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Abstract: In this paper, an ocean wave energy conversion system (OWECS) is modeled and experi-
mented in the Yellow Sea near Lianyungang port, and an optimized control method based on the
sliding mode control is proposed to improve the efficiency of OWECS. Firstly, a motion model of a
double-buoy OWECS is presented using a complex representation method, and the analysis results
indicate that the efficiency of converting ocean wave energy into the outer buoy’s mechanical power
is highest in a suitable ocean wave period. Secondly, a double-buoy OWECS is constructed and
experimented in the Yellow Sea near Lianyungang port, which verified the correctness of the above
analysis results. Lastly, in order to further improve the efficiency of the double-buoy OWECS, a slid-
ing mode control method based on a linear generator is proposed to realize the phase synchronization
between the outer buoy and ocean waves, and the simulation results may be beneficial for the next
ocean test of the double-buoy OWECS.

Keywords: motion model; ocean wave energy; buoy; efficiency; optimize control

1. Introduction

As a kind of renewable clean energy, ocean wave energy has attracted more and more
attention in the world [1,2]. During the past 50 years, ocean wave energy conversion has
been investigated and developed on a large scale, and various prototypes have been tested
in the laboratory or real ocean waves [3–5]. According to the system structure, an OWECS
can be classified as near-shore and offshore [6]. Regardless of the type of OWECS, buoys
(or float balls) and generators are necessary.

A buoy (or float ball) is an energy transfer device that converts ocean wave energy
into mechanical energy, and then drives a generator to output electrical energy. As shown
in Figure 1, under the action of ocean waves, the floating ball can move in the vertical
direction, which drives the linear generation to convert ocean wave energy into electrical
energy. In the past 5 years, novel kinds of OWECS have been proposed and researched.
For example, a hybrid OWECS which contains an oscillating water column (OWC) and
oscillating buoy (OB) was proposed by Saishuai et al., and the research results indicated
that the hybrid OWECS provided higher energy conversion, as well as better wave attenua-
tion performance, compared with the isolated OWC and OB devices [7]. In addition, an
oscillating buoy (OB) single-pontoon floating breakwater (SPFB) and an oscillating water
column (OWC) dual-pontoon floating breakwater (DPFB) were evaluated and compared.
The comparison results showed that the maximum conversion efficiency of the OWC for
the optimal opening ratio was higher than that of the OB [8]. Furthermore, some other
kinds of OWECS were researched in the last 5 years, such as the point-absorbing wave
energy converter (WEC) with the new mechanism structure of zero pressure angle, the
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smart floatable open-water wave energy converter, and the variable-geometry wave energy
converter [9–11].
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Figure 1. Structure of an ocean wave energy conversion device.

Actually, the motion of buoys (or float balls) plays an important role in the operation
efficiency of an OWECS. Only when the natural frequency of buoys (or float balls) is
identical to the ocean wave’s frequency can the efficiency of ocean wave energy converting
into electrical energy be maximized [12,13]. Therefore, the design and modeling of buoys
(or float balls) is one of the important topics in the research of OWECS.

Furthermore, a generator is an energy conversion device that converts mechanical
energy into electrical energy. In order to improve the operational efficiency of a generator,
some novel generators have been proposed, such as the superconducting magnet-excited
linear generator, linear switched reluctance generator, and Halbach magnetized linear
permanent magnet generator [14–16]. Compared with conventional rotary generators, the
high efficiency and simple structure make the linear generator an attractive candidate for
OWECS. However, due to the variable nature of wave periods and wave heights of ocean
waves, the non-controlled generator does not play a key role in the operational efficiency
of OWECS [17].

In this paper, according to the wave periods of the Yellow Sea near Lianyungang
port, the model test of a double-buoy OWECS was carried out in the Yellow Sea near
Lianyungang port. Firstly, the motion model of a double-buoy OWECS is presented
and analyzed. Secondly, a double-buoy OWECS is experimented in the Yellow Sea near
Lianyungang port, proving the correctness of the analysis results of the motion model of the
double-buoy OWECS. Lastly, in order to further improve the efficiency of the double-buoy
OWECS, a sliding mode control method based on the linear generator is proposed and
simulated in Section 4 of this paper. At the end of this paper, the principal restrictions of
study in this paper are discussed.

