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Abstract: For attack detection in the smart grid, transfer learning is a promising solution to tackle
data distribution divergence and maintain performance when facing system and attack variations.
However, there are still two challenges when introducing transfer learning into intrusion detection:
when to apply transfer learning and how to extract effective features during transfer learning. To
address these two challenges, this paper proposes a transferability analysis and domain-adversarial
training (TADA) framework. The framework first leverages various data distribution divergence
metrics to predict the accuracy drop of a trained model and decides whether one should trigger
transfer learning to retain performance. Then, a domain-adversarial training model with CNN and
LSTM is developed to extract the spatiotemporal domain-invariant features to reduce distribution
divergence and improve detection performance. The TADA framework is evaluated in extensive
experiments where false data injection (FDI) attacks are injected at different times and locations.
Experiments results show that the framework has high accuracy in accuracy drop prediction, with
an RMSE lower than 1.79%. Compared to the state-of-the-art models, TADA demonstrates the
highest detection accuracy, achieving an average accuracy of 95.58%. Moreover, the robustness of the
framework is validated under different attack data percentages, with an average F1-score of 92.02%.

Keywords: cybersecurity; smart grid; transferability analysis; adversarial training; spatiotemporal
feature; transfer learning; false data injection

1. Introduction

As one of the national cyberphysical systems (CPS) infrastructures, the smart grid
provides efficient, secure, and sustainable electricity in an increasingly power-demanding
society. The application of sensing, communications, and distributed computing empowers
the smart grid in monitoring and controlling; however, it renders the smart grid exposed
to various cyberattacks and increases its vulnerability [1]. As reported in recent studies,
cyberattacks on critical infrastructures could have severe social, economic, and physical
impacts [2,3]. To address the importance of cybersecurity situation awareness in power
systems, various machine learning (ML) detection mechanisms have been exploited exten-
sively and demonstrated high accuracy and efficient computation in attack detection [4–6],
such as k-nearest neighbors (kNN) and support vector machine (SVM).

Many ML-based attack detection models assume that the training and testing data are
in the same space and have the same or similar independent distributions [7]. However,
this assumption is unlikely to hold in most real-world CPS scenarios because of system

Energies 2022, 15, 8778. https://doi.org/10.3390/en15238778 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15238778
https://doi.org/10.3390/en15238778
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-3465-8287
https://orcid.org/0000-0002-5148-1399
https://doi.org/10.3390/en15238778
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15238778?type=check_update&version=2


Energies 2022, 15, 8778 2 of 18

dynamics and attack changes. For instance, in power systems, the system load demand is
continuously changing, and the system topology may also be altered by normal operations.
Meanwhile, the same-scheme attacks may happen at different times and target different
buses, and new-scheme attacks are emerging as well. These variations will alter the data
distribution and cause a well-trained ML detection model to perform poorly on a new
dataset. Moreover, labeled attack data are extremely rare compared to labeled normal data
in real-world power systems. Models trained on insufficient data are fragile, and a small
change of the attack data distribution may cause a significant drop of detection accuracy.

Transfer learning (TL) is hence proposed to help solve these problems. This technique
enables models to transfer the knowledge learned from a labeled domain to another unseen
domain with distribution divergence [8]. Over the last few years, TL has shown remarkable
achievements in image identification and semantic parsing tasks [9]. Recently, TL has also
been introduced into highly dynamic CPS scenarios to enhance cybersecurity situation
awareness [10]. However, these works have not considered a problem that might be referred
to as transferability: when will a model suffer a severe performance drop and should TL
be applied?

Meanwhile, there is another question to consider during TL: how to extract the internal
spatial and temporal features of CPS data effectively to improve detection performance?
This is because the spatiotemporal features have been proven to help discriminate attacks
from normal data [11]. For instance, on the spatial side, the smart grid can be regarded as
an image. To launch false data injection (FDI) attacks on a particular bus, measurements of
several specific buses need to be manipulated simultaneously according to the physical
topology [12]. Thus, exploiting these spatial correlations of measurement data is crucial for
intrusion detection systems (IDS). Moreover, the temporal feature can be extracted from the
measurement flow over a continuous period to enhance the detection of well-constructed
attacks, such as FDI [13].

To tackle these two challenges, this work proposes a transferability analysis and
domain-adversarial training (TADA) framework to mitigate the impact of distribution
divergence and improve detection performance. The proposed framework has two steps.
The first step is to leverage selected data divergence metrics and regression models to
predict a detection accuracy drop and identify the tasks calling for TL. Then, the framework
applies parallel long short-term memory (LSTM) networks and convolutional neural net-
works (CNN) to extract spatiotemporal features, and employ domain-adversarial training
to reduce distribution divergence between two domains and enhance attack detection
performance.

