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Abstract: In this article, an unsupervised learning method is presented with the objective of modeling,
in real-time, the main operating modes (OM) of distribution transformers. This model is then used
to assess the operational condition through use of two tools: the operation map and the health
index. This approach allows, mainly, for a reduction in the need for the interpretation of results by
specialists. The method used the concepts of k-nearest neighbors (k-NN) and Gaussian mixture model
(GMM) clustering to identify and update the main OMs and characterize these through operating
mode clusters (OMC). The evaluation of the method was performed using data from a case study of
almost one year in duration, along with five in-service distribution transformers. The model was
able to synthesize 11 magnitudes measured directly in the transformer into two latent variables
using the principal component analysis technique, while preserving on average more than 86% of
the information present. The operation map was able to categorize the transformer operation into
previously parameterized levels (appropriate, precarious, critical) with errors below 0.26 of standard
deviation. In addition, the health index opened the possibility of identifying and quantifying the

main abnormal variations in the operating pattern of the transformers.

Keywords: distribution transformer; unsupervised learning; automatic diagnostic; real-time
monitoring; health index; operation map

1. Introduction

Distribution transformers are present in large numbers on distribution grids, where
it is common to find thousands of such devices in large urban centers. In addition, tech-
nologies related to the Internet of Things (IoT), edge computing and advanced metering
infrastructure (AMI) have been combined to electric power systems, generating the so-
called smart grids [1-8]. This combination allows, for example, the migration from the
paradigm of preventative maintenance over to condition-based maintenance [9-11]. How-
ever, non-automated data collection and the need for specialists to interpret the results
represent a significant limitation when applying diagnostic methods, on a large scale, to
distribution transformers. As such, the development and improvement of methods that
permit automatic diagnostic (i.e., capacity to determine the operational health status of
these devices in an autonomous manner) can arrive at a significant contribution to the
distribution sector of electric energy. Some of the main challenges associated with these
automatic diagnostic methods are the ability to execute autonomously, use of algorithms
that do not require human intervention or supervision, a simplified configuration with a
minimum number of parameters that need to be estimated in advance, a structure that
is adaptable and flexible to real-time measurements of the transformer and portability
(i.e., applicability of the method independent of the transformer model or class).

In general, the automatic diagnostic methods are based on the concept of learning
from the performance features over the long term, and in the identification of significant
anomalous patterns that can lead to possible failure modes (set of operating patterns that
the equipment presents when it fails). In addition, these techniques emphasize unsuper-
vised learning algorithms, which can be online and real-time, to aid in decision-making and

Energies 2022, 15, 8716. https:/ /doi.org/10.3390/en15228716

https:/ /www.mdpi.com/journal/energies


https://doi.org/10.3390/en15228716
https://doi.org/10.3390/en15228716
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://doi.org/10.3390/en15228716
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15228716?type=check_update&version=2

Energies 2022, 15, 8716

2 of 20

prognoses that autonomously identify tendencies that deviate from normal behavior, while
also preventing possible failure states [12]. Deep learning, learning vector quantization,
self-organizing maps and hidden Markov models are some of the tools typically used in au-
tomatic diagnostic methods [13]. However, the employment of such tools usually involves
parameters as dissolved gas, short circuit impedance, frequency domain spectroscopy,
humidity, etc. [14-21]. Therefore, the use of these parameters for distribution transformers
can be very costly and inhibitory.

In this sense, this article discusses an unsupervised learning method, in real-time,
that addresses some of the challenges cited, while proposing an automatic diagnostic
strategy for distribution transformers. This new approach permits a system that executes
this proposed method of automatic diagnostic to gradually tune the specifications of a
particular transformer, through only its representation by a set of preselected feature
variables (e.g., voltage, current, power factor, ambient temperature, tank temperature,
total harmonic distortion.). Additionally, it provides the operator of the electric power
distribution system, in graph form and without the need for deeper specific knowledge,
information on the actual operational condition of the transformer. This reduces the need
for detailed knowledge into the structural and dynamic properties of the transformer,
together with its possible failure modes.

The proposed method includes two main tasks—basic modeling of the transformer
in real-time and evaluation of the operational condition. The latter was implemented by
means of two tools: the operation map and the health index. To this end, the method uses
the concepts of clustering k-nearest neighbors (k-NN) and the Gaussian mixture model
(GMM), for the automatic identification and updating of the main operational modes (set
of stable patterns that the transformer presents in its various operating states) and establish
the limits of the acceptable performance characteristics over the long term. The practical
results presented in this study are based on a case study that has one year of data collected
from five in-service distribution transformers.

The remainder of the article is organized in the following way. First, in Section 2,
a description is given of the online data acquisition system, along with the magnitudes
measured through it. Section 3 presents the automatic diagnostic method in real-time used
to represent the data in a dynamic structure that models the transformer. Furthermore,
it presents two tools, the operation map and the health index, which use this model to
assess the condition of the transformer. Section 4 presents the results and the respective
discussions of a case study based on the implementation of the method in a pilot set of five
in service distribution transformers. The conclusions are given in Section 5.

