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Abstract: This study reports on the structure analyses of NiO-BCZY (BCZY = BaCe0.54Zr0.36Y0.1O3-δ)
anode composite materials with the ratio of 50:50 for proton ceramic fuel cells (PCFCs) application. A
product of sintered NiO-BCZY was developed to understand the structural properties of the anode
materials. The objectives of this work were (a) to investigate the lattice expansion of the anode by
using a high-temperature XRD (HT-XRD) from 400–700 ◦C; and (b) to calculate the crystallite size
of the sample by using Scherrer’s and Williamson Hall’s methods. The results obtained from the
HT-XRD revealed that the diffraction peaks of NiO and BCZY are matched with the cubic phase
perovskite structure. For example at T = 400 ◦C, the lattice parameter of NiO is a = 4.2004 Å and BCZY
is a = 4.3331 Å. The observation also showed that the lattice expansion increased with the temperature.
Furthermore, analyses of the Scherrer and Williamson Hall methods, respectively, showed that the
crystallite size is strongly correlated with the lattice expansion, which proved that the crystallite size
increased as the operating temperature increased. The increment of crystallite size over the operating
temperature contributed to the increment of conductivity values of the single cell.

Keywords: lattice expansion; crystallite size; NiO-BCZY; anode composite; conductivity;
power density

1. Introduction

Fuel cells are one of the great sustainable energies which use electrochemical devices
that convert chemical energy directly into electrical energy at high efficiency due to the
lack of the Carnot constraint of the standard energy conversion chain. One type of fuel cell
is a solid oxide fuel cell (SOFC) which comprises oxygen ion (O2−)-SOFC and hydrogen
ion (H+)-SOFC. The H+-SOFC, also known as PCFC (proton ceramic fuel cell), is one of the
best solutions to operate at intermediate temperatures in the range of 500–800 ◦C [1–3]. In
this operating temperature regime, the components of PCFC, namely, electrode (anode and
cathode) and electrolyte materials, are affected by the thermal heat. The changes in size and
shape of the materials due to the heat treatment and heating profiles become significant
problems, particularly on the anode side which is frequently made of metal and ceramic
(cermet) [4–6].

It is important to accurately estimate the structure (for example the crystallite size)
of anode cermet as a function of temperature because it influences the characteristics of
polycrystalline materials. One of the widely used polycrystalline materials as an anode
composite for PCFC is NiO-BaCe0.54Zr0.36Y0.1O3-δ (BCZY) [7–10]. Nickel is used in the
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composite anode because it has high catalytic properties for hydrogen oxidation [11]. Fur-
thermore, the use of the composite anode enhances thermal compatibility, reduces interface
resistance and lengthens the triple-phase boundary (TPB) [12,13]. In terms of NiO:BCZY
composition, it has been reported that more than 40% nickel content can effectively improve
electrochemical performance [14,15]. Several studies have discovered that some problems
occur, such as fracture formation caused by thermal mismatch between anode layers [16,17].
Hence, data on anode crystallite size are very useful and significant to ensure that the
electrolyte component has close TEC under the desired working conditions [18–21].

Most studies have showed a linear relationship between the size of the materials’
crystallites and the annealing temperature [22,23]. On the other hand, correlations between
the crystallite size of NiO-BCZY anode composite at working temperatures of PCFC are
still small in number. Thus, in this work, Scherrer’s and Williamson Hall’s methods
were adopted to calculate the crystallite size of NiO-BCZY that has undergone operating
temperatures from 400–700 ◦C. Williamson Hall’s method (W-H method) is more relevant
and accurate than Scherrer’s method as the lattice strain, lattice stress, and also energy
density is taken into account in the calculation [24,25].

In terms of electrical performance of the anode material, research done by Rhidwan
et al., showed that crystallite size was inversely proportional to the grain resistance [26]. At
750 ◦C, the crystallite size of electrolyte bismuth-based materials showed that an almost
linear relationship to conductivity can be observed [27]. Thus, the effect of lattice expansion
and crystallite size trends on the electrochemical performance, such as conductivity and
power density of NiO-BCZY, were also identified in this study.