To evaluate the proposed framework, this work first obtains the 7-year load demand
of ISO New England [14], then uses the load demand to generate multivariate time series
data on the IEEE 30-bus system. The stealthy FDI attacks [12] are injected at different
times and on different buses to generate attack data. With the synthesized datasets, the
proposed framework is evaluated and compared to state-of-the-art ML models. The
experiment results demonstrate that the TADA framework has high accuracy in accuracy
drop prediction based on distribution divergence and can significantly improve attack
detection performance by extracting spatiotemporal domain-invariant features against
divergence from both temporal and spatial dimensions. The main contributions of this
work are summarized as follows:

1. This work proposes a two-stage transfer learning framework, including a transfer-
ability analysis and spatiotemporal domain-adversarial training, which leverages a
CNN and LSTM along with domain-adversarial training to extract spatiotemporal
domain-invariant features and enhance attack detection performance.

2. This work proposes an ensemble method that combines different types of metrics to
capture multiple data distribution information, predict accuracy drop, and justify the
need for TL in cybersecurity situation awareness.

The rest of this paper is structured as follows. Section 2 reviews the related work about
transferability analysis, spatiotemporal features extraction in IDS, and domain-adversarial
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training in IDS. Section 3 illustrates the proposed framework. Section 4 introduces the
setup of the experiment. Section 5 discusses the experimental results and analysis. Section 6
draws conclusions and presents future work.

2. Related Work
2.1. Transferability Analysis

The goal of transferability analysis is to analyze whether a trained model will degrade
significantly and thus require TL. Meila and Fort et al. [15,16] showed that the performance
degradation of a trained mode was related to data distribution divergence between two
domains. Thus, the data distribution divergence measurement plays a crucial role in predict-
ing performance drop and triggering TL. Given its importance, researchers have invested
much effort in leveraging metrics to evaluate distribution divergence. Elsahar et al. [17]
used probability-related metrics and the H-divergence to predict the accuracy drop of
natural language processing (NLP) models. Deng et al. [18] leveraged the Fréchet distance
to predict the model accuracy for computer vision (CV) tasks. However, these works did
not consider using the accuracy drop to decide whether TL should be applied to maintain
acceptable accuracy.

Therefore, our previous paper [19] selected three commonly used metrics and eval-
uated each of them for predicting the accuracy drop and determining when to apply TL.
However, that paper used each metric in isolation and did not consider combining different
metrics to extract complementary distribution information. Different types of metrics can
look at the datasets from different angles [20]. Ruder et al. [21] proved the importance of
combining different metrics for measuring divergence, since each metric may only cover
limited aspects of the data distribution information. Instead of using individual metrics
in isolation, this paper systematically analyzes the divergence metrics published in the
literature, compares the distribution information obtained from different metrics, and
proposes an ensemble method that combines all metrics to further improve prediction
performance. Specifically, this work uses different types of metrics as the features to train a
neural network regression model, then applies the regression model to predict the accuracy
drop and identify the need for TL. Moreover, this paper also considers the spatial and
temporal features of CPS data and extends the previous paper by customizing the feature
extractor with CNN and LSTM to extract spatial and temporal features. Furthermore, dif-
ferent from the previous paper that used balanced datasets, this work also considers a wide
range of attack data percentages to validate the robustness of the proposed framework.

2.2. Spatiotemporal Domain-Adversarial Training for IDS

In recent years, various ML approaches, such as pretraining [22], incremental learn-
ing [23], and lifelong learning [24], have been proposed to preserve and extend the knowl-
edge learned from previous tasks to new tasks. Durairaj et al. [22] introduced pretraining
into a deep belief network (DBN) to enhance the FDI and denial of service detection per-
formance. Nakagawa et al. [23] proposed an online and unsupervised scheme based on
incremental learning to detect attacks in smart home IoT networks. However, these schemes
do not consider reducing the data distribution divergence that leads to a performance drop.
Thus, these approaches cannot solve the data distribution divergence problem considered
in this paper. Instead, in our work, we want to use TL techniques to decrease the data
distribution divergence and enhance detection performance.

Domain-adversarial training is a subcategory of TL techniques that reduces do-
main divergence and improves model generalization by extracting domain-invariant
features [25]. Ganin et al. [26] introduced adversarial training into TL and established
a domain-adversarial neural network (DANN) to improve the generalization of the trained
models. Zhang et al. [7,8] further extended the DANN with customized classifiers and
proposed a semisupervised domain-adversarial training model to detect attacks in power
systems. Wei et al. [27] propose a DANN-based IDS to detect in-vehicle network variant
attacks. However, these domain-adversarial training works did not consider extracting
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effective spatial and temporal features of the CPS data to enhance the attack detection
performance. Instead, this work introduces a CNN and LSTM into domain-adversarial
training to learn spatial and temporal features to further improve intrusion detection per-
formance. Specifically, a CNN is responsible for extracting spatial features of power system
data, and LSTM is used to learn the temporal features of time series data.

Some studies also used deep learning to extract effective spatial and temporal features
to enhance attack detection performance [28,29]. He et al. [30] proposed a conditional deep
belief network (CDBN) to detect FDI with historical measurements. They used a CDBN
to learn high-dimensional temporal features from sensor measurements and detect FDI
attacks. The approach proposed by Wang et al. [31] first used CNN to extract low-level
spatial features from the CPS data, then leveraged LSTM to extract high-level temporal
features. Considering that adversarial examples may cause misclassification by a deep
neural network (DNN), Hyun et al. [32–34] proposed robust adversarial examples schemes
using classification scores and AdvGuard. However, their uses of deep learning only
focused on informative feature extraction. They did not consider that the distribution
of extracted features may have changed significantly and may degrade the detector’s
performance since IDS operates in dynamic CPS environments. This work combines deep
learning and domain-adversarial training to extract deep domain-invariant features. In this
way, the distribution divergence decreases, and thus a trained model can maintain high
performance under dynamic operating environments.

