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Abstract: Over the years, anaerobic digestion (AD) has evolved as a competent technology to
retrieve energy potential from various organic substrates, including wastewater. However, the energy
metabolisms of anaerobic microorganisms, biochemical reactions, and biogas production are affected
by various parameters, including heavy metals. It is important to understand the interaction of heavy
metals with anaerobes and their potential influence on the process to enhance energy potential. This
review methodically outlines the occurrence and role of heavy metals in the AD process. Additionally,
the repercussions of the most common heavy metals (i.e., Cu, Zn, Cd, Fe, and Ni) on each stage of
AD (i.e., hydrolysis, acidogenesis, and methanogenesis) have been discussed. We found that traces of
heavy metals can endorse anaerobic digestion, but inhibition increases with increasing concentration.
Methanogenic archaea are more susceptible to heavy metal inhibition than hydrolytic and acidogenic
archaea. An improved understanding and relevant intuition will help to promote biogas production
along with heavy metal management.
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1. Introduction

Anaerobic digestion (AD) is an engineered ecosystem where organic compounds
are anaerobically disintegrated and degraded via a complex cascade of microbe-assisted
reactions including hydrolysis, acidogenesis, acetogenesis, and methanogenesis [1]. Being
one of the most effective technologies to treat waste, it has been widely implemented to
treat industrial, municipal, and agricultural wastes for the last 100 years. It offers various
advantages, such as minimal energy requirement and high energy recovery with very low
sludge production. AD has the capability to meet 25% of global natural gas demand and
6% of primary energy demand [2]. Regardless of the enormous waste availability and
significant potential of AD, its commercialization remains underrated, with a 0.2–0.4%
share of global electricity production [3]. For efficient utilization of the potential of biogas
generation, existing technological barriers such as sluggish start-ups and process inhibitors
such as ammonium, volatile fatty acids (VFAs), and more importantly, heavy metals (HMs),
should be addressed. Industrial and economic evolution has resulted in the release of high-
concentration HMs, such as nickel (Ni), copper (Cu), and iron (Fe) into the environment
via industrial discharge [4]. Similarly, animal manure, which is rich in nutrients such as
nitrogen (N) and phosphorous (P), contains significant numbers of HMs including Cu,
zinc (Zn), cadmium (Cd), arsenic (As), lead (Pb), chromium (Cr), Ni, and manganese
(Mn) [5]. These HMs are characterized as non-biodegradable and toxic in nature, with
the majority originating from plants and their addition in animal feed [6]. Despite that,
only 10–20% of HMs are utilized by animals, and the rest 80–90% are discharged in solid
and liquid forms [7]. Discharged HMs via industrial wastewater and animal manure
end up in the reactors of AD-based treatment facilities. Even if AD can treat all sorts of
waste associated with HMs, it is reported that they inhibit the AD process [8,9], which
largely depends on their type and concentration. HMs in industrial wastewater and
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animal manure disrupt the AD balance, which eventually leads to variation in the microbial
community [10]. The presence of high concentrations of HM in AD reactors breaks the mass
transfer barrier, further reducing the efficacy of AD. In addition, it becomes problematic to
retrieve microorganism activity from AD reactors affected by HMs [11]. Most studies have
focused on the influence of individual HMs on microorganisms and process stability. Recent
reviews have provided information on the effect of HMs along with other contaminants
on AD [12], as well as the fate and availability of HMs during AD and composting [13].
However, these reviews mainly focused on performance, bioavailability, environmental
risk assessment, inhibition mechanisms, and interaction with the microbial community. In
this review, we systematically provide information on the occurrence, interaction, and fate
of HMs in the AD process, along with detoxifying techniques especially aimed at managing
HMs. Additionally, impending threats and future perspectives are discussed.