2. Motion Model of Double-Buoy OWECS
2.1. Vertical Direction Speed of Buoy

A buoy floating in ocean waves is shown in Figure 2a. Under the action of ocean
waves, the buoy can be moved in the vertical direction z, surge direction x, and sway
direction y. Figure 2b shows a double-buoy OWECS with an outer buoy and inner buoy.
Due to the different draught of the outer buoy and inner buoy, a relative motion between
them occurs, which drives the generator (installed in the upper end of inner buoy) to
convert ocean wave energy into electrical energy.
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In the vertical direction, the acceleration formula of buoy can be described as

mâz = F̂z + F̂r + F̂b + F̂f , (1)

where m is the mass (in kg), âz is the acceleration in the vertical direction, ∧ represents a
complex representation, F̂z is the vertical direction ocean wave force, F̂r is the radiation force
from the relative motion between buoy and ocean waves, F̂b is the hydrostatic buoyancy
force, and F̂f is the friction force.

Usually, the diameter of a buoy is smaller than the wavelength of ocean waves; thus,
the method of Froude–Krylow force and small object approximation can be used [18]. The
vertical direction ocean wave force F̂z can be written as

F̂z =
[
ρgSw −ω2ρV(1 + µz)

]
η̂, (2)

where ρ is the density of ocean water, g is the acceleration due to gravity, Sw is the horizontal
cross-section of buoy, ω is the angular frequency of ocean waves, V is the volume of the
buoy below the ocean wave surface, µz is the added mass coefficient of the buoy, and η̂ is
the wave amplitude of the ocean wave. Considering the depth z below the ocean wave
surface, the wave amplitude of the ocean wave η̂ can be written as

η̂ = Aeikz, (3)

where A is the amplitude of the ocean wave surface, i represents the imaginary part of the
complex representation, and k = ω2/g is the angular wave number of ocean waves. From
Equation (3), it can be concluded that a greater depth z below the ocean wave surface leads
to a smaller amplitude of the ocean wave.
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Moreover, the radiation force F̂r, the hydrostatic buoyancy force F̂b, and the friction
force F̂f can be written as

F̂r =
(

ω2mz − iωRz

) âz

−ω2 , (4)

F̂b = −ρgSw
âz

−ω2 , (5)

F̂f = −iωR f
âz

−ω2 , (6)

where mz and Rz are the added mass and damping coefficient of the buoy, respectively,
R f is the friction resistance coefficient of the double-buoy OWECS.

According to the relationship between speed and acceleration, the vertical direction
acceleration âz can be written as

âz = iωv̂z, (7)

where v̂z is the vertical direction speed. Substituting Equations (2) and (4)–(7) into (1), the
vertical direction speed of buoy can be described as

v̂z =

[
ρgSw −ω2ρV(1 + µz)

]
η̂

iω[m + mz] +
[

R f + Rz

]
+ ρgSw

iω

. (8)

For double-buoy OWECS (see Figure 2b), the basic parameters of double buoys are
shown in Table 1. Because the diameters of buoys are smaller than the wavelength of
ocean waves, the added mass can be approximately expressed as mz = 0.17ρD3, where
D is the diameter of buoys, and the damping coefficient Rz can be ignored. It is assumed
that the ocean waves are regular; then, according to Equations (3) and (8) and the basic
parameters of double buoys, the vertical direction speeds of the outer buoy and inner buoy
are illustrated in Figure 3. Figure 3 indicates that a relative motion between the outer buoy
and inner buoy occurs, which drives the generator (installed in the upper end of inner
buoy) to convert ocean wave energy into electrical energy.

Table 1. The basic parameters of double buoys.

Outer Diameter 2.4 m

Inner diameter 1.0 m
Outer buoy Height 1.8 m

Draft (h1) 0.771 m
Outer diameter 0.83 m

Inner buoy Height 7.9 m
Draft (h2) 6.059 m
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2.2. Analysis of Energy Conversion Efficiency

According to the theory of mechanical vibration, only when the resonance condition
occurs is the vertical direction displacement of the buoy maximized; thus, the energy
conversion efficiency from ocean wave energy into mechanical energy is maximum [18].
For the double-buoy OWECS, the resonance condition means that the outer buoy’s vertical
direction speed v̂z is consistent with its vertical direction ocean wave force F̂z (phase
difference is zero), and the inner buoy is nearly stationary. It can be concluded from
Equation (8) that the angular frequency ω plays an important role in the phase difference
between the vertical direction ocean wave force F̂z and the vertical direction speed v̂z.

According to Equation (8), Table 1, and certain regular ocean waves with different
period T, Figure 4 shows the outer buoy’s vertical direction ocean wave force and vertical
direction speed, and Table 2 lists the theoretical conversion efficiency from the ocean wave
power into the outer buoy and inner buoy’s mechanical power. In Table 2, the wave power
is calculated as the product of wave surface power J and the buoy’s horizontal cross-section
Sw, and the wave surface power J can be expressed as

J =
ρg2

32π
TH2, (9)

where T is the wave period, and H is the wave height. In addition, it should be noted that
the ocean wave power consists of kinetic energy (50%) and potential energy (50%), and
only the kinetic energy can be converted into the buoy’s mechanical power.