2. Materials

The proposed method is supplied with data collected in real-time from transformers on
the distribution grid by a hardware device for wireless measurement and communication
developed especially for this research. Figure 1 illustrates the hardware that is designated
as IED (intelligent electronic device). The general specifications of the IEDs are presented
in Table 1. Each of the IEDs were calibrated to the range specified in Table 1 using a
programmable power source [22].

Table 1. Specifications of IED.

Specifications
AC Voltage measurement 0 to 300 Vrms (precision ~0.05 Vrms)
AC Current measurement 0 to 400 Arms (precision ~0.15 Arms)
Temperature measurement 5 to 160 °C (precision ~0.4 °C)
Approximate dimensions (L x W x H) 22 cm X 22 cm X 13 cm
Weight ~2.7kg
IP Rating IP 66
Enclosure Material Aluminum, UV resistant paint

Communication LoRaWAN Protocol Class A and Class C
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Figure 1. Monitoring system of distribution transformers used to perform basic electrical and thermal
measurements of the transformer. (a) IED (intelligent electronic device). (b) Non-intrusive installation
process. (c) Distribution transformer real-time monitoring by the IED.

The IED reads the sensors installed on the transformer at each second and then
after three minutes, consolidates all the measurements and transmits the average values.
These measurements are then used to produce the raw feature vector x° € RK, where
K is the number of magnitudes measured on the transformer by the IED. In this study,
K = 11 and includes the measurements: electric voltages in per-unit (pu), currents in
pu and power factor on each of the three phases (A, B, C) in low voltage; increase in
tank temperature related to ambient temperature measured in loco and the total voltage
harmonic distortion (THDv).

3. Automatic Diagnostic Method

The real-time automatic diagnostic method includes three main phases—(i) initializa-
tion, (ii) modeling and (iii) assessment of the condition. Figure 2 illustrates the main stages
that make up the initialization and modeling phases, which are, respectively responsible for
creating and updating a mathematical model of the distribution transformer. This model is
then used in the condition assessment phase to evaluate the transformer. Prepensely, two
tools are used, the operation map and the health index.
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Figure 2. Flowchart of the initialization and modeling phases of the real-time automatic diagnos-
tic method.
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3.1. Initialization Phase

In summary, the objective of the initialization phase is to standardize the raw features,
reduce the dimensionality of the feature space, and identify stable patterns in the feature
vectors that establish the different operational modes of the transformer. In this phase,
one collects new raw feature vectors x°, until a predefined number, n,,;,, necessary for
the initialization, is reached. The minimum number of readings or data samples (1,,;,) is
estimated from the number of independent parameters of the feature covariance matrix,
which can be given by:

pin = K(K+1)/2 1)

where K is the number of magnitudes measured and indicates the dimension of x.

As shown in Figure 2, the initialization phase is divided into three stages, standardiza-
tion, dimensionality reduction and initialization of the model. All these stages are dealt
with in the following section. The following notation will be used throughout this paper.
The vectors and matrices are represented in boldface. The bar and tilde used over the
symbols indicate the mean vector and the residual resulted of a process with information
loss, such as principal component analysis (PCA).

3.1.1. Standardization

Once the initial set of n; raw feature vectors is complete and organized in the matrix
X(l) e RM*K where each line represents a raw feature vector ¥Y, these are standardized to
guarantee that all the features are within the same magnitude. The mean of each feature is
given in the vector

— 1 T
X = (x9) 1, )
ni
where1,, =[1,1, ---, 1]T € R™. The raw feature vectors standardized to zero-mean and
unit variance are given by
X, = (X? - 1n1T<1T)2;1 G)
where
Ly =diag(oi,1, - ,0ii, - ,OKK) 4)

is the diagonal matrix for which the i-th element is the standard deviation of the i-th feature
(i=1,---,K).

3.1.2. Dimensionality Reduction

In the following, the initial standardized feature vectors X; given by Equation (3) are
transformed (projected) for the two-dimensional space, with the aim of eliminating redun-
dant (correlated) features, allow a 2D visualization of key model steps, and alleviate known
proximity issues when using Euclidean distance metrics in high-dimensional space [23].
The principal component analysis (PCA) technique was used to represent X; by means
of its principal components XgK), where K is in addition to the total number of principal
components, dimension of Xj. From the properties of the Euclidean vector spaces and the
PCA technique, one has that

x; = X917
T T
xi=x7 (1) + x(2 (1Y) 5)
T ~
x; = x? (Tf)) X

where ng) € R™*2 are the first two principal dominant components of X, ng) is the

transformation matrix of the two first principal components. Analogously, ngfz) and

TgKiz) are, respectively the K — 2 principal components and its respective transformation
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matrix. Moreover, as this study focused only on the two principal dominant components, it
is called residual Xj, the ignored contribution of the K — 2 remaining principal components.
In order to determine the transformation matrix, it is necessary, initially, to estimate the
covariance matrix of the standardized features, in the following way:

1
1/11—1

R; ~ X1'X (6)
Then, performing a singular value decomposition (SVD) [23] on the covariance matrix

given by Equation (6)
Ry = TiA Ty T 7)