2. Materials and Methods

Firstly, to prepare the anode composite powder, the raw material of barium nitrate
(Ba(NO3)2), cerium (III) nitrate hexahydrate (Ce(NO3)3.6H2O), zirconyl (IV) nitrate hydrate
(Zr(NO3)2O.xH2O), yttrium (III) nitrate hexahydrate (Y(NO3)3.5H2O) were dissolved in
deionized water. Nickel (II) nitrate (Ni(NO3)2 and citric acid (CA) were added to the
solution, and its pH was adjusted to 7 by using ammonia hydroxide. Next, the mixture
was heated at 120 ◦C overnight and dried at 325 ◦C for about 2 h. The dried powder was
ground and calcined at 1100 ◦C for 10 h and then pressed at the pressure of 5 MPa for about
1 min to produce a circular pellet. The obtained pellet was sintered at 1400 ◦C for 6 h.

The sintered pellet was ground using a mechanical grinder to a powder form before
being subjected to the high-temperature X-ray diffraction (HT-XRD) from 400 to 700 ◦C.
The Rietveld refinement technique was utilized by using commercial software of Highscore
Plus to calculate the lattice expansion at operating temperatures. After refinement, the
material structures were observed through visual for electronic and structural analysis
(VESTA). Furthermore, the isolated and selected high-intensity peaks that correlate to
a larger diffraction angle were chosen to determine the crystallite size using Scherrer’s
method and several Williamson Hall plot models. These two methods give an extensive
range of crystallite sizes.

For Scherrer’s method, the crystallite size of the sample (D) was calculated using
Equation (1):

D =
kλ

βhkl cos θhkl
(1)

where Scherrer’s constant (k) = 0.9, wavelength (λ) = 0.154056 nm for Cu-Kα radiation, θhkl
is Brag diffraction angle and βhkl is the broadening of the hkl diffraction peak measured at
half of its maximum intensity in radians.

On the other hand, the Williamson Hall’s method is utilized to predict a more accurate
calculation of crystallite size by using three models: uniform deformation model (UDM);
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uniform stress model (USDM); and energy density model (UDEDM) using Equation (2),
Equation (3) and Equation (4), respectively.

βhkl =

(
kλ

D

)
+ 4ε sin θ (2)

βhkl cos θ =

(
kλ

D

)
+ 4σ

sin θ

Ehkl
(3)

βhkl cos θ =

(
kλ

D

)
+ 4 sin θ

(
2u

Ehkl

) 1
2

(4)

where Ehkl is the young modulus for the cubic crystal.
To further characterize the electrochemical properties of NiO-BCZY anode composite,

the impedance measurement and I-V characteristics were carried out. The anode compos-
ite was fabricated as an anode substrate of PCFC single cell. The substrate was coupled
with cathode and electrolyte materials with configuration of anode (substrate)|electrolyte
(thin film)|cathode (thin film). The in-house developed of BCZY and LSCF-BCZY (LSCF
= La0.6Sr0.4Co0.2Fe0.8O3-δ)-BCZY were employed as electrolyte and composite cathode,
respectively [28,29]. The fabricated single cell of NiO-BCZY|BCZY|LSCF-BCZY following
the previously reported procedure [30] was placed at the sample holder of custom-made
conductivity station for the conductivity and power density measurements. The measure-
ment was done using electrochemical impedance spectroscopy (EIS) ZIVE SP2 Electrochem-
ical Workstation (ZIVELAB WonATech) in the temperature ranging from 500 to 700 ◦C
under hydrogen fuel at anode side and stagnant air at cathode side. Impedance spectrum of
the cell was analyzed using ZIVE® Smart Manager™ software and I-V polarization curve
was plotted for power density assessment.

3. Results
3.1. XRD Pattern

Figure 1 shows the final diffraction pattern of high-temperature XRD for the fine NiO-
BCZY anode composite from 400–700 ◦C. A finely ground powder is needed to achieve
an excellent signal-to-noise ratio (SNR) and avoid fluctuation intensity. Both factors will
reduce the preferred orientation and thus avoid spottiness and inconsistency analyses [31].
After allowing the pattern shift peaks, all main peaks in the XRD pattern matched with the
Joint Committee of Powder Diffraction Standards (JCPDS) file number for NiO is 01-078-
0423 and BCZY is 01-089-2485. The respective JCPDS number of NiO and BCZY used was
matched with most of the recent papers reported [32–34]. However, a secondary phase of
cerium oxide, CeO (JCPDS no.: 00-0040-0593) was also detected in the spectrum as reported
by [35]. The presence of this secondary phase will lead to the non-homogenous formation
of NiO-BCZY anode composite as a result of partial decomposition of the pre-prepared
BCZY phase [36] due to the incomplete reaction between NiO and the ceramic part.

