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Abstract: A simplified model that calculates the deflagration pressure–time curves of a hydrogen
explosion was proposed. The deflagration parameters (pressure peak, duration, deflagration index,
and impulse) of hydrogen–air mixtures with different hydrogen concentrations were experimentally
investigated. The results show that the pressure curves calculated by the model are consistent with
experimental data pertaining to a methane and hydrogen explosion. By comparison, the pressure
peak and deflagration index are found to be influenced by the aspect ratio and surface area of vessels.
The impulse and explosion times at fuel-lean hydrogen concentrations are greater than those at
fuel-rich concentrations. When the hydrogen concentration is between 34 vol.% and 18 vol.%, the
greatest explosion damage effect is formed by both the overpressure and the impulse, which should
be considered for hydrogen explosion safety design in industrial production.

Keywords: pressure profile; impulse; hydrogen concentration; distributed calculation model

1. Introduction

Hydrocarbon fuel combustion yields huge amounts of greenhouse gases, resulting
in an increase in global warming and environmental pollution. Hydrogen, regarded as
a clean carrier of energy for transport and energy applications [1], is widely applied in
internal combustion engines, aerospace applications, fuel cells, rocket propulsion, and
industrial production [2–5]. However, hydrogen has a broad range of explosion, low
ignition energy, diffusivity, and reactivity, causing combustion and even explosion accidents
that can cause explosion hazards and structural failure [6–8]. Therefore, hydrogen explosion
characteristics should be considered in engineering design and application, hence meeting
the need for a reference for risk assessment and the design of explosion venting systems.

With reference to the characteristics of a hydrogen explosion, many scholars have con-
ducted numerous theoretical and experimental studies [9,10]. Bradley and Mitcheson [11]
promoted three mathematical solutions as models for gas explosions in a closed spherical
vessel. Jo and Crowl [12] constructed a flame growth model to predict the flame front
propagation, and validated the pressure–time curves calculated by the experimental data
for hydrogen and methane obtained in a 20 L spherical vessel. Walsh et al. [13] established
a thermodynamic model using the conservation of mass and energy, which considers the
temperature-dependent specific heats for both the reactants and products. Rota et al. [14]
developed a detailed model based on conservation laws and physico–chemical relation-
ships [15]. The result showed that the error of the maximum pressure peaks obtained
by experimental and theoretical data is equal to 10%. For the experiment, Thomas and
Oakley [16] investigated the explosion pressure of a hydrogen–air mixture using experi-
mental studies and theoretical predictions. Dahoe [17] explored the explosion parameters
of hydrogen–air mixtures in a 169 mL cylindrical vessel. The results showed that the
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internal pressure first increases and then decreases with time. Sun et al. [18–20] revealed
the propagation mechanism of a detonation wave in a duct, and discussed the effect of
obstacle size on the mechanism of the transmission of a detonation wave, and presented
the critical conditions for detonation [21]. The effects of the hydrogen concentration on the
flame propagation speed and explosion pressure in a spherical vessel were investigated by
Cao et al. [22], and the result indicated that the maximum length of the flame increases with
the hydrogen concentration. Cao et al. [23] estimated the effect of the hydrogen fraction on
jet flame propagation characteristics using experimental and simulation methods. They
found that secondary combustion occurs with a high hydrogen fraction, and the variations
of the pressure wave and pressure oscillations obtained by experiment and simulation are
consistent. In addition, the deflagration index (KG) is also a key characteristic parameter in
such hazard evaluation [24–27], which is calculated using the following Equation based on
a cube-root law.

KG = (dP/dt)max
3
√

V0 (1)

where V0 is the vessel volume. Some studies on KG have been reported in the existing
literature. Razus et al. [28] claimed that KG increases with increasing vessel volume, and
the explosion hazard is more severe for higher KG values [29]. Sun and Li [30] found that
when the equivalent ratio is equal to 1.4, the flame propagation speed and the value of
(dP/dt)max are the greatest, and the duration of the explosion is the shortest [31].