2. Presence and Role of HMs in the AD Process

The presence of HMs has been identified as trace elements requisite in the AD process,
which is key in biogas generation. HMs such as Cd, Cr, Cu, Fe, Pb, Ni, Zn, and other trace
metals are commonly detected in agricultural and industrial wastewaters, and municipal
sludge [14]. The sources and levels of HMs in various AD substrates are presented in
Table S1 (Supplementary File) [15,16]. The term HM is attributed to metals and metalloids
with densities higher than 5 g cm−3 and is mostly associated with environmental concerns.
In the AD process, HMs may feature as microelements crucial for diverse enzymatic
reactions, prohibitors of sulfide toxicity, and binding irrevocable nutrients, inhibitors, and
toxicants of microbial biomass, and biomass stimulants [17]. Furthermore, microbial growth
in the AD process directly or indirectly depends on the availability of HM. The necessity of
different HMs such as Mo, Cu, Fe, Ni, and Zn by methanogenic bacteria has been reported
in previous literature [18]. Similarly, it has been reported that AD reactors operated with
solid organic matter such as crop residues, municipal solid waste (organic fraction), and
animal manure require traces of HMs [19].

HMs from the iron family (i.e., Co, Fe, and Ni) are believed to play a critical role in
the AD process owing to their redox properties and participation in electron transport
catabolism. Ni is crucial for catalyzing hydrogenase conversion and carbon monoxide de-
hydrogenase (CODH), which plays a key role in acetogenic bacteria [14]. Ni stimulates the
growth of acetoclastic, hydrogenotrophic methanogens, and sulfate-diminishing microor-
ganisms. Ni and Mn are irremediable for phosphodiesterase enzymes in Methanococcus
jannaschii [20]. HMs such as Ni, Mo, and Co are needed in small concentrations, and the
HM contents in methanogenic strains are in the order of Fe > Zn, Ni > Co = Mo > Cu [14].
Fe acts as a cofactor of enzymes, cytochrome, and ferredoxin in methanogens to trigger
electron transport metabolism. Cu incites the superoxide dismutase enzyme (SODM) and
hydrogenase of methane-producing bacteria (MPB). Zn fosters SODM and hydrogenase in
MPB and sulfate-reducing bacteria (SRB). Selenium (Se) plays a critical role in hydrogenase,
formate dehydrogenase (FDH), and clostridia. Tungsten (W) and Mo are present in FDH,
and W is crucial in acetogenetic clostridia, and Mo inhibits SRB activity [21]. Previous liter-
ature depicted that small concentrations of HMs could improve the activity of organisms,
which would eventually assist AD. The presence and absence of HMs and their effect on
the AD process reported in previous literature are summarized in Table S2 (Supplementary
File). One study proved that a limited supply of HMs can significantly advance chemical
oxygen demand (COD) solubilization and short-chain fatty acid (SCFA) formation with
higher methane turnout [22]. Gonzalez-Gil et al. concluded that an increase in Ni and
Co concentrations resulted in higher methane yields by breaking the micronutrient limita-
tions [23]. An inadequate supply of HMs can curb the cellular and metabolic activities of
microorganisms. For instance, Pobeheim et al. reported that a lack of Ni and Co dosage can
reduce methane production by 10% and 25%, respectively [24]. Xu et al. proved that Cd can
augment SCFA production by 10.6%, but the performance deteriorates if the concentration
exceeds 10 mg/g of volatile suspended solids (VSS) [25]. Kim et al. indicated that potent
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eradication of propionate at elevated VFA levels needs dosing of Ca, Fe, Ni, and Co in
a thermophilic, non-mixed reactor [26]. The co-digestion of poultry manure with potato
waste resulted in higher biogas generation with supplementation of HMs at a concentration
of 2.5 mg L−1 with higher increments in the order of Cd > Ni > Zn [27]. Similarly, Ishaq
et al. demonstrated that HM deficiency led to the underperformance of sewage sludge
bioreactors. However, Co supplementation enhanced acetate conversion into methane in
the range of 9–50% [28]. All these studies proved that HM could improve the performance
of AD reactors by affecting microbial communities. Nonetheless, if the concentration of HM
exceeds the required limit, it can cause toxicity by interfering with the normal metabolism
of anaerobic microorganisms [29]. The coactive and antagonistic outcomes of HM in AD
largely depend on their dosing as supplements. The physiochemical form of HM also
largely influences anaerobic systems, as they are associated with various physiochemical
reactions with the evolution of complexes. It is important to realize that HM supplemen-
tation to maximize biogas production is accompanied by their loss in the environment.
Furthermore, industrial wastewaters and municipal sludges contain a higher amount of
HM, and most research has focused on their deterrent and toxic effects on the AD process,
as elaborated in Section 4.