Table 2. The theoretical conversion efficiency from ocean wave power into the buoy’s power.

Wave
Amplitude

(m)
Wave Period

(s)

Power (kW)

Efficiency
Ocean Wave

(Kinetic
Energy)

Outer Buoy Inner Buoy

0.7 3 10.7275 3.4206 0.5225 27.02%
0.7 5 17.879 7.0680 0.5615 36.39%
0.7 7 25.0305 6.3139 0.5258 23.12%
0.7 8 28.6065 5.9704 0.5189 19.06%

Table 2 indicates that, for the geometry of the outer buoy of a double-buoy OWECS
(see Table 1), there is an optimal ocean wave period which can convert ocean wave energy
into the maximum mechanical power of the outer buoy (under the natural operation state),
and the optimal ocean wave period T is about 5 s.

The Yellow Sea near Lianyungang port was the installation site of the double-buoy
type OWECS; accordingly, the average wave period T and average angular frequency
ω in this area are listed in the Table 3 [19]. The average wave period T in the four seasons
is about 5 s, which is suitable for the operation of a double-buoy type OWECS. Actually,
the real ocean waves are irregular, and the efficiency of the outer buoy should be lower
than that of the regular waves. However, the analysis of conversion efficiency based on
the regular waves would provide some reference for the design and experimental test of
double-buoy ocean wave energy conversion in real ocean waves.

Table 3. The average wave periods and frequencies in Yellow Sea near Lianyungang port.

Season Average Wave Periods T Average Angular Frequency ω

Spring 5–5.5 s 1.1424–1.2566 rad/s
Summer 5.5–6 s 1.0472–1.1424 rad/s
Autumn 5–5.5 s 1.1424–1.2566 rad/s
Winter 5–5.5 s 1.1424–1.2566 rad/s
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3. Experimental Results

According to the efficiency analysis of ocean wave power conversion into the outer
buoy’s mechanical power, a double-buoy OWECS based on the parameters of Table 1
was constructed and experimented in the Yellow Sea near Lianyungang port. The main
components of the double-buoy OWECS included the outer buoy, inner buoy, linear
generator, data collector, etc.

3.1. The Specific Structure of Double-Buoy OWECS

Figure 5 shows the overall structure of the linear generator, inner buoy, measuring
device, outer buoy, and double-buoy OWECS. In Figure 5a, the linear generator is a per-
manent magnet tube, which is more suitable for use in an OWECS than a rotary generator.
Figure 5b shows the internal structure of inner buoy, in which the linear generator is in-
stalled in the upper end of inner buoy. Figure 5c shows the measuring device, including
the data collector, data processor, power supply, and data transmission. Figure 5d shows
the overall structure of the double-buoy OWECS, with the measuring device installed in
the headspace of the outer buoy.Energies 2022, 15, x FOR PEER REVIEW 8 of 17 
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Furthermore, a diagram of the measuring device is shown in Figure 6. As shown
in Figure 6, the output voltage of the linear generator (from the double-buoy OWECS) is
transformed into 0–5 V by voltage regulation and sampled by the MCU (microcontroller
unit). Then, the sampled data can be stored in flash memory or transmitted to the server
via a GPRS module. In addition, the function of the relay is overvoltage protection.
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3.2. Output Voltage and Power Analysis

Figure 7a shows the installation process of the double-buoy OWECS in the Yellow Sea
near Lianyungang port, and Figure 7b shows its operation in ocean waves.
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Figure 8a,b show the output load voltages of the double-buoy OWECS collected by
the measuring device. Figure 8c is a power analysis of Figure 8a,b, in which the average
power is 1.176 kW, and the maximum power is 4.254 kW.
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The output load voltages in Figure 8a,b indicate that the ocean wave period at the
same time is about 5.5 s, and the ocean wave amplitude is about 0.7 m (based on the linear
generator’s voltage–speed characteristic). Under this assumption, according to Equation (9),
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the experiment conversion efficiency from ocean wave power into electric power is 5.98%
(the linear generator’s output electric power divided by the ocean wave power).