From the above review, the previous work on hydrogen explosion behavior has mainly
focused on the pressure, flame propagation, and KG. Little research focuses on the effects
of the impulse on the damage to personnel and structures caused by a hydrogen explosion.
The key parameters of overpressure and impulse are mainly responsible for personal
injury and door and window component destruction [32]. Li and Hao [33] investigated the
internal and external pressure and impulse from vented gas explosions in large cylindrical
tanks by comparing the experiment and numerical simulation, and found that venting size,
tank diameter, and tank height have significant effects on the pressure and impulse in an
adjacent tank. Ferradás et al. [34] studied the characteristic overpressure–impulse–distance
to determine the damage to humans from bursting spherical vessels. Table 1 summarizes
the damage corresponding to different overpressures and impulses [35,36].

Table 1. Pressure and impulse corresponding to the severity of damage [35,36].

Effect Overpressure (MPa) I (MPa·s)

Humans

Eardrum rupture Threshold 0.0345 -
50% 0.103–0.138 -

Lung damage Threshold 0.083–0.103 0.0166–0.021
Severe 0.255 0.051

Lethality (lung
hemorrhage)

Threshold 0.255–0.359 0.051–0.072
50% 0.359–0.497 0.072–0.099

100% 0.497–0.69 0.099–0.138

Buildings
Partially demolished 80% 0.035 0.013
Moderated damage 25% 0.028 0.011

Minor damage
(repairable) 10% 0.012 0.006

In summary, a simplified model for predicting the pressure profiles of hydrogen
explosion was developed based on flame surface, and the distribution calculation method
was employed to simplify the explosion parameters. Meanwhile, explosion experiments of
hydrogen–air mixtures were conducted in a cylindrical vessel; by changing the hydrogen
concentration, the explosion parameters (overpressure, pressure rise rate, and impulse)
of hydrogen–air mixtures in the closed vessel were investigated. The results can provide
theoretical guidelines for the design of explosion venting systems and safety protection
in practice.
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2. Theoretical Model

The existing calculation models of the pressure curves depend on the solution of partial
differential equations involving the rate of pressure increase, leading to a complex solution
process. In the present work, the combustion process was analyzed by differentiating
the deflagration process, which can be divided into three stages (burned, burning, and
unburned) in each period. The combustion process can be adopted to predict the pressure–
time curves and the flame radius. The result can provide a reference for rapid evaluation of
an internal explosion in engineering practice.

Basic Assumption

The flame propagation in a closed spherical vessel was studied and established in the
current section based on the following assumptions: (1) the unburned gas is isentropically
compressed; (2) both unburned and burned gas are in an ideal state; (3) the buoyancy
effects are negligible; (4) the gas is uniformly distributed. The relative parameters and
states of the combustion propagation process are shown in Figure 1. States (a) and (b) in
Figure 1 assume that the flammable gas is burned at constant pressure. In states (b) and (c),
the increase in the radius of burned gas assumes an adiabatic constant-volume process.
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The pressure was calculated using the following equation:

Pi = Pi−1 + ∆µi(Pmax − P0) (2)

where Pi and Pi−1 are the internal pressure in time i and i − 1, respectively; Pmax denotes
the maximum explosion pressure; P0 is the initial pressure; ∆µi represents burnout rate in
time ∆ti, which is defined as the mass of gas burned in time ∆ti divided by the total mass,
as follows:

∆µi = Vbb,iρu,i−1/(V0ρ0) (3)

where Vbb,i denotes the volume of gas burned in time i; ρu,i−1 is the unburned gas density
in time i − 1; V0 is the container volume; ρ0 is the initial density.

The following correlation for adiabatic compression is presented. Therefore, we have:

ρu,i−1/ρ0 = γu
√

Pi−1/P0 (4)

where γu is the adiabatic index of hydrogen and air mixtures.
Substituting Equation (4) into Equation (3) yields the following expression for burnout rate:

∆µi = (Vbb,i/V0)
γu
√

Pi−1/P0 (5)

Assuming the flame spreads in a spherical front, the expression of Vbb,i is:

Vbb,i = (4π/3)
(

3
√

3Vb,i−1/(4π) + S∆t
)3
−Vb,i−1 (6)

where Vb,i−1 is the volume of gas burned at time i − 1 and S denotes the laminar flame ve-
locity. According to an assumption of isentropic compression, the laminar burning velocity
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is correlated with the initial temperature and pressure in a power–law relationship [37].
The following relationship thus holds [38,39]:

S = SL

(
T
T0

)m
·
(

P
P0

)n
(7)

where SL is the laminar burning velocity at initial T0 and P0; m and n are the temperature
index and pressure index, respectively. Values of m, n, and SL for hydrogen–air mixtures at
various equivalence ratios (Φ) can be determined according to the literature [40].

m = 1.54 + 0.026(Φ− 1) (8)

n = 0.43 + 0.003(Φ− 1) (9)

Then, according to the isentropic compression equation, the Vu,i and Vb,i are the
volume of unburned gas and burned gas at time i, which are calculated by the following
expressions, respectively.