3. Fate of HMs in the AD Process

In the AD process, HM species are mainly generated under desirable reduction condi-
tions. The AD of organic matter adequately curtails redox potential and yields varieties of
HM complexes and precipitates. As per the European Community Bureau of Reference,
HM speciation is classified into the following four groups: (1) soluble/exchangeable acidic
fraction, (2) reducible fraction, (3) oxidizable fraction, and (4) residual fraction, with a
movability order as follows: 1 > 2 > 3 > 4 [30]. Among them, fractions (1) and (2) are the
most toxic to nature as they are easily involved with organisms. Fraction (3) remains the
most erratic under oxidizing circumstances and is regarded as the most toxic in long-term
scenarios. Fraction (4) has the lowest toxicity [31–33]. To understand their mechanisms
and toxic aftermath on ecosystems, utmost importance should be given to follow their
transformation/migration footprints in the AD process.

With the progression of the AD process, the HM content splits into biogas residue and
digestate, largely depending on process parameters. The presence of some HMs in biogas
digestates after AD is shown in Table 1. According to Zhu et al., sequential extraction of
anaerobic digestate revealed that each HM has different distribution characteristics [34].
Zn content was found to be the maximum, followed by Cu and Mn, depending on their
inclusion in the feed. Mesophilic AD of animal manure (pig) resulted in higher Zn, Cu, and
As contents in biogas residue, while Cd, Pb, and Cr contents were within permissible limits
for biogas fertilizers. The Cu, Zn, Cd, As, Pb, Cr, Ni, and Mn contents in biogas residue
were 419, 931, 0.27, 0.49, 1.66, 3.88, 7.71, and 581 mg/kg, respectively [35]. Similarly, the AD
of chicken manure showed unequal speciation of HM in biogas residue, with Cu, Zn, Cd,
As, Pb, Cr, and Mn concentrations of 152.78, 1101, 0.32, 25.36, 5.32, 27.25, and 1234 mg/kg,
respectively [36]. By correlating HM content before and after AD in previous literatures, it
was found that the presence of HM biogas residue was greater than that of the substrate,
with an increase of 0–100%. This is linked to the potential organic disintegration of substrate
and methane production, which plummets its weight and volume [13]. Jin and Chang
(2011) reported that HM content was higher in digestate than that in digester influent
because most HMs were closely bounded with insoluble solids [37]. In addition, the earliest
stage (hydrolysis + acidification) of AD generates acids, which leads to VFA accumulation
and a decrease in pH. As a result, HMs could be dissolved in the process, which is the main
reason behind the rise in the HM content in the digestate at the beginning [38]. As AD
advances further, methanogenic organisms drain up surplus VFAs, which restore alkaline
conditions. Under these conditions, HM does not really exist in the form of free ions
but produces precipitate and organometallic compounds [34]. Moreover, since the biogas
stream is free of HM, the mass flow rate of HM should be the same in both influent and
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effluent in steady-state conditions. However, differences in concentration could be due to
solubilization and different methods of measurement. In the AD process, the movement and
agglomeration of HMs are mainly caused by their precipitation into hydroxides, carbonates,
and phosphates, along with their adsorption by extracellular polymers, microbial cell walls,
and solid particles [13,39]. The fate and transformation of HMs during AD are summarized
in Table S3 (Supplementary File). Distinct processes lead to the movement of biogas slurry,
which intentionally or unintentionally ends up in the environment and induces potential
environmental risk.

AD causes significant changes in the chemical forms of most HMs, and this transfor-
mation could be beneficial to estimating their potential impact on the ecosystem. As stated
above, the HM transformation is divided into four fractions. For Cu, various studies have
confirmed that Cu mostly goes along with the third fraction, reducing its bioavailability
during AD. However, poultry manure may increase the bioavailability of Cu. Hence,
potential toxic effects in biogas residue should be considered in the case of Cu [40]. Zn
can be transformed from stable to active fractions through AD, which largely improves its
bioavailability in the case of animal manure. However, it should be noted that Zn sulfide
minerals dissolve in soils, which increases the bioavailable fraction in soil [41]. As far as Cd
is concerned, experimental results confirm that its bioavailability improves after AD, even
if its concentration is lower in manure. Consequently, the Cd content of biogas residue
increases environmental concern [42]. AD can improve or reduce the bioavailability of
As, depending on the substrate. For instance, in the case of swine manure, it decreases,
while in the case of poultry manure, it increases. Therefore, AD cannot control the toxicity
created by As; as such, it remains toxic in all forms [43]. Similarly, AD leads to low mobility
and bioavailability of Pb, which can also remain in a stable form in digestate. Likewise,
experimental research proves that AD can lower the bioavailability of certain HMs, but
this decrease is negligible. Even if HMs remain temporarily stable in reactors, they are
potentially toxic to our ecosystem.