Inspired by the current works in transferability analysis and spatiotemporal domain-
adversarial training in IDS, this work proposes a transferability analysis and domain-
adversarial training (TADA) framework to detect attacks in the smart grid. The TADA
framework first leverages transferability analysis to identify the tasks that require TL, then
uses domain-adversarial training to extract the spatiotemporal domain-invariant features
to improve the attack detection performance against distribution divergence.

3. Transferability Analysis and Domain-Adversarial Training
3.1. Problem Formulation

To elaborate on how the TADA framework addresses the aforementioned challenges,
this work first defines several notations of TL. In TL, a domain D consists of a feature
space X and a marginal probability distribution P(X). A task consists of a label space Y
and an objective predictive function f (·) from X to Y [10]. The objective function f (·) also
refers to conditional probability P(Y|X) from a probabilistic view, which is learned from
the training data [8]. This paper focuses on unsupervised TL, where the source domain
is labeled, i.e., DS = {(xS1 , yS1), ..., (xSnS

, ySnS
)}, and the target domain is unlabeled, i.e.,

DT = {(xT1), ..., (xTnT
)}, where x ∈ RT×C, T is the length of the time series, and C is the

dimension of feature space. Unsupervised TL is a common situation in real power systems
intrusion detection, as the IDS deployed in the smart grid needs to detect intrusions in real
time, and the newly generated dataset is usually unlabeled.

This work assumes that source and target domains contain both normal and attack
data, but the data distributions of the two domains are different. One case of data distri-
bution divergence is considered in this paper, covariate divergence, where two domains
have the same conditional distribution, i.e., PDS(Y|X) = PDT (Y|X), but their feature distri-
butions are different, i.e., PDS(X) 6= PDT (X). Covariate divergence is a common case in the
smart grid because of system and attack variations. For instance, power system topology
and load demand changes may lead to system variations, and the same attack can occur at
different times and on different buses. Specifically, this work considers a spatiotemporal
TL problem, where attackers target the power systems during different periods when load
demand has changed and inject intrusions on different buses in the power grid.

To tackle the aforementioned problems, this work aims to build a deep TL model that
has the ability to learn spatiotemporal domain-invariant features to mitigate the impact
of data distribution divergence. The challenges are when to apply TL and how to extract
effective informative spatiotemporal features for CPS data during TL, which are tackled by
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the proposed transferability analysis and domain-adversarial training (TADA) framework
in Figure 1. The framework has two steps: (1) this work first selects one metric from
each divergence measurement category, then trains a neural network regression model
using all metrics to approximate the relationship between divergence and accuracy drop.
Afterward, the regression model is applied to predict the accuracy drop on the unlabeled
target domains and identify the need for TL; (2) the TL is trained once the predicted accuracy
drop falls in the predefined range. Specifically, a domain-adversarial training model with a
CNN and LSTM is applied to extract spatiotemporal domain-invariant features, reduce
distribution divergence, and improve detection performance against attacks at different
times and locations.

Figure 1. The proposed transferability analysis and domain-adversarial training (TADA) framework.

3.2. Ensemble Metrics Transferability Analysis
3.2.1. Distribution Divergence Metrics

This work systematically analyzed different divergence measurement metrics and clas-
sified them into four categories by comparing the information each metric provides [20,21].
Considering different categories of metrics can capture various and complementary distri-
bution information, this work chose one metric from each category that was shown to have
good divergence measurement and performance prediction ability:

Geometry-based Metrics: Geometry-based metrics, such as Euclidean distance and
Manhattan distance [20], use the statistical descriptions of data distribution, such as mean
and standard deviation, to capture the geometry-related information. This work chose the
cosine similarity since it has demonstrated effectiveness in measuring similarity between
two domains [35]. The cosine distance (Cos) is defined as 1− cosine similarity:

DCos = 1− cos(~m,~n) = 1− ~m ·~n
‖m‖ · ‖n‖ , (1)

where ~m ans~n are two statistical vectors used to describe two distributions.
Domain-Discrimination-based Metrics: Domain-discrimination-based metrics look at

datasets from the perspective of classifiers and train classifiers to extract the high-
dimensional feature space information of the two distributions in a representation layer.
The classifier is trained to discriminate the data domains between the source and target,
and the divergence is characterized by the classification error. Among the available metrics,
the proxy A-distance (PAD) [17] performs best in measuring divergence and predicting
the performance drop in tasks such as part-of-speech tagging [20], and thus was picked in
this paper:

PAD = 2(1− 2ε(Gd)), (2)
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where ε(Gd) denotes the classifier’s error on the target domain.
Mutual-Information-Based Metrics: Mutual-information-based metrics look at datasets

from an information theory perspective and capture the probability information between
two distributions by measuring the amount of information required to convert one distribu-
tion to the other, such as the Kullback–Leibler (KL) divergence [20] and cross-entropy [21].
This work chose the Jensen–Shannon (JS) divergence as it is a symmetric variance of the KL
divergence and has been proved to be a reliable indicator for measuring domain similarity
in tasks such as sentiment analysis [36].