ρu,i/ρ0 = γu
√

Pi/P0 (10)

Tu,i = T0(Pi/P0)
(γu−1)/γu (11)

Pi−1(Vu,i−1 −Vbb,i)
γu = PiV

γu
u,i (12)

Vu,i = (V0 −Vb,i−1 −Vbb,i)
γu
√

Pi−1/Pi (13)

Vb,i = V0 −Vu,i (14)

where Tu,i is the temperature of unburned gas in time i; ρu,i is the unburned gas density in
time i.

3. Experimental Details
Experimental Set-Up

Experiments involving a hydrogen explosion were conducted in a cylindrical vessel
with an inner diameter and height of 247 mm and 411 mm, respectively (Figure 2). In
each test, hydrogen with a purity of 99.99% was used; the ignition unit consisted of a
high-frequency pulse igniter with a 220 V voltage and two electrodes, as depicted in the
previous study [25]. Due to the high-temperature effects of hydrogen combustion, the
pressure sensor was protected by water-cooled circulation systems, with a sampling rate of
50 kHz (CYG 1409, Kunshan Shuangqiao Sensors Measurement and Control Technology
Co., Ltd., Kunshan, China) [41].
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In the current tests, the vent was sealed by the blind flange, and the hydrogen and
air were filled by the partial pressure method, respectively. The hydrogen–air mixture
was mixed for about three minutes to ensure quiescence and homogeneity [41]. The spark
ignition unit and the data acquisition equipment were controlled simultaneously by the
synchronous controller. The ignition points were located at the center, as shown in Figure 2.
Before the next test, the vessel was evacuated by a vacuum pump, then refilled with a fresh
mixture, to ensure that the vessel was full of fresh air before starting the next test. All tests
were conducted at 298 K and 1 atm.

4. Results and Discussion
4.1. Typical Pressure Profiles

Figure 3 shows a typical pressure–time history measured three times with a hydrogen
concentration of 20 vol.%: the experimental results have good repeatability, and only a
single pressure peak occurs during the hydrogen explosion.
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In this section, the effects of the vessel shape on the pressure profile with different
hydrogen concentrations are shown in Figure 4. The spherical vessel was a 20 L vessel,
which was cited by Zhang et al. [24]. The cylindrical vessel is shown in Figure 2. The result
shows that the changes in peak pressure are the same with the increases of the hydrogen
concentration in the spherical and cylindrical vessels, respectively. The peak pressure is
maximized when the hydrogen concentration approaches 30 vol.%. In the case of low and
high hydrogen concentrations, the hydrogen or oxygen in the confined space is insufficient
to maintain a complete chemical reaction, respectively, causing a decrease in the explosion
pressure [24]. After the pressure peak during the pressure–time curve, the pressure in
the cylindrical vessel declines faster than that in a spherical vessel, due to the heat loss
being larger in the cylindrical vessel, which results from the short distance between the
ignition position and the sidewall in the cylindrical vessel. This causes the burned gas in
the cylindrical vessel to make a contact with the wall faster than in the spherical vessel.
In addition, Mitu et al. [42] also showed that in the case of a cylindrical vessel, higher
heat losses and lower severity factors were presented in comparison with spherical vessels.
Therefore, the overpressure decays fast in the cylindrical vessel.
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4.2. Validation of the Pressure Prediction Model

Based on the aforementioned derivation, the pressure histories calculated by the
method were compared with the experimental results in different hydrogen concentrations
in the current studies, as illustrated in Figure 5. The experimental conditions and parame-
ters are listed in Table 2. The result shows that the hydrogen concentration has a significant
effect on the temperature index and no effect on the pressure index. The temperature index
increases with increasing hydrogen concentration. The Pe is always greater than Pexp, due
to the heat loss by thermal conduction, convection, or radiation [43].
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Table 2. Temperature index, pressure index, and maximum pressure with different hydrogen concen-
trations. Pe is defined as the adiabatic explosion pressure obtained from GASEQ software [44], Pexp

is obtained by the current experiment, m and n are determined by Equations (8) and (9), respectively.