(2)

one can determine the transformation matrix T}, composed of the first two columns of the
square matrix T7. Through such, one obtains the first two dominant principal components
of X1, which in the context of this study was denominated as operating points (OP), through
the principal component (PC) transformation

x? = x; T @®)

3.1.3. Model Initialization

Now that the initialization dataset has been projected in the space of the two dom-
inant principal components, generating the OPs, these are used to identify the initial
operation modes (OM). The OMs are defined from the patterns formed by the OPs in the
two-dimensional space of the two dominant principal components. The OMs are asso-
ciated with different OPs but remain within the same envelope of operating conditions
(e.g., overloaded, nominal operation, underutilized, etc.). Here, it was agreed that the
OMs can be approximated by Gaussian probability distributions known as operating mode
clusters (OMC). However, as these distributions are continuous, for the OMC to be fully
characterized it is necessary to define an equiprobability boundary around each OMC. With
this boundary;, it is possible to determine whether an OP belongs to a given OMC. This
boundary will be defined in Equation (23) of Section 3.2.3. Thus, it is said that the set of
these clusters defines the OMC model. Figure 3 graphically illustrates these concepts.

Other equiprobability boundaries

% OMC1 .
. oo,

...’ s o #OMC2 \
7 o

g ] / (g
o
(=%
= 5;
8
S
% _| Equiprobability boundary of the \
»g OMC /
2 o/
& ® o

o"&

e .\"

# OMC3

Example of the Operating Point (OP) -~

Ist principal component

Figure 3. Example of three patterns formed by OPs (operation modes) and approximated by three
Gaussian distributions bounded by equiprobability boundaries (operation mode clusters).
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The 11 OPs generated in the previous dimensionality reduction stage were used to
feed the Dirichlet process Gaussian mixture model [24]. Through use of this approach,
one can identify with ease the clusters that correspond to the different OMs, where it is
necessary only to indicate an upper limit for the number of OMs.

Accordingly, the following were determined: the number of initial OMCs m, the
respective centers y; and the covariance matrices s;. In addition to these parameters, that
define the probability distribution associated with the OMC, two other parameters are
initialized for each cluster—P;, which is the number of OPs that belong to each of the OMCs,
and Ag;, which is the parameter that indicates the moment in which the i-th OMC was
created. The difference A; = k — Ap;, where k is the number of the actual sample, defines
the age of the i-th OMC. These two additional parameters are used later in Section 3.3.1 to
calculate the health index of the transformer.

Since the initial OMs were approximated by gaussian probability distributions, the
OMC model can be mathematically written as

OMCs = iN(”i’ si) 9)

i=1

where N is the multivariate Gaussian probability distribution. The Dirichlet process is
applied only during the initialization phase. Following this, in the modeling phase, the
OMCs can update and increase in number, incorporating the potential new OMs.

3.2. Modeling Phase

Once the initialization phase is complete, and therefore an initial model of the trans-
former has been generated, the modeling phase can begin. This phase shares, with the
initialization phase, the same flowchart in Figure 2. However, the modeling phase is im-
plemented as a real-time unsupervised learning algorithm. In other words, it continually
reads the new raw feature vectors, and dynamically updates the structure and parameters
of the OMC model. In this way, the OMC model created in the initialization phase is always
updated when a new data block X?,H , is available.

As with the initialization phase, the modeling phase was similarly divided into three
stages: recursive update of statistics (mean and standard deviation) and standardization
process; recursive update of the transformation matrix to the space of the two dominant
principal components and dimensionality reduction; and the learning process that consists
of updating the OMCs to gradual changes in transformer dynamics or creating new OMCs
when anomalous patterns are identified.

3.2.1. Standardization
This stage starts out by defining the matrix
b ¢l
Xl(2+1 = [XO ¢ }

M1

(10)

as a set of all k + 1 data blocks. Furthermore, the mean Xj 1 is related to Xj through the
following expression

k+1 o k _ T
<E ”i)XkJrl = (Z ”i) X+ (ngH) L (11)

i=1 i=1

Denoting Ny = Zﬁ;l n;, Equation (11) produces the following recursive calculation

_ Ne - 1 T
Xiy1 = mxk + m (X2k+1) Loy (12)

The recursive calculation of X4 is given by
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Ryy1 =

X1 =

<T _ Xg <I 1
X2+1 - 1”k+1Xk+1:|Zk+1 - HXO } - 1nk+1Xk+1] Zk+1 =

T
X1 X -
1 k+12%k+1 Nk+l ]

(13)

M+1

where .
X = (X0 - 1,%; )57
X, = (X0 —1,, Xpq)E0)
Mgt M1 N p193k+1 ) k41 (14)
L =diag (i1, ,Ojm), j=k k+1
AXjy1 = Xy — X
Note that1,, = [1, 1, ---, 1] € R™*.