In the AD of organic materials and sediments, HMs participate in redox reactions,
which are then released into the environment as soil or compost with distinct entry routes.
As AD slurry enriched with HM undergoes aerobic conditions for post-treatment, its vari-
ous chemical and physical changes have detrimental effects on the ecosystem, including
humans. This is the main reason why many European Union (EU) countries have barred
the application of AD slurry on land and have strictly prohibited any other kind of use [44].
There is a general agreement on various chemical and biochemical reactions that could
occur when AD slurry enriched with HMs is exposed to aerobic conditions, with some
skepticism about intermediates and the final product. For instance, Vink et al. found that
pH automatically drops when anaerobic sediment sludge is introduced into the ground [45].
This may happen owing to the oxidation of sulfides, which increases SO4

2−, ultimately lead-
ing to the release of sulfides associated with HMs in the ground. Therefore, anaerobically
digested biogas slurry should be properly disposed of, as it can act as a non-point source
of pollution. The concern for HM is much higher in the livestock and poultry industry
substrates than in others. To meet the growing requirements, the poultry and livestock
industries have significantly increased the use of supplements in their feed. The average
Zn and Cu contents in livestock and poultry manure are 8.4–1726 and 39.5–11,379 mg/kg,
respectively [46]. Continued use of livestock manure and animal manure can expedite the
accumulation of HMs in soil, which can further leach into surface and underground waters.
As per reports, the total Zn infiltrating into the soil from animal manure is ~78% in France
and 51% in China [41]. Similar to soils, the aquatic ecosystem is also severely threatened by
HM release. For many decades, several experiments have demonstrated the relevance of
water chemistry and the detrimental consequences of HMs on aquatic life. The substantial
observations from those experiments can be used to protect our ecosystem and to scrutinize
the probability of restating digestate.
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Table 1. Presence of heavy metals (HMs) in biogas digestates.

Substrate
HM (mg/kg)

Reference
Ni Pb Cr Cu Zn Cd

SW 13.83 3.96 - 439.40 1215.67 0.16 [30]
SW 7.71 1.66 3.88 419 931 0.27 [35]
PM - 22.97 61.20 71.72 370.24 0.39 [47]
PM 5.79 0.85 0.01 63.8 534 0.01 [48]
PM - 4.63 25.78 130.07 947 0.31 [36]
CM 162.5 - - 43.5 325.2 - [49]
CM - - - 16.63 57.13 - [37]

SW: swine manure, PM: poultry manure, CM: cattle manure.

4. Effect of HMs on the AD Process

It is well known that HMs play a significant role in various biochemical reactions
involved in AD, mostly related to microbial activity. However, at certain levels, they
can be stimulatory and above permissible limits, which induces toxicity in the process.
Typical studies regarding the impact of HMs on the AD process (hydrolysis, acidogene-
sis/acetogenesis, and methanogenesis) are summarized in Table S4 (Supplementary File).
The pernicious consequences of HMs on the AD process have been evaluated since the
last few decades. The potential impacts of HMs (i.e., the IC50 values of HMs) are shown
in Table 2. Most of the research was intended to examine the overall performance of AD
reactors. The overall aftermath of each stage of the AD process is discussed below.

Table 2. IC50 value of major heavy metals (HMs) in the anaerobic digestion (AD) process.

HM
IC50 Values (mg/L)

Reference
Acidogenesis Methanogenesis

Cr 17 14.7

[50]

Zn 3.5 16
Ni 440 400
Cd 29 7.7
Cu 0.9 12.5
Pb 880 67.2

Co - 0.77 [51]
IC: inhibitory concentrations, IC50: the concentration of HM that reduces the corresponding biological reaction
rate by 50%.

