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Abstract: Fixed-wing aircraft with vertical takeoff and landing capabilities need a lower speed and a
higher lift during transition. To meet these needs, a tandem-channel wing layout has been developed,
including a FLR (front wing lower than rear wing) configuration and a FUR (front wing upper
than rear wing) configuration, which differ in height differences between the front and rear wings.
Numerical simulations have been performed to investigate the aerodynamic characteristics of the
two configurations. The results show that a significant increase in lift coefficient occurs when the
propeller rotational speed and the angle of attack increase. The lift at a small angle of attack increases
by more than 50% at a high propeller rotational speed, and the stall angle of attack increases by more
than 10 degrees. For the FLR configuration, the downwash effect of the front wing impacts the rear
wing, decreasing the local angle of attack and delaying airflow separation on the top surface. For the
FUR configuration, the up surface of the rear wing is induced by the wake flow of the front wing
propeller at a high propeller rotational speed, which increases the lift and the stall angle of attack but
makes the aircraft have static instability.

Keywords: channel wing; tandem-channel wing; propeller–wing interaction; eVTOL

1. Introduction

Uber [1], NASA [2], Airbus [3], Embraer [4], MITRE [5], EHang [6] and other organi-
zations have introduced the concept of UAM (Urban Air Mobility) in recent years. With
technology developments in electric propulsion, autonomous driving, 5G connectivity, and
other fields [7], urban aircraft have achieved fundamental technological viability, expanding
the options for future cities.

Powered by electric motors, an eVTOL (Electric Vertical Take-Off and Landing) air-
craft is capable of vertical takeoff and landing to adapt to complex urban environments.
Multirotor aircraft can adapt effectively to vertical takeoff and landing requirements, but
their cruise efficiency is low. They can only fly at a low speed, and cruise time and range
are short. Fixed-wing aircraft with vertical takeoff and landing capabilities are believed
to offer considerable potential for enhancing aerodynamic efficiency, carrying capacity,
environmental protection, and durability. During the transition from takeoff to cruise, the
aircraft’s lift source progressively moves from the rotors to the wing, followed by compli-
cated unstable aerodynamics. To finish the conversion process quickly, the aircraft should
have a large stall angle of attack and a high max lift coefficient.

The channel wing, invented by W. R Custer [8] in the 1920s, has excellent lift charac-
teristics and is an ideal choice for urban aircraft. The channel wing consists of a straight
wing segment and a semiring wing segment. The semiring wing segment is equipped
with a propeller in the front. The propeller can not only provide the required thrust of the
aircraft, but also accelerate the air flow on the upper surface of the rear of the semiring
wing through the induction of its wake to expand the low-pressure area on the upper
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surface of the semiring wing, so as to significantly improve the lift of the wing. In 1953,
NACA [9] conducted a series of wind tunnels on channel-wing aircraft in a full-size wind
tunnel at Langley to study the lift and control characteristics of channel wing aircraft. In
1973, Edgington [10] used the lift line method to study the lift and drag characteristics
of a channel wing with different airfoil profiles and aspect ratios, and the results proved
that the lift coefficient was higher than the conventional oval wing. In 2001, Nangia and
Palmer [11] studied the difference between the channel wing and the straight wing at a low
speed, and the results showed that the channel wing had an obvious lift increment, and
the introduction of a sweep angle would improve the lift and pitch moment of channel
wing aircraft to a certain extent. It is found that when the phase angle of the hemicyclic
wing changes from 0◦ to 135◦, the lift of the wing increases obviously, but when the phase
angle changes from 135◦ to 180◦, the lift increase is relatively limited. From 2002 to 2005,
Englar and Campbell [12,13] combined trailing edge flow control with a channel wing and
proposed a combined lift enhancement configuration with the help of the Coandă effect,
which greatly improved the stall angle of attack and available lift coefficient of the aircraft.
From 2012 to 2014, Muller [14–16] studied the combination of flaps and on-wing propellers
in the takeoff stage, and proved that the channel wing would significantly enhance the wing
lift, but the uneven inflow would cause periodic changes in the load of the propeller disc,
weakening the net thrust. At the same time, increasing the depth of the semiring wing is
helpful to improve the lift–drag ratio, but it will reduce the propeller efficiency to a certain
extent. When the propeller is arranged near the leading edge, the drag can be effectively
reduced. In 2015, Keane et al. [17] proposed a small unmanned aerial vehicle based on a
channel wing, and conducted a series of numerical simulation and wind tunnel and flight
tests. Tests show that the channel wing aircraft have a lower flight speed. However, the
efficiency of the control surface and the stabilizer surface of the tail will be sharply reduced,
which will seriously degrade the stability of the aircraft. Shafie [18] et al. conducted tests
on channel wings with different chord lengths, and the test results showed that increasing
the chord length of channel wings could effectively enhance the lift capacity of wings, but
the static thrust of propellers would be slightly reduced.