The recursive calculation of the standard deviation, derived in Appendix A, has the
following relationship

o
(Nir1 — 1) ,1; = (Ne = D)o + NeAX 1 () + X9, G 1) = Lo K DI (15)

where X?lk (¢, 1) is the i-th column of the associated matrix, Xi.1(i) and AXj (i) are the

i-th elements of the associated vectors.
Likewise, the recursive calculation of the covariance matrix, shown in Appendix B,
has the following form

Ne—1 4 _1 N 21 Ao <T 1 1 T
L IRRkEKE L AX 1 AX 1 X, Xn (16)
k-+1 k+1 Nk+1 1 k+1 +1k+1 Nk+1 17 M1 e

Older data can be skipped at an exponential rate, as it does not represent the current
condition of the transformer. The recursive calculations for Equations (12), (15) and (16)
with forgetting factor « are

1 T
Xiiq = 0%+ (1— “)nkﬂ (X0.0) T (17)

01, = w(0f + A% 1 (1)) + (1 —a) x — ||x2k+1< i) = e Kt (07 (18)

1
Ryit = aZl (szkzk + AXkHAXkH)):k+1 +(1- )nk+l X5 X, (19)

for Ni > 1. In the relationships above, 0 < & < ™ +1 is the forgetting factor. Low values of
« tend to forget old data more quickly, while

N
N1

(20)

recover the case of not forgetting. The forgetting factor is a tuning parameter that varies
depending on how quickly the normal process can change. The equation for this speed is
described in Appendix C.

3.2.2. Dimensionality Reduction

The SVD transformation, Equation (7), of the updated covariance matrix Ry 1
determines the new transformation matrix T,(i)l. Allowing, as such, for the standardized
feature vectors Xy, ,, calculated using Equations (14), (17) and (18), to be mapped for the

space of the two dominant principal components following Equation (8), and resulting
in OPs X7

Mgy1°
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3.2.3. Learning Process

Let m be the number of OMCs identified up to k-th iteration of the algorithm. A
modified version of the k-NN algorithm is used to update the centers and the boundaries

of the OMCs. First, the similarity between each, x(z) S X(z)

; gy, Where i = [1, ny 1], and each
one of the existing OMCs is assessed by verifying xl(z) to the centers p;, of the existing m
OMCs. The metric used to calculate similarity was the Mahalanobis distance, given by
Equation (21). This metric has as its main feature that it is appropriate for calculating the
distance between two points in a probability distribution [25]. In addition, the Mahalanobis

distance is scale invariant.

di = \/(xgz) — yj> Tsi*1 (xgz) — yj) (21)

where j = [1, m]. The shortest Mahalanobis distance determines the index | of the closest
(similar) OMC, that being
] = argmin;(d;) (22)

In order that the OP xl(z) in fact belongs to the J-th OMC it should be within the
equiprobability boundary defined by

dy < x3,p (23)

where X%z ) is the chi-square distribution value with 2 degrees of freedom, and prob-

abilistically defines the OMCs boundaries. When, for example, 3 = 0.0027, one has
X%z, g = 11.8290, which corresponds to an equiprobability boundary of +3 standard
deviations.

If the OP under analysis xl@ is within the equiprobability boundary that limits the
J-th OMC, then it is used to update the OMC. As defined by Equation (9), for each OMC,
there exists an associated Gaussian probability distribution. Therefore, to update the OMC
signifies to update the mean yu; and the covariance matrix s; of this distribution, as well
as the age A and the total number of OPs P;. Considering that the mean and variance do
not have sudden changes between iterations, Equations (17) and (19) can be adapted for
updating y#; and sy, in the following manner

priap+(1—a)x? (24)

T
sprasp+(1—a) (xfz) —m) (xl@ - y]> (25)
PP +1 (26)

A= <Z P,) — Ay (27)
=1

However, if the OP under analysis is outside the equiprobability boundary, Equa-
tion (23), then a new OMC is created to accommodate this new standard of operation

m:m—+1 (28)
pom = %7 (29)
Sm = Sm—1 (30)
P,=1 (31)
Am = Aoy = k (32)
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3.3. Operating Condition Assessment
3.3.1. Health Index

Each OMC, besides the associated Gaussian probability distribution, possesses two
parameters: P, which indicates the number of OPs that have already updated, and A, which
is the age of the OMC. These two parameters were inserted, as it is understood that these
are important indicators as to the health of the transformer. An OMC that has most of the
equipment operating time associated with it, that is, a large p value, is believed to be a
healthier OMC. Similar to an OMC that was identified during the start of the operation
of an admittedly healthy transformer. In other words, one expects that an old OMC is
healthier than a new one. With the goal of joining, into one indicator, the parameters of age
and number of OPs, one defines the health index (HI) [14,26], which is calculated as follows

iz1 Pi-Ai

HI = = 33
maxi(Ai) ZIm:1 Pi ( )

where m is the total number of OMCs and HI € [0, 1].