4.1. Hydrolysis Phase

The hydrolysis phase is commonly known as the rate-limiting stage of AD, in which
the solubilization of organic matter along with the biological disintegration of polymers
into monomers occurs simultaneously. It is believed that Cu easily interacts with cellulase
and heavily alters the hydrolysis process. This is frequently observed in AD reactors
treating poultry and animal manure, as they use Cu-added feed to bolster immunity as
well as growth [52]. Even though the poultry and livestock industries use huge amounts of
Cu, not all of it is utilized, and some ends up in manure. Guo et al. found that cellulase
activity in AD operated with the optimum level of Cu (i.e., 150 mg/kg) and was 16.33%
higher than that in the control group [53]; this amount of Cu is crucial for maintaining
microbial activity because Cu acts as a cofactor to stimulate enzymatic reactions. However,
if the concentration exceeds > 300 mg/kg, cellulase activity is curtailed by 5.86% along
with complete disruption of microbial activity, possibly because large amounts of Cu affect
the spatial structure of enzymes, ultimately lowering cellulase activity in the AD reactor.
Wang et al. evaluated the potential impact of Cu on the AD of pig manure (mainly on
hydrolysis) [54]. The results showed that Cu at a concentration of 5000 mg/kg worked
in favor of the hydrolysis of proteins and carbohydrates in parallel with a lengthened
hydrolysis duration. Notwithstanding, higher Cu levels are found to be the most toxic
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to microorganisms as they forbid the deterioration of composite organic macromolecules.
Ni is designated as the most toxic HM; however, it is essential to retain the activity and
metabolism of microorganisms. Tian et al. found that Ni addition to AD reactors caused
higher cellulase activity, further increasing biogas production, which was highest on the
13th day [55]. Further supplementation of Ni ceased cellulase activity, which halted biogas
generation on the 26th day of operation. Qi et al. concluded that 50–100 mg/g total solid
Zn influences the dissolution and hydrolysis of organic compounds with an accumulation
of the following two products: soluble protein and polysaccharide. The study showed that
low Zn concentrations can step up the dissolution and hydrolysis of organic substrates
(protein degradation) [56]. To date, research on the effect of Cu and Ni on hydrolysis
remains limited, warranting further research is required to understand the mechanisms of
inhibition, specifically on cellulase activity.

4.2. Acidogenesis/Acetogenesis Phase

In the acidogenesis phase, acidogenic bacteria further break the remaining organic
compounds, which results in VFA production with NH3 and CO2. In the acetogenesis
phase, simple molecules digested by acetogens result in the generation of CH3COOH,
H2, and CO2. VFA generation is identified as the most important intermediate, as a
slightly higher concentration can lead to a pH imbalance in the AD reactor. Lin evaluated
the impacts of HMs such as Cd, Cu, Cr, Zn, Pb, and Ni on VFA disintegration in the
AD process [50]. The experimental results revealed that Cd and Cu were the most toxic
to VFA-diminishing microorganisms, while Pb and Ni were the least toxic. Yu and Fang
investigated the effects of Cr and Cd addition on acidogenesis. Cd of <20 mg/L significantly
improved acidogenesis, while dosages over 20 mg/L severely halted acidogenesis [56]. In
the case of Cr, a small amount (i.e., 5 mg/L) decreased VFA production, which suggests
that Cr is more toxic to acidogenesis than Cd. Similarly, Facchin et al. suggested that
a Cu level of 100 mg/L stimulated VFA destruction while simultaneously promoting
biogas production [57]. A smaller concentration can augment VFA-decomposing organisms
along with a rapid transformation of organic matter [58]. A concentration of >100 mg/L
hindered the acidification mechanism, directly affecting biogas production [59]. Wang
et al. proved that Cu of 5000 mg/kg facilitated the accumulation of VFAs, which further
boosted the acidification process [54]. Many studies have confirmed that Zn is essential
in the acidogenesis phase of AD but differed in threshold values for the promotion and
inhibition of acidogenesis. One study showed that Zn at 50–70 mg/L can promote palmitic
acid removal, while high concentrations inhibit VFA production [60]. Yenigun et al. found
that Zn at 5–40 mg/L slowed the production of propionic acid, while 20 mg/L stopped
the generation of propionic acid. From this, we can conclude that appropriate levels of
Zn facilitate hydrolysis, but it largely depends on many parameters such as pH, operating
conditions, and substrate [61]. As most experimental research has focused on the impact of
HMs on methanogenesis, limited experimental research is available on their impact on the
acidogenesis/acetogenesis phase.