DJS(P||Q) =
1
2

DKL(P||M) +
1
2

DKL(Q||M), (3)

where DKL(P||Q) =
∫

p(x)log p(x)
q(x) dx, M = 1

2 (P+Q). p(x) and q(x) are probability density
functions of two distributions.

Higher-Order-Moment-Based Metrics: Higher-order-moment-based metrics, such as
correlation alignment (CORAL) [20] and central moment discrepancy (CMD) [37], capture
the moment information between two distributions. Maximum mean discrepancy (MMD)
was chosen in this work since it has been extensively adopted to measure the domain
discrepancy in domain adaptation works [38]:

DMMD(X||Y) =
∥∥∥∥∥ 1

n1

n1

∑
i=1

ϕ(xi)−
1
n2

n2

∑
j=1

ϕ(yj)

∥∥∥∥∥
H

, (4)

where ϕ(x) is a mapping which projects samples to the reproducing kernel Hilbert space
(RKHS) [38].

3.2.2. Regression Models

Using the aforementioned metrics, this work measured the distribution divergence
with labeled historical data in the source domain, then trained a neural network regression
model with ensemble metrics:

∆Acc = fensemble (dCos, dPAD, dJS, dMMD), (5)

where fensemble is a fully connected neural network with all selected metrics as the input.
This paper also trained a linear regression model for each single metric, and compared

the ensemble metrics method to the single metric method for predicting the accuracy drop.
The single metric method was defined as:

∆Acc = w1d + w0, (6)

where ∆Acc denotes the accuracy drop, d is the measured divergence, and w0 and w1
denote the model parameters.

The regression models were leveraged to predict the accuracy drop based on the
measured divergence for the unlabeled target domains. As shown in Step 1 of Figure 1, if
the predicted drop is too small, the trained model can retain a good detection performance
on the new target domain, so there is no need to apply TL since the improvement is trivial.
Meanwhile, if the predicted drop is too large, the model will suffer severe performance
degradation, and TL may not be able to improve the model to acceptable performance.
It is recommended to train a new model since the divergence is beyond what TL can
handle. If the predicted drop is neither too small that TL is unnecessary nor too large that
is beyond transferable, TL will be leveraged to improve the detection accuracy. This paper
mainly focuses on the last scenario, where the TL is necessarily triggered, and proposes an
effective domain-adversarial training approach by considering spatiotemporal features in
the smart grid.
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3.3. Spatiotemporal Domain-Adversarial Training

The domain-adversarial training of the proposed framework aimed to extract the
domain-invariant representations to reduce the divergence between source and target
domains. In this way, the model trained on the labeled source domain could also generalize
well to the unlabeled target domain. Our model built on a DANN [26], which consists of
three networks, namely, a feature extractor, a label predictor, and a domain discriminator, as
shown in Step 2 of Figure 1. Moreover, a gradient reversal layer (GRL) was added between
the feature extractor and the domain discriminator to make the domain discriminator
perform poorly. By training three networks simultaneously, the feature extractor tried to
minimize the label predictor loss and maximize the domain discriminator loss, thereby
extracting domain-invariant and label-discriminative features. The total loss function was
constructed as:

L(θ f , θy, θd) =
m

∑
i=1

Li
y(θ f , θy)− λ

n

∑
j=1

Lj
d(θ f , θd), (7)

where Ly is the label predictor loss, Ld is the domain discriminator loss, λ is the adaptation
factor used to tune the trade-off between two network losses [26], and the minus sign
indicates the adversarial training.

This work further customized the design of the feature extractor to extract the deep
spatiotemporal features from CPS data. Motivated by the success of deep learning on
CV and NLP tasks, the feature extractor in this work consisted of a CNN and LSTM
to extract domain-invariant spatial and temporal features, as depicted in Figure 1. The
CNNs were used to extract the cross-measurement correlation of CPS data since they can
extract effective spatial features [28]. The LSTM networks, which are capable of learning
long-term dependencies [13], worked on mining the context information of the sequential
measurement flow. A parallel combination of three layers of CNNs and two layers of
LSTM networks was adopted in this work because extensive experiments conducted
by Zhang et al. [39] proved that this combination could extract effective spatiotemporal
features. A feature fusion layer was leveraged to merge the extracted spatial and temporal
features as spatiotemporal features, and feed them to the label predictor and domain
discriminator.

Typically, the raw measurements from different smart meters at time index t are a
one-dimensional (1-D) vector:

vt = [m1
t , m2

t , ..., mC
t ], (8)

where mi
t is the reading of the ith measurement. For an observation period [t, t + N], there

is a measurement flow with N + 1 vectors, and each vector contains C measurements.
To extract temporal features with LSTM, this work adopted a sliding window to divide
measurement flow into individual segments. Each segment had a fixed length of time
series vectors and was defined as:

sj = [vt, vt+1, ..., vt+T−1]
T, (9)

where T is the fixed sliding window size, and sj denotes the jth segment fed into the feature
extractor. Each segment was fed into the CNNs and LSTM networks in parallel.