In addition, if the ocean wave period is longer than 5.5 s, in the case of 8.5 s, the output
load voltage of the double-buoy OWECS is as shown in Figure 9a,b, along with the average
power (1.187 kW) and maximum power (2.34 kW). Furthermore, according to Equation (9),
the experiment conversion efficiency from ocean wave power into electric power is 3.4%.
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Amplitude (m) Wave Period (s)

Power (kW)
EfficiencyOcean Wave

(Kinetic Energy)
Linear

Generator

0.7 5.5 19.667 1.176 5.98%
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4. Efficiency Improvement of Double-Buoy OWECS

As shown in Table 4, in the natural ocean environment, the operational efficiency
of the double-buoy OWECS is low. Furthermore, irregular ocean waves further reduce
the operation efficiency. Therefore, considering the operation characteristics of a linear
generator, an optimized control method is proposed to increase the operational efficiency
of the double-buoy OWECS.

For the double-buoy OWECS, the load force of the linear generator should be con-
sidered. Therefore, the vertical direction speed of the floating buoy in the double-buoy
OWECS can be written as

v̂z =

[
ρgSw −ω2ρV(1 + µz)

]
η̂ + F̂u

iω[m + mz] +
[

R f + Rz

]
+ ρgSw

iω

, (10)

where F̂u is the load force of linear generator. For the linear generator, the relationship
between load force F̂u and the q-axis current is described below.

4.1. The Relationship between Load Force and q-Axis Current of Linear Generator

According to the theory of electrical engineering [20], the Park transformation can be
written as sa

sb
sc

 =

 cos(θ) − sin(θ) 1
cos(θ − 120◦) − sin(θ − 120◦) 1
cos(θ + 120◦) − sin(θ + 120◦) 1

sd
sq
s0

 = Park−1

sd
sq
s0

, (11)

where sa is the voltage, sb is the current, and sc is the magnetic linkage in the form of abc
coordinates. Moreover, sd is the voltage, sq is the current, and s0 is the magnetic linkage in
the form of dq0 coordinates.

In the form of abc coordinates, the active power output of the linear generator can be
written as

P̂ = V̂a îa + V̂b îb + V̂c îc, (12)

where V̂a, V̂b, and V̂c are the voltages, and îa, îb, and îc are the currents. Substituting
Equation (11) into (12), the active power output of linear generator can be rewritten as

P̂ =
[
V̂a V̂b V̂c

]îa
îb
îc

 = Park

V̂d
V̂q
V̂0

−1

· Park−1

îd
îq
î0

 =
3
2
(
V̂d îd + V̂q îq + 2V̂0 î0

)
, (13)

where V̂d, V̂q, and V̂0 are the voltages, and îd, îq, and î0 are the currents. Furthermore, the
voltages in dq0 coordinates can be described as

V̂d = Rs îd + Ls
dîd
dt −ωG Ls îq

V̂q = Rs îq + Ls
dîq
dt + ωG Ls îd + ωG ψG

V̂0 = Rs î0 + Ls
dî0
dt

, (14)

where Rs is the resistance, Ls is the inductance, ωG is the angular frequency, and ψG is the
magnetic linkage.

In the form of dq0 coordinates with a winding delta connection, the zero-sequence
voltage H does not exist. Therefore, Equation (13) can be rewritten as

P̂ =
3
2
(
V̂d îd + V̂q îq

)
. (15)
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Substituting Equation (14) into (15), the active power output of a linear generator can
be rewritten as

P̂ =
3
2

(
Rs î2d + Rs î2q

)
+

3
2

Ls

(
îd

dîd
dt

+ îq
dîq
dt

)
+

3
2

ωGψG îq. (16)

On the right side of Equation (16), the first term is copper loss, the second term is the
increasing rate of magnetic energy, and the last term is the electromagnetic power.

According to the structure of a linear generator, the relationship between the linear
generator’s angular frequency ωG and speed v̂z is

v̂z = 2 fGτ = 2
ωG
2π

τ =
ωG
π

τ ⇒ ωG =
π

τ
v̂z, (17)

where speed v̂z is also the relative speed between the outer buoy and inner buoy (see the
inner buoy’s structure in Figure 5b), τ is the pole pitch, and fG is the current frequency.

Substituting Equation (17) into the electromagnetic power term of Equation (16), and
ignoring the first term (copper loss) and second term (increasing rate of magnetic energy),
the electromagnetic power of a linear generator can be described as

P̂em =
3
2

πψG

τ
îqv̂z. (18)

For a linear generator, the relationship between electromagnetic power and piston
speed is P̂em = −F̂uv̂z. Thus, the load force F̂u can be expressed using the q-axis current îq
of dq0 coordinates.