4.3. Methanogenesis Phase

The methanogenesis phase is the final and most pre-eminent stage of AD, where
biomethane is generated as the stabilization of biomass occurs via methanogenic microor-
ganisms under anaerobic conditions. Similar to hydrolysis and acidogenesis, which require
traces of HM, methanogens also require HM to maintain their activity [62]. As per re-
ports, Cu is believed to be the most vital, as it directly affects the growth and activity of
methanogenic organisms. According to Wu et al., Cu at a concentration of 5 mg/L had
a positive impact on methanogens, while a concentration of 300 mg/kg completely sup-
pressed methanogenic activity [63]. When Cu levels in the solid fermentation reactor were
between 30 and 100 mg/L, biogas production increased by 43.62% and 20.77%, respectively.
However, when the Cu level was gradually increased to 500 mg/L, biogas generation
was reduced by 69.47% compared with the control group [59]. An analogous trend was
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observed in solid and wastewater fermentation reactors, with lower levels promoting
biogas production and higher levels halting biogas production. Likewise, Ni influences
the growth and activity of methanogenic organisms. One study demonstrated that an
Ni concentration of <30 mg/L facilitated methanogenic activity; however, concentration
levels of >30 mg/L impeded methanogenic activity [64]. In terms of the performance of
the AD system, the highest biogas turnout was obtained when the Ni level was 0.8 mg/L,
which was 18% higher than the AD system operating without Ni addition [55]. Lo et al.
found that dosages of 0.06, 0.6, 3, and 6 mg/L significantly improved cumulative biogas
yield by 4.71, 15.29, 14.71, and 14.12%, respectively, while a dose of 100 mg/L inhibited
biogas production [65]. The maximum biogas production ever reported was with an Ni
supplement rate of 4 mg/L in AD reactors, which was 25% higher than the AD reactor
without Ni [64]. Additionally, it was found that Ni is crucial for the coenzyme F430 of
methanogenic microorganisms, as it contains an Ni complex that directly or indirectly af-
fects biogas production, but with a concentration limit from 0.8 to 4 mg/L [8]. Fe is another
important HM that is related to cellulase activity, eventually influencing the methanogenic
stage; in addition, Fe can cut down sulfide intermeddling, improving cellulase activity;
methanogenic activity is directly proportional to cellulase activity [66]. In the case of AD,
the presence of Fe substantially improved biogas production by 35%, with the highest
production at a concentration level of 205 mg/L [67]. When the concentration level of
Fe was <12,000 mg/L, there was no impact on methane production; however, when the
concentration level reached 20,000 mg/L, methane production completely stopped [68].
Finally, traces of Fe are also important for proteolytic enzymes, triggering cytochromes,
and ferredoxin evolution for electron transportation [69].

Cd is a toxic HM that can be easily dissolved in water, and its presence in AD reactors
can affect the rise and metabolism of methanogenic archaea. Cd has the highest toxicity
towards methanogens; even 1 mg/L of Cd concentration can affect methanogenic activity,
with inhibition directly proportional to the concentration of Cd in the AD reactor [64]. The
biogas generation rates in AD reactors with Cd levels of 0, 2.5, and 5 ppm were 2360, 5960,
and 5040 mL, respectively [27]. Cd equally affects the methane content of biogas, with
lower methanogenic activity (concentrations between 0.1 and 0.3 mg/L) enhancing the
biogas production rate. The logic behind this is that Cd acts as a cofactor that energizes the
enzymatic activity of methanogenic archaea [70]. Eventually, higher Cd levels affect biogas
production; the higher the concentration, the stronger the suppression of methanogenic
organisms affecting biogas yield. Similar to Ni, Fe, and Cd, Zn also influences the growth
and activity of methanogenic archaea. A Zn concentration level of 2 mg/L promotes
methanogenic activity; however, if it exceeds 3 mg/L, methanogenic activity declines [64].
In the case of AD reactors, biogas production exceeded 4.44% at a Zn concentration of
5 mg/L but dropped by 11.11% and 33.33% when the Zn concentration in the AD reactor
was 50 and 100 mg/L, respectively [65]. It is evident that Zn concentrations of <100 mg/L
promote biogas yield but severely inhibit the process when the concentration exceeds this
level. From the literature, the ideal Zn concentration required for methanogens is 5 mg/L,
which is necessary to retain the cell catabolism of methanogenic organisms [69].