The CNNs were responsible for learning spatial features. Following [29], this work
employed three layers of 1-D CNNs to extract the spatial features of each vector in the
segment sj:

rk = Conv1D(vk), (10)

where rk is the extracted spatial features corresponding to the measurement vector vk. To
be comparable to the temporal features in terms of size, the extracted spatial features in the
same segment were fed into a global average pooling (GAP) layer. The GAP can reduce
the computational burden and avoid overfitting, thus enhancing the generality of spatial
features. The final spatial features could be expressed as:
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fspatial = GGAP(rt, rt+1, ..., rt+T−1), (11)

where GGAP is the pooling layer. fspatial denotes a single vector representing the spatial
features.

The LSTM networks were leveraged to extract the temporal features of multivariate
time series measurements. Specifically, the LSTM networks had two LSTM layers, and each
LSTM layer had T units since each segment contained T measurement vectors. Since this
work was interested in segment-level intrusion detection, the output of the last unit in the
second layer was selected to generate temporal features:

h2
t+T−1 = LSTM(sj), (12)

where h2
t+T−1 is the output of the last unit in the second layer.

Then, a fully connected layer was added to improve temporal feature representa-
tion [39]:

ftemporal = GFC(h2
t+T−1), (13)

where GFC is the fully connected layer. ftemporal denotes a single vector representing the
temporal features.

Finally, the spatial and temporal features extracted in parallel were merged as spa-
tiotemporal features in the feature fusion layer:

fspatiotemporal = [ fspatial , ftemporal ]. (14)

Then, the spatiotemporal features were fed into the label predictor and domain discrim-
inator for the domain-adversarial training. By training three networks simultaneously, the
feature extractor could learn the domain-invariant and label-discriminative spatiotemporal
features, thus improving the attack detection performance.

4. Experiments Setup
4.1. Data Generation

To evaluate the proposed framework on realistic CPS scenarios, seven-year practical
load demand data of ISO New England from 2015 to 2021 were used for the normal
data simulation, as shown in Figure 2. The load demand was normalized to the load
value of the standard IEEE 30-bus system [40], as shown in Figure 3. Then, MATPOWER
was implemented to generate 142 measurements over a 1-min interval, i.e., C = 142, by
performing the DC optimal power flow (DC-OPF) analysis. Gaussian noises were also
added to the measurements with a mean of zero and a standard deviation of 0.02. Then,
this work selected 60 min as the sliding window, i.e., T = 60, to transform normal data into
time series data.

Figure 2. ISO New England seven-year load demand [14].
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Figure 3. IEEE 30-bus system [40].

The FDI [12], which can stealthily compromise measurements in a coordinated fashion,
was chosen as the attack model to generate the attack data. This work constructed the
attack vectors according to the system topology matrix H by a = Hc, and injected them
into normal data z to synthesize the attack data by za = z + a. The false state c had a mean
of zero and a standard deviation of 0.1. In this way, the FDI attacks could evade the bad
data detection (BDD) and compromise the state estimation results, which could result in
severe impacts such as insufficient generation, power outages, and monetary loss [1,4].
Moreover, this paper considered that the attack data percentage was not always consistent
in real-world power systems. Based on the fact that the attack data are generally rare
compared to the normal data in the smart grid [41], this paper set the attack data percentage
range of [5%, 40%]. Meanwhile, considering many ML algorithms are tested and developed
on balanced datasets, this work also set up relatively balanced datasets with an attack data
percentage range of [45%, 55%]. Combining these two, this work had datasets with an
attack data percentage range of [5%, 55%]. The attack data percentages were chosen in
every 5% among [5%, 55%] to validate the robustness of the proposed framework, that is,
5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, and 55%.

4.2. Spatiotemporal TL Setup

This work assumed the power system could be attacked at different times and locations.
In terms of attack times, considering the load demand of different seasons distinct, this
work set up four cases from each year’s data, winter, spring, summer, and fall, to capture
the temporal divergence, as shown in Table 1. Source domains were generated from the
labeled historical normal and attack data from 2015 to 2018. Target domains contained
unlabeled normal data and attack data from 2019 to 2021.

Regarding attack locations, it was assumed that the attackers could only target one
bus each time considering the limited access ability of attackers in real-world scenarios.
Following [3], this work found 15 attackable buses in the IEEE 30-bus system. Different
attackable buses were targeted by FDI attacks for the attack location variations.
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Table 1. Cases setup of temporal variation.