The HI proposed in this study is a long-term trend indicator, and as such on the spot
assessments may not be very indicative. For example, when a new OMC is created, it
presents few OPs. This causes the HI, according to Equation (33), to enter a process of
degradation of its value, as the transformer operation may, at times, be associated with this
new OMC. However, if this new OMC continues to be populated by new OPs, or even,
stops being populated, at some moment, the HI could reach an inflection point. From
that point on, it gradually starts to increase. Faced with this behavior, it is interesting to
determine whether the HI is still in the degradation stage or whether this process has
already been overcome and, therefore, the HI is gradually returning to a healthy state. Ata
given instant k for the moving average M{!! of the latter n values of HI, it is said that the
transformer is not in the degradation stage, when

HI > Mf! (34)
where
HI 1 b
M= = ;
; o Y. HI (35)
i=k—n+1

3.3.2. Operation Map

This is a visual representation, in the space of the two dominant principal components
of operation categories of the transformer. The categories are formed from intervals chosen
for the feature variables, as in the example shown on Table 2, on which the operation of
the transformer was divided into three categories (appropriate, precarious and critical).
Since it is a categorization of the space itself of the two dominant principal components,
the operation map must be restricted to a field of view and a precision, in order that
it be implemented computationally. A field of view V, with precision ¢, is represented
algebraically by the cartesian product

v={pcieez|pct <z < PCis} x {PC2eez| P2 <z < PC2}  (36)

where [ePCli, ePCl1 f} and [£PC21-, ePC2 f} are intervals of the first and second principal
components, respectively, which define the field of view. By applying the inverse PC

(2)

transformation at any point v, € V at a given instant k, one obtains

o= o (1) o)
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and following this by destandardizing vy, one has
v = vk)lllzl + X,Z (38)

One can, for example, categorize v) according to Table 2. When this process is repeated
for every point V, contiguous regions indicating the operation categories are formed. The
flowchart in Figure 4 shows graphically the process of building the operation map. Colors
can be used for a more intuitive representation of the operation categories. For example,
green is appropriate, orange is Precarious, and red is critical.

Table 2. Example of parameterization of the operation map.

Operation Map Restrictions

Operation Categories

Uapc) (pu Ia5,0)° (pw)
Appropriate 092 < U <1.05and I1<1.0
. (0.87 < U <0.92) or (1.05
. <1.
Precarious <U < 1.06) or 1.0<I <12
Critical (U <0.87 or U >1.06) or I1>1.2

1 Voltages in phases A, B and C given in pu. 2 Currents in phases A, B and C given in pu.

v € R v’ e R
Operation Map V
X
Inverse PL —»{ Destandardization p—] Classification 2 W

Transformation

Equation (38) Table 2 —— 3

Equation (37)

Figure 4. Flowchart of the operation map construction process. The green circle represents that the
region was classified as appropriate.

In this way, the operation map summarizes the set of rules defined in the space RX for
the feature variables (Table 2 for example) in contiguous regions in the latent space R? of

2
A= 72;21 g (39)
i1 Nii
where, according to the SVD transformation, Equation (7), A € RK*K is the diagonal matrix
that contains the eigenvalues of R.

Another important metric for measuring the performance of the operation map is
the mean absolute error (MAE) of the PC transformation, given in numbers of standard
deviation. Let any OP be x(?), and the feature vector that originated it be x, then the MAE
of this OP, denoted as ¢, is calculated in the following way

T
- [l — x(2) (T(2)> I A "
€= K =K (40)

where K is the dimensionality of x, and ¥ is the residue of the PC transformation due to the
suppression of the principal K — 2 components.
In order to determine the error of each feature, in terms of its original magnitude, the

T
absolute error (AE) was calculated for each destandardized feature. Let ¥ = x — x(2) (T(2))
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be the residual of x. Therefore, the AE of each feature of an OP, denoted as e?, where i
represents the i-th feature, is calculated as

€) = |%;04| (41)

where X; is the i-th value of ¥, and 0; ; is the standard deviation of the i-th feature as defined
by Equation (4). The reconstruction errors given by Equations (40) and (41), cannot be
extrapolated to the entire field of view V.

4. Results and Discussion

The automatic diagnostics method proposed in this work was evaluated in a case
study with five distribution transformers remotely monitored by the IEDs described in
Section 2. The main construction and operational data of these distribution transformers
are described on Table 3.

Table 3. Main construction and operational data of the distribution transformers in the case study.

Distribution Transformer

1 2 3 4 5

Power (kVA) 1125 150 150 225 150

Rated HV voltage (kV) 13.8 13.8 13.8 13.8 13.8

Rated LV voltage (kV) 0.38 0.38 0.38 0.38 0.38

Cooling ONAN'! ONAN ONAN ONAN ONAN

No-load losses (kW) 0.34 0.32 0.32 0.56 0.32

Total losses (kW) 1.71 1.55 1.55 2.94 1.55
Start of operation 04/09 2 02/08 10/13 12/16 02/08
Start of monitoring 08/21 08/21 09/21 09/21 09/21
End of case study 05/22 05/22 05/22 05/22 05/22

1 0il Natural Air Natural. 2 Month/ Year.