From the literature, it is clear that a low concentration of HMs has a positive impact on
the AD process. Appropriate levels of HMs such as Fe and Ni can improve methanogenic
activity with higher biogas production; despite this, higher HM concentrations can re-
duce methane yield [71]. Excessive HM content can affect proteolytic enzymes during
the hydrolysis phase, which reduces their activity. Additionally, it can also reduce the
microbial population in the AD reactor [53]. Nonetheless, Zn is the most essential HM
for methanogens, as it reduces the accumulation of SCFAs and promotes methane yield.
However, high concentrations lead to the inhibition of methanogens, which also largely
depends on particle size. Many researchers have found that long-term and continuous
feeding experiments result in bio-accumulative toxicity. Certain methanogens can tolerate
low concentrations of HMs. Hence, long-term experiments are required to obtain more
conclusive results. The differences demonstrate that the hormesis effect of HMs largely
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depends on the composition of the substrate, operating conditions, metals, and their parti-
cle size. The promoting and inhibiting concentration levels of HMs on AD are shown in
Table 3. AD can be an efficient path of treating waste along with optimal concentrations of
major HMs such as Cd, Zn, Fe, Cu, and Ni present in AD reactors.

Table 3. Promoting and inhibiting concentrations of heavy metals (HMs) on anaerobic digestion (AD).

HM Promoting
Concentration (mg/L)

Inhibiting
Concentration (mg/L) Reference

Zn 0.03 < Zn < 2 7.5 < Zn < 1500 [72]
Pb <0.2 67.2 < Pb < 8000 [64]
Ni 0.03 < Ni < 27 35 < Ni < 1600 [72]
Fe <0.3 - [73]
Cu 0 < Cu < 100 Cu < 500 [59]
Cd 0.1 < Cd < 0.3 Cd < 1.2 [74]

5. HM Mitigation

The commonly used techniques to alleviate HMs are chelation, sorption, and precipi-
tation [17], which largely depend on various parameters such as temperature, pH, and type
of substrate. HM remediation is key to reducing HM levels within permissible limits for
further use as a biofertilizer. The optimum values of HM for efficient AD and permissible
values of HM for the use of fertilizer in the EU are mentioned in Table 4. Among the
three, precipitation is the most used method as it offers advantages to treating high HM
concentrated wastewater. Sulfide was found to be the most used agent to expedite HM
removal, with 20 mg/L Cu being removed with less removal time [75]. However, a higher
sulfide application rate could inhibit methanogenic activity, which can be curtailed by
adding ferrous sulfate. The only disadvantage of precipitation is that the effluent of a large
volume of sludge still contains traces of HM, which thus requires further treatment prior
to discharge. Therefore, there has been increased interest over the years in developing
low-cost adsorbent materials for use in the sorption process.

The degree of sorption is directly proportional to the surface area of the sludge and
is commonly known as chemisorption [76]. Many naturally occurring materials, such as
zeolite, bentonite, and diatomite, have been used to eliminate HMs from wastewater. The
use of waste products such as red mud, fly ash, and blast furnace slag to remove HMs
has also been reported in previous literature [77]. Currently, activated carbon is most
commonly used since it offers a large surface area; however, its high cost is a limitation.
The use of nanomaterials in the adsorption process could be an effective strategy for the
removal of HMs owing to their distinct physiochemical properties. For instance, polyaniline
nanocomposites are simple, effective, and economical for the removal of HMs. However,
performance largely depends on factors such as the physiochemical nature of the material
and experimental conditions. Despite this, the application of polyaniline nanocomposites
has not attained optimal performance for full-scale operation [78]. Phytoremediation
offers a sustainable alternative as it utilizes plants and their associated microorganisms
to remove toxicants such as HM. However, despite successful lab-scale experiments, its
practical application requires further optimization as it is affected by several environmental
parameters [79]. Similarly, the use of biowaste from the wood, agricultural, and fisheries
industries to remove HMs has the potential to complement the circular economy concept.
However, important issues related to the sorption capacities of biosorbents, desorption,
regeneration, and recycling need to be resolved [80].