Cases Seasons Months

Source Domain from
Year 2015 to 2018

Target Domain from
Year 2019 to 2021

Mean of
Load (MW)

Standard Deviation
of Load (MW)

Mean of
Load (MW)

Standard Deviation
of Load (MW)

1 Winter Mid-December to
mid-March 14,482.95 750.09 13,851.43 500.32

2 Spring Mid-March to
mid-June 12,744.30 560.54 11,838.29 627.72

3 Summer Mid-June to
mid-September 15,390.25 953.51 14,890.62 961.39

4 Fall Mid-September to
mid-December 13,107.20 533.23 12,501.28 613.43

In the transferability analysis, following our previous paper [19], this work randomly
chose two domains from the labeled historical data between 2015 and 2018 as a pair
of training domain and validation domain. Then, this work measured the distribution
divergence between two domains, and calculated the model’s accuracy drop from the
training domain to the validation domain. Regression models with a single metric and
ensemble metrics were trained to learn the relationship between the measured divergence
and accuracy drop. Then, the trained regression models were leveraged to predict the
accuracy degradation on the unlabeled target domain between 2019 and 2021. If the
predicted accuracy degradation exceeded the predefined threshold, the second step of the
proposed framework was applied to maintain the performance.

4.3. Comparison Models

The performance of the TADA framework was validated via comparing to three
non-TL models and two state-of-art TL models. The three non-TL models were a multi-
layer perceptron (MLP) and a linear SVM, chosen for their high performance and low
computational complexity in intrusion detection [5,6], and a fully convolutional network
(FCN) [29] for its ability to learn deep spatial features. For the state-of-art TL models, this
work chose a DANN and the convolutional deep domain adaptation model for time series
data (CoDATS) [42] for their capacity for domain adaptation.

This work adopted the accuracy and F1-score for the evaluation and comparison,
which can be calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, (15)

where TP, TN, FP, and FN represent true positives, true negatives, false positives, and false
negatives, respectively. Since this work used imbalanced domains, examining the accuracy
alone could sometimes be misleading. Hence, this work also introduced the F1-score, which
is the harmonic mean of precision and recall:

F1-score =
2× Precision× Recall

Precision + Recall
, (16)

where Precision = TP
TP + FP , Recall = TP

TP + FN .

4.4. Model Implementation

For the transferability analysis, this work deactivated the domain discriminator and
used a serial connection between the feature extractor and the label predictor as the detec-
tion classifier to calculate the detection accuracy drop. The three layers of CNNs are set
with kernel sizes of {8, 5, 3} and kernel numbers of {128, 256, 128}. Following [28], this work
used grid research and found that combining an LSTM time step size of 60 (in minutes) and
a hidden state size of 100 achieved robust detection performance. This work referred to [26]
and gradually changed the adaptation factor λ in Equation (7) from zero to one to tune the
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trade-off between the label predictor loss and the domain discriminator loss. In this way,
the domain discriminator loss was suppressed at the early training stage. Furthermore, an
annealing learning rate that decreased from 0.01 to 0.001 was applied in this work.

This work used MATLAB R2020b and MATPOWER v7.1 to generate datasets. All
models were implemented in Python v3.6, TensorFlow v2.4.0, Keras v2.4.3, and Scikit-
learn v0.24.2. The hardware environment for training and testing was an AMD Ryzen 9
3900X 12-Core Processor 3.80 GHz with 32GB RAM, and an NVIDIA GeForce RTX 2070
Super GPU.

5. Results and Discussion
5.1. Evaluation of Transferability Analysis

The root-mean-square error (RMSE) and maximum absolute error (MaxAE) of each
regression model in predicting the accuracy drop are shown in Figure 4. The first four
are the performance of the single-metric method, and the last one is that of the ensemble
method with all metrics.

To show the accuracy drop prediction ability of the transferability analysis, this work
first compared the selected metrics with the baseline. The baseline divided the divergence
of the historical data between 2015 and 2018 into small intervals, and calculated the
mean accuracy drop in each small divergence interval as the expected accuracy drop.
For the target dataset, if the measured divergence was located in a specific interval, the
baseline took the expected accuracy drop of that interval as the predicted accuracy drop
of the target domain. The RMSE and MaxAE of the baseline were 6.32% and 17.28%,
respectively. All selected metrics outperformed the baseline in both RMSE and MaxAE.
Among the four selected metrics with a linear regression, PAD and JS had the highest
prediction performance, reducing RMSE and MaxAE significantly to under 2.88% and
8.27%, respectively. MMD performed slightly worse than PAD and JS, but still improved
the baseline by 3.03% in RMSE and 7.31% in MaxAE. Cos performed worst among the
selected metrics but still achieved smaller RMSE and MaxAE than the baseline.

Figure 4. RMSE and MAE of accuracy drop prediction.

Moreover, compared to using a single metric to predict the accuracy drop, the ensemble
method provided better performance. The ensemble method achieved an RMSE as low
as 1.79% and a MaxAE of 5.62%. This was because the ensemble method took advantage
of different metrics that could capture complementary distribution information to further
improve prediction performance [21]. Overall, the ensemble method decreased the RMSE
to below 1.80%, indicating that the predicted accuracy drop with the ensemble metrics
was close to the ground truth. This also implied that it was feasible to predict the models’
performance drop by distribution divergence.
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The low RMSE and MaxAE of the selected metrics can be explained by the strong
relationship between the divergence and accuracy drop. For example, the relationship
of the accuracy drop and PAD divergence is presented in Figure 5. A strong relationship
between the PAD divergence and accuracy drop can be observed: the Pearson correlation
coefficient ρ is 0.87. According to [43], ρ > 0.8 indicates a strong correlation between
two variables.