Concentration
(vol.%) m n Pe (kPa) [44] Pexp (kPa)

11 1.52 0.43 547 340
20 1.53 0.43 679 530
30 1.54 0.43 811 770
40 1.56 0.43 780 760
48 1.57 0.43 730 576
60 1.60 0.44 628 460
70 1.66 0.44 527 320

Figure 5 shows the effect of the hydrogen concentration on the pressure histories. The
pressure–time curves calculated in the current model agree with the experimental data. In
the initial stage of the explosion, the curves obtained through the theory and experiments
are almost the same; this is because the flame front does not touch the vessel wall, so the heat
loss is less, which is mainly caused by thermal radiation. As combustion propagates, the
difference between the theoretical and the experimental values increases with time, which
results from the heat loss by thermal conduction, convection, or radiation in the vicinity of
the vessel wall. In addition, the difference first decreases to the minimum at a hydrogen
concentration of 30 vol.% and then increases with increasing hydrogen concentration. This
is because the laminar burning velocity is very large when the hydrogen concentration is
close to the stoichiometric concentration [40,45], resulting in a reduction in the chemical
reaction time and an increase in the rate of heat release during the period of rising pressure.
At the upper and lower explosive limits of the hydrogen concentration, a large difference
arises because the incomplete combustion of the hydrogen–air mixture reduces the laminar
burning velocity and heat release, increasing the duration of the pressure rise, which results
in an increased loss of heat; therefore, the profiles obtained by the model are larger than
those measured.

Figure 5 indicates that the experimental pressure peak is always lower than the
calculated pressure, which is due to heat loss and incomplete combustion as discussed
above. The same result was obtained by Wang et al. [43] and Jo et al. [46]. When the
hydrogen concentration is close to the stoichiometric concentration, the burning velocity
is very fast; the pressure peak measured is the maximum at a hydrogen concentration
of 30 vol.%, which is consistent with the results obtained using the current model. The
reason for this can be explained by the fact that the rate of release of energy of the hydrogen
combustion is much greater than the rate of heat loss through the wall; therefore, the heat
loss has little effect on the peak pressure; however, in the case of rich and lean concentrations
of fuel, the difference in the pressure peak between the experimental and theoretical data
increases, because the incomplete combustion of the gas mixture results in a relatively small
amount of heat released; when the burnt gas makes contact with the cold wall of the vessel,
the heat losses become even stronger (enhanced to some extent by free convection) [47].
Therefore, the pressure peak measured by the experiment is very low compared with
the calculated pressure, which is also similar to the result observed for the methane–air
mixtures [48].

4.3. Analysis of the Predictive Model

The accuracy of the computer model can be verified by comparing the results obtained
from previous experimental data of hydrogen and methane in different-sized vessels,
respectively. The pressure profiles measured were compared with the predicted results
(Figures 6 and 7).
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As can be seen in Figure 6, the pressure curves calculated by the current model as a
function of hydrogen concentrations are in good agreement with the experimental results
for V0 = 0.12 m3. However, in the case of the final stage, when the hydrogen concentration
is 10 vol.%, the pressure measured in the experiment is lower because of the substantial
heat loss through the vessel wall and the incomplete combustion, respectively. The result is
akin to the current experimental data, as mentioned above. Figure 7 implies that the effect
of vessel size on the pressure histories obtained by the prediction model was compared
to the experimental data of the methane explosion, which come from work by Kobiera
et al. [47] and Cashdollar et al. [48]. The laminar flame speed of CH4–air mixtures was
calculated by GASEQ software [44]. The results show that the predicted pressure value is
in reasonable agreement with the experimental data in the three vessels. As the size of the
vessel decreases, the volume of the flammable gas reduces, leading to the decrease in the
heat released by the combustion, the distance between the ignition point and the vessel
wall decreases, and the specific surface area increases, which causes an increase in the heat
loss through the vessel wall. Therefore, the peak pressure decreases with increasing vessel
volume. By comparing the above data, this observation indicates that the proposed method
could be used to predict the pressure profiles of hydrogen and methane explosions.
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4.4. Analysis of Explosion Parameters