4.1. Initialization

According to Equation (1), it is necessary to have, at least, n,,,;, = 11(11+1)/2 = 66
independent feature vectors x” in order to commence the initialization phase. To avoid
this obligation, the initial sample set X! was made up of N = 480 raw feature vectors
x° (i.e., covering the first day of monitoring of the transformer), thus making 1 > 1,,;,.
Furthermore, considering a day means using the most relevant cyclic unit of transformer
operation. This implies a greater stability of the model after initialization, since it is unlikely
that there are relevant neglected operating patterns, thus preventing the model from going
through major adaptations right from the start. Therefore, the initial set of each transformer
in the case study can be submitted to the initialization phase described in Section 3.1. In
this way, the initial OMC model for each transformer was built. For transformer 1, for
example, the OPs for each hour of the first day of monitoring and the two OMCs found
for approximating the operation modes are shown in Figure 5a. The set of measurements
used in the initialization of the OMC model for transformer 1 are shown in Figure 5b. In
addition, this figure indicates to which OMC each measurement belongs. This, therefore,
indicates the OMC?2 is associated, principally, to the period of 3 to 9 o’clock, where there
exists a decrease in the current, which causes the transformer to cool down, the voltage to
rise, and a decrease in the THDv. The remaining transformers were also initialized using
two OMCs, as demonstrated in Figure 6a-d. Following a similar reasoning to transformer 1,
the OMCs approximated the low- and high-load operating modes.
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Figure 5. Initialization of transformer 1. (a) Shows the initial OMCs and the OPs at each hour, as well
as the operation map. (b—d) are the voltages and currents in pu, and the power factor of phases A, B
and C. (e) is the total voltage harmonic distortion of the transformer. (f) is the temperature rise of the

transformer tank in relation to the ambient temperature.

2nd principal component

=
Agpfopriate

recarious
/grhical
“— Current (p\is
Vohage/ (pu)

2nd principal component

e

72
Appropriate

Precarious
Critical
Current (pu)

2nd principal component

(b)
— A} 7 73
o ——\ \ Appropriate '"‘“/— Appropriate
¥ Precarious & By Precariqns
Critical = | R v Y Ay o Cnuczﬂ
- Cu\r{em (pu)l) Current (pu) Y
Szegie Volta‘ge () D Voltage (pu)’

2nd principal component

1st principal component

(©

Figure 6. Result from the initialization phase. (a—d) show the initial OCMs, the OPs for every hour,

1st principal component

(d)

as well as the operation map of transformers 2, 3, 4 and 5, respectively.
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Figure 7a shows the distribution of the variance over the principal components of
the five evaluated transformers, while Figure 7b shows the accumulated variance up
to the respective principal component. Consequently, for the initialization data of the
transformers, on average 83.32 £ 6.09% of the information (variance) was preserved using
only the first two principal components. This result is important, as one of the premises of
the method is the ability to synthesize measured data remotely, using the two dominant
principal components. As such, only the two principal components represent more than
80% of the variation in the data.
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Figure 7. Distribution of the variance of the five transformers on the principal components. (a) Vari-
ance on each component. (b) Accumulated variance up to the corresponding principal component.
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4.2. Modeling

After the initialization phase, in which the dynamic base of operation of the transform-
ers was identified, the modeling phase was started. In this phase, the automatic diagnostic
algorithm is executed at each new feature vector. Therefore, the OMC model built in the
initialization phase is updated both dynamically and autonomously. The only parameter
that is configured manually is the rate of forgetting . The tuning of this parameter took
into account three aspects: importance of long-term evaluation, reconstruction error and
variance preserved by the model.

For the important aspect of long-term evaluation, the value of « controls the weight
given to a previous number of feature vectors. Low values of « tend to forget old data
more quickly. To adjust the rate of forgetting, besides considering an adequate sampling
interval, it is also important that the variance preserved by the transformer OMC model
A, calculated by Equation (39), is elevated, and the reconstruction error €, calculated by
Equation (40), is as low as possible. Figure 8a shows the average for the quantity of variance
preserved by the five models, regarding the rate of learning. This graph corroborates the
choice of values for « getting closer to 1.

-1
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2
3]
g
a
o
3
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Forgetting rate (o) Forgetting rate (o)
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Figure 8. Performance of the OMC model regarding the rate of forgetting («). (a) Accumulated
variance up to the second principal component. (b) Reconstruction error given by Equation (40).
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In contrast, the average reconstruction error, shown in Figure 8b demonstrates that
values of « that tend to 1 generate increasingly larger errors. This is due to the fact that
the model becomes increasingly slower in the identification of new standards, as x gets
closer to 1. After all these considerations, a learning rate of « = 0.99952040 was considered,
which results in a weight of around 90% for the data gathered over the last 10 days of
monitoring, calculated according to Equation C11. Therefore, an average reconstruction
error of 0.16 £ 0.01 standard deviations and an average variance quantity of 80.22 £ 0.98%
were expected, in accordance with the approximations shown in Figure 8a,b.

4.3. Operation Map

The operation map needs to be assessed, regarding the amount of variance A that
the OMC transformer model preserves, in terms of reconstruction error €, calculated by
Equations (39) and (40), respectively. If the error becomes large and/or the variance
small, the operation maps lose their usefulness. As show in Figure 9, the average values
in terms of the five transformers of the reconstruction error and the preserved variance
remain considerably stable over the whole period of the case study. The highest average
reconstruction error value encountered was 0.26 standard deviations, and the lowest
preserved variance value was 86.12%.