Figure 5. Scatter plot showing a strong relationship between PAD divergence and accuracy drop.
Each dot represents a domain pair. The linear regression result is plotted in purple.

5.2. FDI Detection Performance

Table 2 illustrates the accuracy of the TADA framework and five compared models in
detecting FDI attacks in different seasons. The accuracy shown in Table 2 is the average
of every 1080 experiments, where attacks were injected on individual buses of different
locations. This work used the ensemble method to predict the accuracy drop of each case.
Since FDI attacks may severely impact the power systems, this work set an accuracy drop
of 10% as the threshold for activating TL. The target seasons where the actual accuracy
drop was smaller than 10% are underlined. In these seasons, the accuracy drop was not
significant enough to call for TL, because this small accuracy drop might be the normal
accuracy variation. In this case, TL was unnecessary, because frequently applying TL can
be costly but the performance boost would be trivial. Table 2 shows that the predicted
accuracy drop of all the underlined seasons was less than 10%, indicating the ensemble
method successfully identified all TL-unnecessary cases. Overall, the predicted accuracy
drop was close to the actual accuracy drop. It can also be found that except for winter in
Case 4, the source and target domain pairs demonstrated less accuracy drop if they were
from the following pairs: the same-season pairs, winter and summer pairs, spring and
fall pairs. This was because the load demand of the source and target domains from the
aforementioned pairs was similar, as shown in Table 1. A similar load demand indicates
less data distribution divergence and accuracy drop.

Among all methods, the SVM and MLP had the lowest detection accuracy, with an
average accuracy of 72.55% and 74.10%, respectively. This was because they could neither
learn deep spatiotemporal features nor use domain adaptation to mitigate the impact of
distribution divergence. The FCN performed slightly better than the SVM and MLP with
an average accuracy of 78.06%, because the FCN can leverage its CNN to extract spatial
features within the smart grid measurements. However, the FCN was also a non-TL model,
so it suffered performance degradation when facing significant distribution divergence.
Moreover, compared to three non-TL models (SVM, MLP, and FCN), the TL models (DANN,
CoDATS, and TADA) achieved a higher detection accuracy. This suggested that the three
TL models could extract domain-invariant features to improve the classification accuracy,
while the non-TL models failed to mitigate the impact of distribution divergence.
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Among the three TL models, although the DANN could learn domain-invariant
features, it had the lowest detection accuracy since it could not extract temporal or spatial
features. The TADA framework outperformed the CoDATS by an average improvement of
4.56%. This was because the CoDATS could only learn temporal features, but the TADA
framework could learn both temporal and spatial features in parallel to further improve FDI
detection performance. Overall, the TADA framework demonstrated the highest accuracy
in all cases. The best-case and the worst-case improvements reached +30.32% compared to
the MLP during fall in Case 3, and +1.57% compared to the CoDATS during fall in Case 4.
The results suggested that the TADA framework could not only take advantage of domain-
adversarial training to extract domain-invariant features, but also leverage the LSTM and
CNNs to learn spatiotemporal features, to achieve superior FDI detection performance
against distribution divergence.

Table 2. Comparison of the TADA framework and five ML classifiers in detecting FDI attacks in
different seasons.

Cases Source
Seasons

Target
Seasons

Predicted
Drop

Actual
Drop TADA CoDATS DANN FCN SVM MLP Best-Case

Margin
Worst-Case

Margin

1 Winter

Winter 8.97 8.89 97.31 93.86 91.17 86.68 79.56 81.03 +17.74 +3.44
Spring 26.01 25.20 94.87 87.69 85.69 72.44 67.65 66.93 +27.94 +7.18

Summer 11.47 11.23 95.74 93.31 89.13 79.82 74.13 75.57 +21.61 +2.43
Fall 20.97 20.65 94.84 90.93 85.51 71.41 66.02 69.27 +28.82 +3.91

2 Spring

Winter 18.55 18.74 96.68 89.14 88.16 77.30 71.74 70.42 +26.25 +7.54
Spring 12.81 13.02 96.05 93.00 89.74 81.50 75.66 78.91 +20.39 +3.04

Summer 19.62 19.14 95.42 90.49 88.03 70.23 67.72 71.04 +27.70 +4.93
Fall 6.26 6.36 97.89 93.21 90.23 86.22 78.85 82.69 +19.04 +4.68

3 Summer

Winter 17.28 17.62 95.08 90.55 86.03 78.55 72.15 73.56 +22.93 +4.53
Spring 28.21 27.19 92.90 89.47 84.39 70.83 64.86 66.98 +28.04 +3.43

Summer 7.19 7.29 96.87 89.79 90.12 85.07 79.25 81.89 +17.61 +6.75
Fall 23.17 23.80 94.99 86.57 82.80 71.50 68.19 64.67 +30.32 +8.42

4 Fall

Winter 11.76 11.49 96.52 90.78 91.06 84.12 78.53 78.10 +18.42 +5.46
Spring 14.48 14.75 94.98 93.30 90.04 78.42 74.35 76.44 +20.63 +1.68

Summer 24.77 23.92 93.08 89.68 81.19 72.99 67.32 67.40 +25.75 +3.39
Fall 9.20 9.09 96.08 94.51 92.56 81.91 74.76 80.70 +21.32 +1.57

The target seasons are underlined where the actual accuracy drop is smaller than a predefined threshold (10%)
and thus the domain-adversarial training is unnecessary.