The maximum rate of change in pressure and the explosion index are the most impor-
tant safety parameters to assess explosion hazards and design vessels capable of surviving
the explosion [25,49]. This deflagration index is calculated using Equation (1), which is key
to estimating vent areas for the explosion venting design during a catastrophic accident.
To investigate the explosion behavior, the evolution of pressure rise rate was obtained by
differentiating the pressure–time curves, as shown in Figure 8, and the explosion parame-
ters (maximum pressure Pmax and corresponding time t1, positive pressure duration t2 in
Figure 3, (dP/dt)max, and corresponding time t1′ ) are defined in the present study.
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The experimental deflagration index (KG) and pressure peak versus the hydrogen
concentration are shown in Figure 9: the deflagration index and pressure peak first increase,
then decrease with the increase in the hydrogen concentration, revealing its maximum
value at the hydrogen concentration of about 30 vol.% [50]. This is due to the fact that,
when the hydrogen concentration is close to the stoichiometric concentration, the chemical
reaction is the fastest, which increases the amount and rate of heat release, resulting in the
maximum pressure rise rate and pressure peak; in the case of the hydrogen flammable
upper or lower limit, the incomplete burning leads to the decrease in the heat release
and combustion velocity, causing the increase in combustion time and heat loss; therefore,
the pressure rise rate and pressure peak decrease further, the further the hydrogen–air
mixture is from stoichiometric. In addition, the result is also attributed to the fact that the
time (t1) corresponding to Pmax, and the time to (dP/dt)max are the shortest at a hydrogen
concentration of 30 vol.% (Figure 11), indicating that the combustion is the fastest.
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Figure 9. Peak pressure and deflagration index vs. the hydrogen concentration.

Table 3 lists the maximum pressure peak, maximum pressure rise rate, and deflagra-
tion index for the stoichiometric hydrogen–air mixture in different vessels. The value of
Pmax measured during the experiment is lower than that predicted using the theoretical
calculation [44], which is due to the heat loss through thermal conduction, convection, or
radiation [43]. In addition, large discrepancies between the three parameters are observed,
which arise from the significant effects of the aspect ratio and specific surface area of the
cylindrical vessel on Pmax and (dP/dt)max. Meanwhile, Wang et al. [51] suggested that
both Pmax and (dP/dt)max decrease with the increases in aspect ratio and specific surface
area [43,49]. The results of Razus et al. [52] showed that KG increases with vessel volume,
indicating that the effects of the vessel size and shape on the deflagration parameters
are irregular.

Table 3. Explosion parameters of hydrogen stoichiometric concentration in various vessels.

Shape Volume
(L)

Pmax
(MPa)

(dP/dt)max
(MPa/s)

KG
(MPa·m/s) Pe (MPa) Ref.

Sphere 5 0.740 321 54.9

0.801

[53]
Cylinder 5 0.755 126 21.5 [54]
Sphere 20 0.695 115 31.2 [55]

Cylinder 7.3 0.785 213 41.3 [43]
Cylinder 120 0.710 223 110 [56]
Cylinder 20 0.767 141.5 38.4 This study

Regarding the explosion damage effect, overpressure and impulse are the two most
important and dangerous factors, resulting in personal injury and structural damage [57].
The impulse value was calculated by integrating the overpressure–time curves within the
time range of the positive pressure duration (t2).

I =
∫ t2

0
p(t)dt (15)