Considering other aerodynamic simulation including rotational parts, a lot of work
has been performed. Cravero et al. [19] provide a detailed analysis of the flow structures
generated by the interaction between a multielement inverted wing and the wheel of an
open-wheel race car. Fernandez-Gamiz et al. [20] study the aerodynamics of Gurney flaps
and microtabs used passive flow control devices on wind turbines. Basso et al. [21] indicate
that the Gurney flap enhances the ground effect, by redistributing the flow that interacts
differently with the other components, i.e., the wheel zone.

Existing studies substitute the traditional aircraft’s main wing with a channel wing to
examine its aerodynamic properties. The tandem-wing layout aircraft has front and rear
wings, and replacing wings with channel wings may maximize the channel wing’s high lift
characteristics. Consequently, this study proposes a tandem-channel wing layout aircraft,
which can be divided into FLR (front wing lower than rear wing) and FUR (front wing
upper than rear wing) configurations based on the height difference between the front and
rear wings. The aerodynamic characteristics of the above configurations under different
angles of attack and propeller rotational speeds are analyzed using CFD. Section 2 discusses
the numerical methodology. In Section 3, two configurations of the tandem-channel wing
layout are explained in detail based on the study of the propeller position. Then, the
aerodynamic characteristics of the two configurations under different attack angles and
propeller rotational speeds are numerically simulated, and the aerodynamic forces and
moments of the two configurations without propellers are calculated. In Section 4, the
characteristics of the tandem-wing layout are summarized, which provides a basis for the
subsequent detailed design.
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2. Numerical Simulation Approaches
2.1. Governing Equations

In this paper, the finite volume method is used to solve the Reynolds Average Navier–
Stokes (RANS) equation. The equation can be written in the inertial coordinate system:

∂

∂t

y

V

WdV +
x

S

(Fc − FV) · ndS = 0 (1)

n =
[

nx ny nz
]T (2)

In the formula above, S is the area of the contiguous volume, and V is the volume of
the contiguous volume. The vector n represents the surface normal vector of the control
element. The vector Fc represents convective transport quantities, while the vector FV
represents viscous fluxes. The vector W is a conserved variable. The vector Fc, FV and W
can be written as:

W =


ρ

ρu
ρv
ρw
ρE

F =


ρVr

ρuVr + nx p
ρvVr + ny p
ρwVr + nz p
ρHVr + Vt p

Fv =


0

nxτxx + nyτxy + nzτxz
nxτyx + nyτyy + nzτyz
nxτzx + nyτzy + nzτzz
nxΦx + nyΦy + nzΦz

 (3)

where p and ρ are the pressure and density of the gas, respectively. E and H represent the
total energy and total enthalpy of the gas unit mass. The velocity components in the three
directions are indicated by the letters u, v, and w. Vr is the relative velocity between body
and flow field and Vt is the relative velocity of mesh unit. τij is connected to the viscous
fluxes of these components, whereas Φi is related to heat conduction. When solving the
RANS equation, the turbulence model is required to describe Reynolds stress in order
to close this system of equations. In this research, the k-ω Shear Stress Transport (SST)
model [22] is used for CFD numerical simulation. The high-resolution normalized variable
(NVD) approach is used to compute the solver’s spatial difference.

2.2. The Multiple Reference Frame Method and Boundary Condition

The quasi-steady numerical simulation approach based on the RANS method and
the multiple reference frame (MRF) method [23] is used to compute propeller-related
issues. The main idea of the MRF method is to establish a closed cylindrical region around
the propeller, which is called the rotational domain. The rest of the region is called the
stationary domain. The grid in the rotational domain is generated separately from the
grid in the stationary domain. There are interfaces between the rotational domain and the
stationary domain for flux transfer. The schematic diagram is shown in Figure 1.