Date [year-month]
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Date [year-month]
(a) (b)

Figure 9. Average performance of the operation map regarding the five transformers. (a) Percentage
of preserved variance and (b) Reconstruction error in number of standard deviations.

An elevated level of preserved variance does not necessarily generate a small recon-
struction error. However, it is expected that a model that preserves a higher amount of
variance has a lower reconstruction error. This point may be reinforced by the Pearson’s
coefficient, which presented a correlation of 93.36 £ 0.01% between the reconstruction error
and the quantity of variance preserved by the models.

The reconstruction error € is an important measure of the general performance of the
model. Therefore, to obtain a real dimension of the error, it is interesting to calculate the er-
ror €? of each feature individually. Figure 10a—e show the errors for each calculated feature,
according to Equation (41). The highest error values encountered were 0.006 & 0.009 (pu)
for the voltages, 0.014 £ 0.008 (pu) for the currents, 0.004 £ 0.003 for the power factor,
6.56 £ 3.55% for the THDv and 0.272 £ 0.272 (K) for the rise in temperature.

The results from the implementation of the operation map, using the parameteri-
zation of Table 2 and a precision ¢ of 0.05, are shown in Figures 5a and 6a—d. Note the
well-defined formation of the operation categories. A visual analysis of these regions in
Figures 5a and 6a-d indicates that all the transformers are operating appropriately and
only transformer 3 is operating close to the precarious region, due to its voltage level.
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Figure 10. Mean individual reconstruction error of the five transformers. (a) Sum of the errors over
the three voltage phases. (b) Sum of the errors of the three phases over the currents. (c¢) Power factor
(d) THDw. (e) Increase in tank temperature.

4.4. Health Index

During the case study period, the method created OMCs to describe new modes of
operation that were not described by the already existing OMCs. The creation of these new
OMCs, initially with few OPs, led to the degradation of the HI. Noted here was that the cre-
ation of new OMCs was often related to changes in the loading pattern (average of currents
on the three phases) of the transformer. Therefore, Figure 11a—e, demonstrate the daily
loading average and the HI during part of the case study period. In addition, in this figure,
the moving average of the HI is shown, which considers n = 20 x 480 = 9600 samples
(i.e., 20 days). Through such, one reaches the conclusion that in all transformers, there are
natural oscillations at the value of HI, since the condition imposed by Equation (34) was
always satisfied after a given period.

The health index defined by Equation (33) has the advantage of not using as parame-
ters measurements that are invasive and expensive, such as dissolved gas analysis [14,15],
frequency response analysis [16-18], partial discharge analysis [19-21]. In addition, dif-
ferent to many of methods in current use of HI [14,26,27] eliminates the need to manually

define the parameter weights.
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Figure 11. Health index and loading of the transformer (sum of the currents for the three phases).
(a—e) show the evolution of the HI during the case study, further highlighting the 20 days moving
average of the HI.

4.5. General Considerations about the Case Study

Throughout the case study, the transformers were noted as operating for a greater part
of the time within two OMCs. These two OMCs are predominantly associated with periods
of lower and higher loads. However, as the transformers were not overloaded, there was
not much permanence observed in the critical zone, except for occasions of grid events
(such as overvoltages, for example).

Even though the initialization step (scheduled to take place on the first day of the
start of monitoring) is responsible for defining the initial OMCs of the distribution trans-
former, variations in the transformer operation were observed when adapting these initial
modes through the transformer adaptive model. Moreover, this is the very proposal of the
transformer model, to identify new modes of operation at real-time.

Furthermore, in accordance with that indicated in Figure 6, each transformer has
its own map representation for specific zones of operation (appropriate, precarious, etc.),
which are allocated within different regions of the operational map. However, what is
of importance to the user is the location of the OPs on the map in order to facilitate
identification of their operation in real-time. In terms of how these fits into the reality of
energy companies, this resource can contribute greatly when assessing their assets and
their trends. The very proximity of the OPs in regard to critical or precarious regions, can
be seen as an indication as to transformer operation tendency.

In some situations of this case study used to illustrate the proposed method, the
formation of OPs in regions classified as “precarious” were noted. In practice, by analyzing
the collected readings, grid phenomena were noted (such as overvoltage) that generated
this operational change. Effects of cumulative damage need to be studied further, in order
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that they be incorporated into the HI. Even so, the proposal presented herein already
demonstrates the capacity to produce an indicator that is adequate for the operation of a
distribution transformer, while using only electrical parameters that are typically measured
and above all, without the need for a specialist. Moreover, this is performed in real time
and in autonomous fashion. Such resources as these, if applied on the scale of a distribution
grid, can bring a series of insights that can be explored by the maintenance, power quality
and network planning sectors of an energy company. In addition, with the quantity of
data produced and information generated, it paves the way for the use of tools for data
mining and artificial intelligence with the ability to evaluate the grid as a whole, potentially
contributing to a more sophisticated scenario of smart grids.

