 0, and the average value was 1 in the four types of batteries.
The maximum RMSE was 1.02%, the minimum RMSE was 0.36, and the average RMSE
was less than 0.69%. The maximum MAPE was 0.59%, the minimum MAPE was 0.19%,
and the average MAPE was less than 0.43%. Therefore, WOA-VMD-LSTM can effectively
improve the prediction accuracy of thee RUL of lithium-ion batteries.
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