In the rotational domain, the equation is solved in a rotating reference frame, while
in the stational domain, the equation is solved in a fixed reference frame. Using a frozen
rotor approach, the velocity entering the rotational domain is transferred to a rotating
reference frame:

vMRF = v − ω × r (4)

where vMRF is the velocity in the rotating reference frame, v is the velocity in the stationary
reference frame, ω is the rotational vector and r is the position vector in the rotational
domain. The MRF method can transform the complex unsteady motion into a quasi-
steady flow problem, thereby reducing the computational difficulty and improving the
computational efficiency.



Energies 2022, 15, 8616 4 of 21

Energies 2022, 15, x FOR PEER REVIEW 4 of 21 
 

 

 

Figure 1. The schematic diagram of regional division. 

In the rotational domain, the equation is solved in a rotating reference frame, while 

in the stational domain, the equation is solved in a fixed reference frame. Using a frozen 

rotor approach, the velocity entering the rotational domain is transferred to a rotating 

reference frame: 

MRF = − v v ω r
 (4) 

where vMRF is the velocity in the rotating reference frame, v is the velocity in the stationary 

reference frame, ω is the rotational vector and r is the position vector in the rotational 

domain. The MRF method can transform the complex unsteady motion into a quasi-

steady flow problem, thereby reducing the computational difficulty and improving the 

computational efficiency. 

In viscous flow, the velocity of the fluid is the actual velocity of the body on the body 

surface. The wall is set as an adiabatic wall, and the wall pressure is obtained by linear 

interpolation: 

2 1
1

( )

2
wall

p p
p p

−
= −

 
(5) 

where p1 and p2 is the pressure of the first and the second layer grid. The pressure far-field 

boundary is a type of non-reflective boundary condition that is defined by using Riemann 

invariants under the local one-dimensional assumption. There are two Riemann invari-

ants in subsonic flow: 

22
,

1 1

i
n i ni

cc
R V R V
 

 
= − = −

− −  
(6) 

where Vn is the normal velocity, c is the local speed of sound, and the subscript i represents 

the computational domain. By adding and subtracting the two equations above, it can be 

obtained: 

( )
1

2 4

i
n i

R R
V c R R



+ −
= = −

 
(7) 

where Vn and c are the normal and sound velocities on the boundary, respectively. The 

tangential velocity and entropy can be obtained by extrapolating the internal flow field 

on the outflow boundary. On the boundary of inflow, they are taken from the value of 

free inflow. 

  

Figure 1. The schematic diagram of regional division.

In viscous flow, the velocity of the fluid is the actual velocity of the body on the
body surface. The wall is set as an adiabatic wall, and the wall pressure is obtained by
linear interpolation:

pwall = p1 −
(p2 − p1)

2
(5)

where p1 and p2 is the pressure of the first and the second layer grid. The pressure far-field
boundary is a type of non-reflective boundary condition that is defined by using Riemann
invariants under the local one-dimensional assumption. There are two Riemann invariants
in subsonic flow:

R∞ = Vn∞ − 2c∞

γ − 1
, Ri = Vni −

2ci
γ − 1

(6)

where Vn is the normal velocity, c is the local speed of sound, and the subscript i represents
the computational domain. By adding and subtracting the two equations above, it can
be obtained:

Vn =
R∞ + Ri

2
c =

γ − 1
4

(Ri − R∞) (7)

where Vn and c are the normal and sound velocities on the boundary, respectively. The
tangential velocity and entropy can be obtained by extrapolating the internal flow field
on the outflow boundary. On the boundary of inflow, they are taken from the value of
free inflow.

2.3. Methodology Validation

As shown in Figure 2, a standard propeller model is selected to verify the reliability
of the solver. A series of wind tunnel tests have been carried out on this model at Wichita
State University, Kansas, USA [24], with abundant experimental data, which can be used
for verification in this paper.

Three meshes are generated to obtain grid convergence and determine the proper
near-wall mesh point distribution. Table 1 shows the details of the meshes used for the
evaluation. The most important quality criterion is the distribution of near-wall grid points,
especially for y1

+ = ∆y1uτ/v where ∆y1 represents the distance away from the wall of the
nearest grid point and uτ =

√
τw/ρ stands for the shear stress velocity with τw the wall

shear stress and v the kinematic viscosity. The advance ratio, J, is set to 0.73 as the propeller
works at n = 6000 rpm. The advance ratio, J, is defined as:

J =
V

nD
(8)
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where V is the velocity of the free inflow, n is the propeller rotational speed, and D is the
diameter of the propeller. The pressure distribution on the upper surface of the nacelle at
the vertical symmetry plane was extracted, as shown in Figure 3. The y1

+ ≈ 0.4 will be the
criterion in the following grid generating process.
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Figure 2. Geometry of a propeller with nacelle.