5. Conclusions

In this article, an unsupervised learning method that models, in real-time, the main
modes of operation (OM) of the distribution transformer were presented. The method used
the concepts of k-nearest neighbors (k-NN) clustering and the Gaussian mixing model to
identify the main OMs and characterize these as cluster of the operation mode (OMC). This
model can be used to evaluate the operational condition of the distribution transformer, by
means of two tools: the operation map and the health index.

The use of this unsupervised approach in real-time, allowed for the performing of the
automatic diagnostic of the transformers, through a preselected set of feature variables.
Thus, reducing the need for interpretation of results by experts. This is important, since
with the advent of smart grids, the significant amount of data generated makes automatic
diagnostic methods increasingly more necessary.

The assessment of the method was performed by means of data collected remotely
and in real-time by a measurement IED. These data were collected over nearly one year,
from five distribution transformers. The 11 magnitudes measured in the transformer were
summarized in two latent variables (the two dominant principal components) preserving,
during the case study, at least 86% of the information (variance). Additionally, the operation
map was able to categorize the transformer operation with a low-level of reconstruction
error, always below 0.26 standard deviations. Finally, the health index proved to be a
viable automatic diagnostic index, permitting identification and quantification of abnormal
variations in the operating pattern of the transformer.
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Appendix A

Following is the notations used in Section 3. All the k + 1 data blocks, after having
their averages calculated, can be described by

< T < T
XY — 1, A% 1 — 1 X

X0, 1 X = (A1)
k+1 k+18k+1 <T
X2k+1 - 1nk+]Xk+l
The standard deviation for the i-th variable is
. < . <T 2
||X2(:r i) — 1kaAXkJrl (ll_ 1"‘ka I
2 1 (1) = Ly Xy (7) (A2)

0 P
k+1,
+1 Nir1 — 1
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and for the i-th standard deviation, we are led to
_ N
(New1 = D)ooy = X0, 1) = 10, Xe(0)I* + NeAXg (D) + XS, 1) = Loy Kisr (0 (A3)

where two relationships, 17 (X)(:, i) — 1, Xi(i)) = 0 and 1]1; = Nj have been applied.
Furthermore, consider the definition that

02 i(Neyr — 1) = [IXP(, 1) — 1, X (i) (A4)

and we have Equation (15) instantaneously.

Appendix B
Substituting Xj, 1 given by Equation (13) into the definition
1 T
Ri1 = mxk-i-lxk-i-l (AD)
directly yields
R Zk+1Zka Xk)Zk}:.k+1 +1f 1kaHAXk+1AXk+1ZkH ZZkHAXkHlk Xk):.k}:‘.k+1 + X,,k“Xnk+1 (A6)
e (Nig1 = 1)
Using the fact that
X =0
111, = Ny (A7)

(Nk — 1Ry = X[ X

in the above equation gives Equation (16) instantaneously.

Appendix C

The forgetting rate should reflect in a quantitative way the idea of adaptability to
new patterns at the same time that old patterns are forgotten. The question of how long a
feature vector will affect the recursive calculus depends on the magnitude of its composite
variables and the learning rate. Concerning the magnitude, there is nothing that can be
done; however, in the case of a real physical system,; it is believed that there should not exist
large variations (in the order of magnitude). Accordingly, it seems that the learning rate is
responsible for determining how long a vector, with features of any type, will reverberate
in the recursive calculation.

Therefore, simplifying the notation of Equation (17) for the recursive mean, but without
loss of generality for the recursive variance and covariance equations. One has

Xk = (1—a) X+ axgg (A8)
By evaluating the previous iterations

X1 = (1 —a) xp-1 +aX2
Xk = (1—a) X2+ aXg3 (A9)

X3 = (1 — &) xp_3 + aX_4
and substituting Equation (A9) for Equation (A8), results in
Xp=(1—a)xp+a((l—a)xq+aX o) (A10)

% = (1—a) 1+ (1 — ) xi1 +a((1— &) X + %y_3)) (A11)
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=1 —a) gt a((l—a)xe g +a((l—a) o +a((l-a) 3 +aXy))) (Al2)
By reorganizing Equation (A12), one obtains

= (1—a)xp+a(l—a)xeq +a?(1—a)xeo+a’(1 — a)xp 3+ a4 (A13)

There clearly emerges in Equation (A13) the pattern of a power series, which can more
generally be written as

Te=0—a)x+a(l—a)x_;+a’>(1—a)xo+a>(1—a)xe s+ (A14)

it becomes clear that the weight of the passed feature vectors is exponentially decreased.
From Equation (A14), one can infer that the total weight given by all the previous feature

vectors is 1
P = (1-a) (1+a+a2+a3+...>:( ;"‘) (A15)
Yet, the weight omitted for stopping in the N-th feature vector is given by
Po=(1—a) (a¥ +aN* 4224 :ocN(l;“) (A16)

The ratio between the total weight and the weight omitted demonstrates the percentage
of weight that is given to the last N vectors.

— — x N
T (A17)
o
Thus, solving «, one has
o= (A18)

In order that the last 10-480 feature vectors represent 90% of the weight, the learning
rate should be in accordance with Equation (A18)

1n(1-0.9)
w=e¢ ®0 = 099952040 (A19)
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