Figure 10 presents the maximum overpressure (Pmax) and impulse for various hydro-
gen concentrations in a cylindrical vessel; Pmax first increases, and then decreases with
increasing hydrogen concentration, and Pmax reaches a maximum value when the hydrogen
concentration is about 30 vol.%, which is in line with that measured by Zhang et al. [24,58].
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This result is discussed above (Figure 9); however, the maximum impulse appears when the
hydrogen concentration is about 20 vol.%, and the impulse measured at hydrogen fuel-rich
mixture exceeds that at a hydrogen fuel-lean concentration. This is due to the fact that the
impulse is related to the pressure peak and positive pressure duration, which is explained
by Equation (15). As illustrated in Figure 11, the time (t1) corresponding to Pmax, the time
(t2) corresponding to (dP/dt)max, and positive pressure duration time t2 decrease, and reach
their minimum value at a hydrogen concentration of 30 vol.%, and then increase with the
hydrogen concentration. In the case of the hydrogen fuel-rich concentration, all the time
parameters are smaller than those of fuel-lean concentrations. Meanwhile, the Pmax value
is almost symmetrical concerning the hydrogen concentration of 30 vol.%; therefore, the
impulse is greater when the hydrogen concentration is lean.
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In addition, according to the fitted curve in Figure 10, the pressure and impulse are
divided into three stages: in the first stage, the impulse and pressure increase with the
hydrogen concentration, and then the impulse reaches the maximum corresponding to
the hydrogen concentration of 18 vol.%. This is due to the fact that the impulse depends
on the pressure and the time (Equation (15)). At a low concentration of hydrogen, the
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positive pressure duration (t2) decreases; as the combustion velocity is much slower, a
slower reduction in the time t2 occurs; however, the pressure increases with increasing
hydrogen concentration; therefore, the impulse increases to the maximum. In the second
stage, as the hydrogen concentration increases, the hydrogen concentration is close to
the stoichiometric concentration; the rate of combustion is faster, resulting in a rapid
decrease in the time t2, as shown in Figure 11. The pressure peaks increase slowly, which
leads to a decrease in the impulse value, and the pressure peak reaches the maximum
when the hydrogen concentration is about 34 vol.%. In the last stage, the pressure and
impulse decrease with increasing hydrogen concentration. This can be explained by the
reason that the incomplete combustion leads to a slow increase in positive pressure time t2,
and is less than the value obtained at lower concentrations (Figure 11), and the pressure
with increasing concentration. Furthermore, when the hydrogen concentration is between
18 vol.% and 34 vol.%, the harm caused to personnel and the structural damage caused by
a hydrogen explosion arise mainly from the impulse and the pressure peak, which leads to
a more severely destructive effect. Therefore, to assess the structural damage caused by a
gas explosion, both the overpressure peak and the impulse should be considered.

As can be seen in Figure 11, the changes in the time parameters with the hydrogen
concentration are similar; the function y = A + Bx + Cx2 + Dx3 fits the relationship, where
A, B, C, and D are coefficients. The results show that the time first decreases, then increases
with the increase in the hydrogen concentration, and the minimum time occurs at a hy-
drogen concentration of around 34 vol.% from the fitted curves, indicating that the rate
of combustion is very fast. Meanwhile, the time obtained in the fuel-rich concentration is
greater than that at a fuel-lean concentration, revealing that the rate of combustion of the
hydrogen–air mixture at fuel-rich concentrations is obviously higher than that at fuel-lean
concentrations. As is discussed above, the impulse from a hydrogen explosion is not only
related to the overpressure but also the time; therefore, the analysis of the destructive
effect of a hydrogen explosion on personnel and structures warrants consideration of the
time parameter of the hydrogen explosion when trying to minimize the damage caused by
the impulse.

5. Conclusions

In this study, the theoretical model that considers the burnout rate was established
by using the distributed computing method as a simple tool for calculating gaseous com-
bustion pressure profiles in a closed vessel. The experimental data for the hydrogen–air
mixture were obtained in a cylindrical vessel to investigate the impulse, pressure peak,
duration, and deflagration index.

The pressure profiles predicted by the current model agree with the experimental
results; the pressure peak difference between experiment and theory first decreases to the
minimum at a hydrogen concentration of 30 vol.%. The pressure peak and pressure rise
rate increase and then decrease as the hydrogen concentration increases. The deflagration
parameters (Pmax, (dP/dt)max, and KG) depend on the aspect ratio and specific surface area.

The maximum value of Pmax and impulse occur at hydrogen concentrations of 34 vol.%
and 18 vol.%, respectively. When the hydrogen concentration is in the range of 34 vol.%
and 18 vol.%, both the overpressure and the impulse lead to the greatest explosion damage
effect. In the case of a fuel-lean concentration, the impulse and time parameters exceed the
value obtained at fuel-rich concentrations.
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