Table 1. Mesh description.

Mesh ∆y1 y1
+ Grid Cells

A 3 × 10−6 1 1,000,000
B 1 × 10−6 0.4 4,000,000
C 3 × 10−7 0.11 32,000,000
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Figure 3. Pressure distribution in different meshes.

The simulation results of the thrust coefficient, CT, the power coefficient, CPo, and
efficiency, η, in different advance ratios, J, of the propeller working at n = 6000 rpm is
obtained using the MRF method. The above parameters are defined as:

CT = T
ρn2D4

CPo =
P

ρn3D5

η = JCT
CP

J = V
nD

(9)
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where T is the tension of the propeller, P is the power of the propeller, and ρ is the density
of the free inflow. Figure 4 shows the static domain grids, rotational domain grids, and
combined grids. The total number of grid points in the computational domain is 4.3 million,
and the first grid distance is kept in a value of y1

+ ≤ 1.
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Figure 4. The grid used for simulations. (a) Static domain grids. (b) Rotational domain grids.
(c) Combined grids.

Based on Figure 5, the maximum error between the numerical simulation results of
the propeller tension coefficient and the wind tunnel test data is 9.1%, the maximum error
of the power coefficient is 10.1%, and the maximum error for efficiency is 5.6% when the
advance ratio, J, of the propeller is less than 0.7. It can be considered that the MRF method
can effectively simulate the propeller aerodynamic characteristics. The simulation accuracy
of this method meets the research requirements for this paper.
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3. Results and Discussion
3.1. Tandem-Channel Wing Layout

A channel wing consists of a straight wing segment and a semiring wing section
equipped with a propulsion system near the leading edge, as shown in Figure 6a. The
advance ratio, J, is set as 0.2, the propeller speed is set as 6000 rpm, and the angle of attack is
set as 0◦. Figure 6b shows the grid, which satisfies y1

+ ≤ 1 and is approximately 11.1 million
grid points.
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Figure 6. Sketch of a channel wing and its grid. (a) Size of a channel. (b) The grid for simulating.

The upper surface of the semiring wing is in the propeller’s wake. At a high propeller
rotational speed, the low-pressure zone of the top surface extends from the leading edge to
the trailing edge, considerably enhancing the lift force. As shown in Figure 7, the propeller
wake is concurrently driven downward by the Coandă effect at the trailing edge, resulting
in a downwash effect on the rear object surface. At a distance of 4 fold the chord length
of the ring wing from the propeller, the downwash velocity is 45% of the incoming flow
velocity, while it remains 30% of the incoming flow velocity at a distance of 5 fold the chord
length of the semiring wing.
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Figure 7. The wake downwash velocity diagram of a channel wing.

The channel wing with the rear propeller is shown in Figure 8a. Figure 8b shows the
grid, which satisfies y1

+ ≤ 1 and is approximately 11.2 million grid points. The calculation
conditions are the same as the simulation above. In contrast to the conventional channel
wing, the downwash effect of the channel wing with the propeller at the rear of the ring
wing is much less. At one chord length from the propeller, the data in Figure 9 indicate that
the washing speed is near to zero.