For a long time, chelation with organic ligands has been used to detoxify HMs. In
addition to these methods, anaerobic microorganisms are believed to possess diverse in-
ternal HM mitigation mechanisms such as biomethylation, exocytosis, chelation of metal
ions at the cell surface, and plasmid-mediated resistance [31]. For instance, paracoccus has
the ability to soak up to 40% of Cd [81]. A possible future scenario would be isolating
HM-defiant microbes such as proteolytic bacteria to enhance biogas production. Con-
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siderable research has been conducted to employ probiotics as a defense mechanism for
the AD microbiome [82]. However, research on HM mitigation is limited; hence, future
research should be focused on various feasible and low-cost HM mitigation techniques for
AD reactors.

Table 4. Optimum values of heavy metals (HMs) for efficient anaerobic digestion (AD) and permissi-
ble values of HMs for use of fertilizer in EU.

HM Optimum
Value (mg/L)

Permissible
Value (mg/kg) in EU Reference

Zn 5 200

[44,83]
Cd 0.1 1
Fe 0–1000 -
Ni 0.8–4 50
Cu 5–30 100

6. Future Perspective

Based on our brief discussion, the challenge of HMs in the AD process and their
toxicity effect remains unsolved. The management of HMs in AD reactors should receive
more attention to improve the efficacy of the process. In recent years, more emphasis
has been given to examining the effects of HMs on AD; however, chemical speciation is
most crucial in terms of toxicity. Hence, future research should attempt to understand the
synergy between anaerobes and the chemical speciation of HM. The results will help to
anticipate possible unfavorable impacts of HM on AD. In addition, attention should be
paid to evaluating the effect of HM particle size, as recent studies have demonstrated the
hormesis of micro- and nano-sized HMs on AD. Similarly, future studies should determine
key substances that play prime roles in various biochemical reactions of AD as well as the
role of extracellular polymeric substances (EPS) in transmission pathways. Furthermore,
the fate of HM on the environment, particularly agricultural land, is mostly unclarified
or ambiguous. Therefore, joint efforts and tools are necessary to understand the role and
possible impact of HMs on the AD process. Finally, reports regarding HM remediation
from AD are currently inadequate. In addition to traditional techniques, more advanced
and sustainable approaches should be explored and implemented. Phytoremediation could
be a potential approach as it curtails HMs pollution from soils. Therefore, setting up energy
crop cultivation and its digestion to produce biogas could naturally remediate HMs [84].
Consequently, the sustainable path can simultaneously enhance biogas production with
HM management.

7. Conclusions

The AD process mainly consists of the following three phases: hydrolysis, acidogene-
sis, and methanogenesis; in each stage, a series of biochemical reactions occur, catalyzed by
anaerobes, producing biogas, which is used as fuel along with beneficial fertilizers such as
residue and slurry from AD reactors. As the process is affected by several parameters, the
fate and effect of HMs have been discussed in this review. The leading interpretation from
our discussions is that HM may promote or suppress AD, which largely depends on their
concentration. This review primarily summarized the fates and effects of five common
HMs (Cu, Ni, Fe, Cd, and Zn) and their ideal concentrations that have been recommended,
and their possible role in the AD process as a function of concentration. In addition, the
transformation of HMs during the AD process, as reported in previous literature, has been
critically discussed. Most importantly, this review discusses the impact of HMs on each
stage of AD as a function of concentration, allowing us to quantify HM levels in the sub-
strate in order to enhance biogas production. Distinct HM species have a negligible impact
on VFA but strongly affect the microbial community during AD. Similarly, methanogenic
microorganisms are more sensitive toward HM concentration than are hydrolytic and
acidogenic microorganisms. This review discusses various detoxifying techniques as well
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as an economic and sustainable approach. Phytoremediation offers a sustainable approach
to HM mitigation; however, the practical approach needs further evaluation. Moreover,
more research efforts are required to develop new mitigation techniques.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/en15228618/s1, Table S1: Source and level of each HM in various
AD substrates; Table S2: Presence and outcome of HM on AD reported in previous studies included
in this manuscript; Table S3: Transformation of HM during AD reported in the previous literature
included in this manuscript; Table S4: Typical studies regarding the impact of HM on AD process
included in this manuscript.
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