Considering this work used imbalanced datasets, the F1-score of the TADA framework
and other compared models under different attack data percentages are shown in Figure 6.
The results show that the detection performance of all methods was generally increasing
as the percentage of attack data increased and datasets became more balanced. When the
attack data percentage was less than 25%, the TADA framework demonstrated a significant
improvement compared to the other models. The F1-score of the TADA framework did
not further improve when the attack data percentage was higher than 25%, but it still
outperformed the other models. Overall, the TADA framework showed the highest F1-
score when the attack data percentage varied, which indicated that the TADA framework
could achieve robust detection performance against variations in attack data percentage.
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Figure 6. Comparison of F1-score of the TADA framework and other ML classifiers under different
attack data percentages.

5.3. Visualization of Data Distribution

To vividly visualize the results of the domain-invariant feature extraction, Figure 7
employs t-SNE and presents normal and attack data distribution without and with domain-
adversarial training. Specifically, for Figure 7a where the domain-adversarial training
was not performed, this work deactivated the domain discriminator and used t-SNE to
visualize the output of the feature fusion layer in Figure 1. For Figure 7b where the domain-
adversarial training was performed, this work trained all three networks and visualized
the output of the feature fusion layer. This work also plotted the decision boundary on the
attack detection problem, which was given by the label predictor in Figure 1. Specifically, a
sample was classified as attack data if the output of the label predictor was greater than 0.5.
Otherwise, it was classified as normal data.

(a) (b)

Figure 7. Distribution of normal and attack data in the feature fusion layer when (a) domain-
adversarial training was not applied and (b) domain-adversarial training was applied. The circles
represent normal data, while the dots represent the attack data. The green dots and circles correspond
to data from the source domain, and the orange dots and circles correspond to the data from the
target domain. The decision boundary is plotted in purple.

Figure 7a shows that without domain-adversarial training, the distributions of source
and target data were different, especially for the attack data that were injected at different
times and locations. Moreover, the decision boundary could distinguish between normal
and attack data from the source domain but could not perfectly classify normal and attack
data from the target domain. This was because the classifier was trained based on the
labeled source domain, but the target domain had a different data distribution. After
applying the domain-adversarial training, however, the distribution divergence between
the two domains decreased. The source and target domains shared a similar distribution in
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the feature fusion layer, as shown in Figure 7b. Specifically, the attack data were clustered on
the upper left, while the normal data were clustered on the lower right. Therefore, the label
predictor trained on features extracted from the source domain could also generalize well
to the target domain, thus achieving a high and robust detection performance. The results
demonstrated that the TADA framework could effectively reduce distribution divergence
and thus improve the detection performance.

6. Conclusions

This work studied the problems of when to apply TL and how to extract effective
features during TL for attack detection in power systems. A two-step attack detection
framework based on transferability analysis and unsupervised domain-adversarial training
was proposed. The framework first used the distribution divergence to determine when
TL should be applied, and then leveraged the spatiotemporal domain-adversarial training
to enhance detection performance against attacks at different times and locations. The
transferability analysis results demonstrated that the framework was capable of predicting
the accuracy drop with an RMSE lower than 1.79% and determining whether to apply
TL. The attack detection results showed that the TADA framework could extract effective
spatiotemporal domain-invariant features to improve attack detection performance and
achieved an average accuracy of 95.58%. The results also demonstrated that the TADA
framework could achieve robust detection performance against variations of attack data
percentages, with an average F1-score of 92.02%. In the future, we will further investigate
more practical attack scenarios in the smart grid and extend the work to other CPS scenarios.
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Abbreviations
The following abbreviations are used in this manuscript:

TADA Transferability analysis and domain-adversarial training
CPS Cyberphysical systems
IDS Intrusion detection system
FDI False data injection
BDD Bad data detection
ML Machine learning
TL Transfer learning
DANN Domain-adversarial neural network
GRL Gradient reversal layer
DAN Deep adaptation network
DNN Deep neural network
CDBN Conditional deep belief network
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CNN Convolutional neural network
LSTM Long short-term memory
GAP Global average pooling
NLP Natural language processing
CV Computer vision
FCN Fully convolutional network
CoDATS Convolutional deep domain adaptation model for time series data
MLP Multilayer perceptron
kNN k-nearest neighbors
SVM Support vector machine
PAD Proxy A-distance
KL Kullback–Leibler
JS Jensen–Shannon
CMD Central moment discrepancy
CORAL Correlation alignment
MMD Maximum mean discrepancy
RKHS Reproducing kernel Hilbert space
DC-OPF DC optimal power flow
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