The tandem-wing layout consists of two wings at the front and back of the aircraft.
The Vahana vehicle developed by A3 by Airbus LLC [25] has used the tandem-wing layout,
as shown in Figure 10. For an aircraft with the tandem-wing layout, the wake of the front
wing influences the aerodynamics of the rear wing. The low front wing may minimize the
downwash influence on the airflow near the rear wing by keeping the downwash wake
away from the rear wing. For the tandem-channel wing layout, FLR (front wing lower than
rear wing) configuration is considered to reduce interference to the rear wing, as shown in
Figure 11. The wingspan of the front and rear ring wings is 500 mm, the half-span of the
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front wing is 1000 mm, and the half-span of the rear wing is 1600 mm. The propeller has
a radius of 200 mm, and the difference in height between the straight wing segments of
the front and rear wings is 300 mm. The center of gravity is taken on the symmetric plane,
750 mm from the leading edge of the front wing, 150 mm higher than the straight wing
section of the front wing.
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Considering the channel wing with rear propeller, the downwash effect is relatively
weak and still has considerable horizontal velocity at the wake, while the straight wing
segment of the rear wing is in the wake region of the front wing propeller. Therefore,
the FUR (front wing upper than rear wing) configuration is considered to accelerate the
air flow on the upper surface of the straight wing segment in the rear wing by the high-
speed slip flow of the front wing propeller, so as to achieve the induced lift enhancement
effect, as shown in Figure 12. The dimensions of each component of this configuration are
identical to those of the FLR configuration, except that the straight wing segment of the
front wing is 300 mm higher than that of the rear wing and the center of gravity is the same
in the horizontal direction but 150 mm lower in the longitudinal direction than that of the
straight wing segment of the front wing. Table 2 shows the geometric parameters of the
two configurations.
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Table 2. Geometric parameters of the two configurations.

Parameter FLR Configuration FUR Configuration

Span of front wing 2000 mm 2000 mm
Span of rear wing 3200 mm 3200 mm

Radius of propeller 200 mm 200 mm
Distance along chordwise 1600 mm 1600 mm

Distance along vertical −300 mm 300 mm

3.2. Aerodynamic Characteristics of the FLR Configuration

The mesh for simulation is a hybrid unstructured hexahedral mesh which converted
from the structured mesh with grid size of approximately 13.6million, which is composed of
the stational domain meshes (approximately 2.6 million) and the rotational domain meshes
(approximately 11 million), as shown in Figure 13. The ∆y1 of the mesh is 2.4 × 10−6 and
y1

+ ≤ 1. The velocity of free inflow is 20 m/s, and the angle of attack is set as 0◦. The lift,
drag and moment coefficients of this configuration at different propeller rotational speeds
are calculated, and the moment reference point is the center of gravity position mentioned
in Section 3.1. The result is shown in Figure 14. With the increase in the propeller rotational
speed, the lift coefficient of the aircraft gradually increases, and the semiring wing of the
front and rear channel wings is the main lift contributor. The lift of the inner and outer
wing segments of the front wing and the outer wing segments of the rear wing increase
slightly at a high propeller rotational speed, while the lift of the inner wing segments of
the rear wing decrease. The lift of the front semiring wing is higher than that of the rear
semiring wing, and this disparity increases as the propeller rotational speed rises. Similar
to the change in lift coefficient, the change in drag and moment coefficients are focused in
the ring wing. The drag coefficient decreases with the increase in the propeller rotational
speed. Additionally, since the lift increment of the front ring wing is greater, the nose-up
pitching moment of the aircraft steadily rises with the propeller rotational speed.
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Figure 14. Lift, drag and moment coefficients at different propeller rotational speeds.

The lift distributions of the front and rear wings in the span direction under the
conditions of n = 4000 rpm and n = 8000 rpm were extracted and compared with the
unpowered configuration, so as to reveal the main factors leading to component force
variation. The unpowered configuration means that the same configuration does not contain
the propeller. As shown in Figure 15, when the propeller rotational speed is 4000 rpm, the
wing lift distribution over the span is comparable to that of an unpowered version, and
there is no substantial induced lift effect from the propeller. The lift of the front and rear
semiring wings increases dramatically as the propeller rotational speed increases, and the
lift of the semiring wings was mostly centered on the side closest the wing root. The lift
peak of the front semiring wing is higher than that of the rear semiring wing, and the lift of
the straight wing near the ring wing increases.
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Figure 15. Wingspan lift distribution at different propeller rotational speeds.

Figure 16 shows the surface pressure distribution cloud diagram for the whole aircraft
for two different propeller rotational speeds. The increase in the propeller rotational speed
further accelerates the air flow on the semiring wing’s upper surface, and the low-pressure
region expands, resulting in an increase in lift. The propeller is in the horizontal phase and
turns clockwise from nose to tail, the lift peak occurs on the side of the semiring near the
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root. The straight wing at the two sides of the ring wing is driven by the axial and annular
velocity of the propeller, and the air flow on its upper surface is accelerated, resulting in a
modest increase in lift force.
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The impact of the front wing tip vortex on the rear wing is shown in Figure 17. The
front wing tip overlaps the rear semiring wing in the span direction, while the wing
tip vortex deviates the airflow in front of the rear ring wing propeller from the X-axis
and introduces velocity components in the other directions. In addition, the velocity of
incoming flow decreases after passing through the front wing and does not recover at
the rear wing. The adverse interference of the aforementioned factors causes the inflow
boundary conditions of the rear semiring wing to differ from the free inflow of the front
semiring wing, which has a negative impact on the coupling lift increase effect of the
propeller and the wing, resulting in a reduction in the lift peak of the rear ring wing and
the overall lift.