F̂u = −3
2

πψG

τ
îq. (19)

4.2. Optimized Control of Double-Buoy OWECS

According to the mechanical vibration theory [13], only when the vertical direction
motion phase between the outer buoy and ocean waves is identical (in the resonance
condition) can the operational efficiency of double buoys type OWECS be improved.
Equations (10), (16), and (19) indicate that the vertical direction motion phase between the
outer buoy and ocean waves can be synchronized by adjusting the q-axis current îq and
d-axis current îd. Therefore, on the basis of the q-axis current îq and d-axis current îd of a
linear generator, a sliding mode control method is proposed to improve the operational
efficiency of a double-buoy OWECS.

Figure 10a shows the detailed control structure of a double-buoy OWECS, including
the ocean wave’s vertical direction speed v̂∗z , outer buoy’s vertical direction speed v̂z, sliding
mode control method (SMC), proportional integral (PI) control method, linear generator,
Park transformation, power inverter, and space vector pulse width modulation (SVPWM).
If the detailed signal transmission process of the voltages and currents in Figure 10a is
ignored, the simplified control structure of a double-buoy OWECS is shown in Figure 10b.
In Figure 10b, an interference term is added to test the anti-interference ability of the sliding
mode control method.
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According to the principle of mechanical motion [21,22], the motion equation of a
linear generator can be written as

J
dωm

dt
= TL − Te, (20)

Te =
3
2

Pniqψ f , (21)

where J is the moment of inertia, ωm is the mechanical angular speed, TL is the driving
torque, Te is the electromagnetic torque, Pn is the pole-pair number, and ψ f is the flux linkage.

The method of sliding mode control is adopted [23,24], and the d-axis current is set to
id = 0; then, the expression of q-axis current control can be obtained as

i∗q =
2J

3Pnψ f

∫ t

0

(
c

3
2J

Pnψ f iq − gsgn(s)− ks
)

dt, (22)

where c is the coefficient of the sliding mode surface, k is the constant-velocity approach
rate, sgn(s) is the symbolic function, and g is the exponential approach rate.

Assuming that the moment of inertia of the linear generator is J = 2 and the in-
terference term is d(t) = 10 sin

(
ωgt

)
, the simulation optimization control result of the

double-buoy OWECS according to the sliding mode control method is shown in Figure 11.
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Figure 11a is the simulation control result with a regular ocean wave, while Figure 11b is
that with an irregular ocean wave. Figure 11 indicates that the vertical direction motion
phase between ocean wave and linear generator (also is the outer buoy) can be synchro-
nized using the appropriate parameter settings of the sliding mode control method; thus,
the operational efficiency of a double-buoy OWECS can be improved.
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5. Discussion

On the basis of modeling and experimental analysis, an optimized control method
was proposed to improve the conversion efficiency of a double-buoy OWECS. However,
there are several points should be considered before the practical application of optimized
control of double-buoy OWECSs.

Firstly, some details of the optimized control method should be further investigated,
such as the signal processing of the linear generator, hardware circuit design, and electronic
component selection.

Secondly, the best match between the outer buoy and linear generator should be
analyzed. For example, if the maximum output electromagnetic torque of the linear
generator is less than the vertical direction ocean wave force of the outer buoy, the optimized
control of a double-buoy OWECS will not be realized.

Lastly, due to the existence non-sinusoidal and irregular ocean waves, a small proto-
type test needs to be implemented before the ocean test, which is beneficial to the improve-
ment and perfection of a double-buoy OWECS. In the process of small prototype tests, the
structure size design, parameter setting of control method, anti-interference performance
and so on should be tested and improved.

In general, the principal restrictions of study in this paper were the experimental
test of the OWECS, the safety of the OWECS in a harsh ocean environment (hurricanes,
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typhoons, etc.), the efficiency of the SMC method, and the ratio of investment and output,
which should be considered and analyzed. For example, after about 3 days of the ocean
test (see Figure 7), the OWECS was damaged by the high amplitude of ocean waves during
a typhoon. Therefore, from the perspective of scientific research, the safety and high
efficiency of the OWECS will be the main research topics in the near future.

6. Conclusions

In this paper, the motion model of a double-buoy OWECS was analyzed, and the
correctness of the motion model was verified using an experimental test. However, the
analysis of experimental test results indicated that the efficiency of the double-buoy OWECS
was lower. Therefore, a sliding mode control method based on a linear generator was
proposed to improve the efficiency of the double-buoy OWECS, and some simulation
analysis results were presented. After modeling, experimental analysis, and optimized
control of the double-buoy OWECS, a discussion was carried out, which may benefit future
ocean tests of OWECSs.
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