For this configuration, the lift and moment at different angles of attack are calculated
at propeller rotational speed n = 4000 rpm and n = 8000 rpm, and compared with the un-
powered configuration. The calculation results are shown in Figure 18. When n = 4000 rpm,
the lift coefficient of this configuration is comparable to that of the unpowered version
at a lower angle of attack, and the stall angle of attack rises from 16◦ to 20◦ under the
influence of the propeller. The nose-down pitching moment of the two configurations
show a trend of increasing first and decreasing, and the inflection point is around 20◦. At
n = 8000 rpm, the lift coefficient increases by approximately 0.1 at each angle of attack, and
the stall angle of attack rises to 24◦. After the stall angle of attack, the lift coefficient drops
gradually. The nose-down pitching moment rises monotonically. The center of gravity
specified in Section 3.1 serves as the reference point for the pitch moment coefficient curve.
The static stability margin can be obtained from: Hn = −dCm/dCL. The static stability
margin is 30% calculated by linear regression. At this time, the aircraft cannot meet the
requirements of cruise trim. In actual aircraft design, it is necessary to design the front and
rear wing mounting angles or coordinate the elevator deflection in detail to achieve cruise
moment trim.

The lift coefficient of each component is shown in Figure 19 as a function of the angle
of attack. When n = 4000 rpm, the propeller power-induced lift effect is not obvious, which
is similar to the lift characteristics of the unpowered configuration. When n = 8000 rpm, the
power-induced lift effect is significant. With the increase in the angle of attack, the lift of
the front and rear semiring wings continue to increase. The rest of the components appear
stall at a high angle of attack, and the lift of the inner of the rear wing decreases slowly.
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Figure 19. Lift coefficient of each component at different angles of attack.

The two-dimensional flow field at the symmetry plane of the front and rear ring wings
at an attack angle of 24◦ is extracted, while the whole plane is in a stall condition, as shown
in Figure 20. At the semiring wing, with the increase in the propeller rotational speed, the
stall of the semiring wing is significantly inhibited, and the flow separation point gradually
approaches the backward edge. Therefore, at a high propeller rotational speed, the lift
coefficient still increases when the angle of attack increases.
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Figure 20. Flow field at the symmetric plane of the ring wing corresponding to different propeller
rotational speeds at a 24◦ angle of attack. (a) n = 4000 rpm. (b) n = 8000 rpm.

The flow field of the rear inner wing corresponding to the section of the symmetrical
plane of the front ring wing is extracted, as shown in Figure 21. With the increase in the
propeller rotational speed, the downwash effect of high-speed slipstream on the front wing
is gradually enhanced, and the local angle of attack of the rear wing is gradually decreased,
which maintains the attached flow of the rear wing and effectively improves the available
angle of attack of the inner wing segment of the rear wing.
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Figure 21. Flow field in the inner wing of the rear wing at the symmetry plane of the front ring wing.
(a) unpowered; (b) n = 4000 rpm; (c) n = 8000 rpm.

3.3. Aerodynamic Characteristics of the FUR Configuration

The grid size for simulation is approximately 14 million, which satisfies y1
+ ≤ 1,

as shown in Figure 22. The velocity of free inflow is 20 m/s, and the angle of attack is
set as 0◦. Figure 23 shows the aerodynamic characteristics of the FUR configuration at
different propeller rotational speeds. As the speed increases, the lift of the front and rear
ring wings increases significantly. The inner and outer segments of the front wing and
the outer segment of the rear wing increase slightly at higher rotational speeds. In this
configuration, the lift increment of the front and rear wings is comparable, hence the overall
aircraft moment changes slightly with the propeller rotational speed. In addition, the drag
coefficient of front semiring wing stays unchanged, while the figure for rear semiring wing
decreases obviously.
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Figure 22. Mesh of the FUR configuration: (a) rotational domain; (b) stational domain.

As shown in Figure 24, the spanwise lift distributions of the front and rear wings of
this configuration at various propeller rotational speeds are taken. The lift distribution of
the rear semiring wing is not significantly disturbed because the front wing of the FUR
configuration is higher, in contrast to the lift loss of the rear wing caused by the interference
of the front wing of the FLR configuration. The front semiring wing’s lift peak is smaller,
but its lift is greater across the whole ring wing. At higher speeds, there is a noticeable lift
increase in the inner wing segment of the rear wing.
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Figure 24. Wingspan lift distribution at different rotational speeds.

As the front wing propeller is located at the rear of the ring wing, the lift effect of the
front semiring wing is generated from the suction effect in front of the propeller, which is
mainly concentrated near the trailing edge. Compared with the rear semiring wing, the
suction peak in the front ring wing is further back and the negative pressure recovery is
more delayed, which is more significant with the increase in speed, as shown in Figure 25.

Similar to the FLR configuration, the lift increase effect of the front and rear semiring
wings is reflected in the higher propeller speed, and the rear inner wing also has a sig-
nificant lift increase. The spatial velocity distributions at n = 4000 rpm and n = 8000 rpm
were extracted, as shown in Figure 26. At high speeds, the front ring wing’s high-speed
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slipstream induces the up surface of the inner wing segment of the rear wing significantly.
The upper surface velocity of the inner wing segment of the rear wing increases, and the
low-pressure area increases, as shown in Figure 27.
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For this configuration, the lift force and moment at different angles of attack are
calculated at propeller rotational speed n = 4000 rpm and n = 8000 rpm, and the results are
shown in Figure 28. When the propeller rotational speed is n = 4000 rpm, this configuration
approximates the lift coefficient of the corresponding unpowered configuration at a lower
angle of attack. At low angles of attack, the nose-down pitching moment rises with the angle
of attack, and the nose-down pitching moment of the unpowered configuration is greater,
with the difference growing progressively with the angle of attack. In the vicinity of a stall
angle of attack, the nose-down pitching moment of both have a decreasing trend. When the
propeller rotational speed is n = 8000 rpm, the lift coefficient increases by approximately
0.15 at each angle of attack, and the stall angle of attack and the maximum lift coefficient
increase significantly. However, at this time, the nose-up pitching moment has a slowly
rising trend with the angle of attack, that is, the aircraft has static instability at the current
propeller rotational speed.
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Figure 28. Lift and moment characteristics at different angles of attack.

As indicated in Figure 29, the lift of each component at various propeller rotational
speeds is determined. When n = 4000 rpm, the lift and variation trends of each component
are similar to the unpowered configuration, and the stall angle of attack is around 18 degrees.
When n = 8000 rpm, the lift of each component of the front wing and the rear ring wing
increases constantly with the angle of attack, with the increase in the front ring wing being
larger than that of the rear ring wing.
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The pressure distribution on the upper surface and the two-dimensional flow field at
the symmetry plane of the front and rear ring wings at a 24◦ angle of attack are extracted,
as shown in Figure 30. When n = 4000 rpm, the pressure distribution on the surface of
the front and rear semiring wings is quite different due to different propeller positions.
The rear propeller accelerates the fluid in front of the disc, making the low-pressure area
of the front semiring wing wider, while the front propeller affects the rear semiring wing
through slipstream, making the low-pressure area more concentrated and the flow more
complex. However, the lift characteristics and flow characteristics are similar, and there are
large separation vortices at the rear of the airfoil. When n = 8000 rpm, the position of the
separation vortex moves backward significantly, while the separation vortex area of the
front ring wing is smaller and the attached flow area is larger, so that the upper surface has
a larger low-pressure area and thus has a larger lift force.

Energies 2022, 15, x FOR PEER REVIEW 20 of 21 
 

 

the front ring wing is smaller and the attached flow area is larger, so that the upper surface 

has a larger low-pressure area and thus has a larger lift force. 

  
(a) n = 4000 rpm (b) n = 8000 rpm 

Figure 30. Pressure distribution on the upper surface and the two-dimensional flow field at the 

symmetry plane of the semiring wing. 

4. Conclusions 

As eVTOL (Electric Vertical Take-Off and Landing) aircraft require a low transition 

speed and a high lift, this paper discusses a tandem-channel wing layout for eVTOL, in-

cluding FLR (front wing lower than rear wing) and FUR (front wing upper than rear wing) 

configurations. The aerodynamic force and moment at various angles of attack and pro-

peller rotational speeds are analyzed numerically. The mechanism is revealed by the pres-

sure distribution, the velocity distribution, and the flow field distribution. Compared with 

the corresponding unpowered configuration, the changes of aerodynamic characteristics 

induced by the propeller are revealed. The following are the conclusions: 

1. At a high propeller rotational speed, the tandem-channel wing configuration lift 

greatly increases. At a 0° angle of attack, the lift rises by more than 50 percent. At a 

stall angle of attack, the lift increases by approximately 10 percent; and at a maximum 

angle of attack for stalling, the lift increases by more than 10 degrees. 

2. The tandem-channel wing’s increased lift is caused by the propeller’s acceleration of 

the air flow on the top surface of the semiring wing, which enlarges the region of low 

pressure on the upper surface. Simultaneously, the propeller also generates a small 

increase in lift on the neighboring straight wing section to the ring wing. The rear 

propeller is more effective than the front propeller in inducing lift rise. 

3. Under the FLR configuration, the rear wing is impacted by the downwash effect of 

the front wing, which decreases the local angle of attack and delays airflow separa-

tion on the top surface. In the FUR configuration, the rear wing top surface is induced 

by the wake flow of the front wing propeller at a high speed, which increases the lift 

force, the total lift force, and the stall angle of attack; however, the aircraft tends to 

be statically unstable at this moment. 

eVTOL aircraft have developed rapidly, and a variety of configurations are being 

tested. The configurations developed in this paper and the analysis can be used as refer-

ences, providing a new choice for urban aircraft. In the future, the coupling analysis be-

tween vehicle drag and propeller characteristics will be analyzed. What is more, a propel-

ler–wing coupling aerodynamic optimization design will be determined. 

Author Contributions: Conceptualization, M.C., Z.Z., X.M., J.B. and B.W.; methodology, X.M. and 

Z.Z.; writing—original draft preparation, Z.Z.; writing—review and editing, Z.Z. All authors have 

read and agreed to the published version of the manuscript. 

Figure 30. Pressure distribution on the upper surface and the two-dimensional flow field at the
symmetry plane of the semiring wing.

4. Conclusions

As eVTOL (Electric Vertical Take-Off and Landing) aircraft require a low transition
speed and a high lift, this paper discusses a tandem-channel wing layout for eVTOL,
including FLR (front wing lower than rear wing) and FUR (front wing upper than rear
wing) configurations. The aerodynamic force and moment at various angles of attack
and propeller rotational speeds are analyzed numerically. The mechanism is revealed
by the pressure distribution, the velocity distribution, and the flow field distribution.
Compared with the corresponding unpowered configuration, the changes of aerodynamic
characteristics induced by the propeller are revealed. The following are the conclusions:

1. At a high propeller rotational speed, the tandem-channel wing configuration lift
greatly increases. At a 0◦ angle of attack, the lift rises by more than 50 percent. At a
stall angle of attack, the lift increases by approximately 10 percent; and at a maximum
angle of attack for stalling, the lift increases by more than 10 degrees.

2. The tandem-channel wing’s increased lift is caused by the propeller’s acceleration of
the air flow on the top surface of the semiring wing, which enlarges the region of low
pressure on the upper surface. Simultaneously, the propeller also generates a small
increase in lift on the neighboring straight wing section to the ring wing. The rear
propeller is more effective than the front propeller in inducing lift rise.

3. Under the FLR configuration, the rear wing is impacted by the downwash effect of the
front wing, which decreases the local angle of attack and delays airflow separation
on the top surface. In the FUR configuration, the rear wing top surface is induced
by the wake flow of the front wing propeller at a high speed, which increases the lift
force, the total lift force, and the stall angle of attack; however, the aircraft tends to be
statically unstable at this moment.
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eVTOL aircraft have developed rapidly, and a variety of configurations are being tested.
The configurations developed in this paper and the analysis can be used as references,
providing a new choice for urban aircraft. In the future, the coupling analysis between
vehicle drag and propeller characteristics will be analyzed. What is more, a propeller–wing
coupling aerodynamic optimization design will be determined.
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