Figure 2 shows the peaks of BCZY at 2θ = ± 29.2 and NiO at 2θ = ± 43.1 is shifted to the
low angle of 2θ (left side) indicating that the lattice parameter increased as the temperature
raised to 700 ◦C. This trend was also reported by Sultan et al. [37] on thermal expansion
of semiconductor material. The authors explained a diffuse scattering phenomenon that
caused by thermal expansion will reduced the intensity in the Bragg positions. The values
of lattice parameter for BCZY and NiO at the temperature of 400 to 700 ◦C are presented in
Table 1. The increase in value shows that the lattice went through thermal expansion while
heated [38,39]. The value for the goodness of fit (GOF) obtained was in the range of 0.82 to
3.48. The low number of GOFs signifies that the XRD data was effectively refined. Figure 3
shows the result of refinement for Rietveld analysis of XRD pattern and the cubic structure
of NiO-BCZY anode composite that has been observed using VESTA software.
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Figure 1. XRD pattern of NiO-BCZY anode composite at four different temperatures (400 to 700 ◦C).

Figure 2. Enlargement of: (a) BCZY peak at (110); and (b) NiO peak at (200) showed that the peaks
shift to the left side due to the lattice expansion.

Table 1. The Lattice parameter of NiO and BCZY at temperatures of 400 to 700 ◦C.

Temp. (◦C) Lattice Parameter, a (Å)

NiO BCZY

400 4.2004 4.3331

500 4.2064 4.3400

600 4.2115 4.3433

700 4.2152 4.3462
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Figure 3. The crystal structure of NiO-BCZY.

3.2. Crystallite Size

The result of crystallite size (D) calculated using Scherrer’s method and crystallite size
(D), lattice strain (ε), deformation stress (σ), and density of energy (U) calculated using, UDM,
USDM, and UDEDM models are summarized in Table 2 for NiO and Table 3 for BCZY. The
crystallite size of NiO is larger in Scherrer’s method as compared to the W-H method which is
in contrast with the crystallite size of BCZY. Both methods are similar in terms of dependency
on the diffraction angle, θ but can be distinguished as explained in Equations (1)–(4) (Scherrer’s
is 1/cos θ dependent and W-H is tan θ dependent). Thus, due to different θ positions of
respective NiO and BCZY, it will affect the crystallite size and strain broadening data [40]. In
addition, the same reason was also explained by Ilyas et al. [41] with the additional factor that
contributes to the size and strain such as the widening of the diffraction peak, β. Theoretically,
the broadening of the diffraction peak, β is inversely proportional to crystallite size, D [42].
Overall, the average crystallite size showed positive increments as temperature increased due
to crystal lattice dilation [37].

Table 2. Summary of crystallite size (D), lattice strain (ε), deformation stress (σ) and energy density
(U) calculated using a different model for NiO at temperatures of 400 ◦C to 700 ◦C.

NiO

Temp,
(◦C)

Scherrer
Method

Williamson-Hall Method

UDM USDM UDEDM

D
(nm)

D
(nm)

ε

(×10−3)
D

(nm)
ε

(×10−3) σ
D

(nm)
ε

(×10−3) σ
U

(×10−5)

400 48.71 33.37 12.00 33.37 0.19 28.53 33.37 1.22 186.20 11.32

500 48.79 34.98 11.00 34.98 0.77 118.04 34.98 1.07 163.80 8.76

600 49.01 36.48 8.90 35.15 0.18 28.04 35.32 1.19 183.00 10.94

700 49.34 38.01 8.60 35.32 0.18 27.47 34.65 1.17 179.40 10.51

In addition, the lattice strain is specified as a lattice expansion or contraction due to
changes in crystallite size that come from the modification of atomic arrangement [43].
Since strain can be obtained through a slope of the linear fit to the data, a positive slope
of lattice strain is attributed to the lattice expansion [44] as shown in Figure 4. Ideal data
for the strain were supposed to be decreased as temperature increased as lattice expansion
was taken into account; however, due to poor techniques of fitting data, inconsistent results
were achieved. The same inconsistent observation was also reported by Yusoff et al. [45].
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Table 3. Summary of crystallite size (D), lattice strain (ε), deformation stress (σ) and energy density
(U) calculated using a different model for BCZY at temperatures of 400 ◦C to 700 ◦C.

BaCe0.54Zr0.36Y0.1O3-δ

Temp,
(◦C)

Scherrer
Method

Williamson-Hall Method

UDM USDM UDEDM

D
(nm)

D
(nm)

ε

(×10−3)
D

(nm)
ε

(×10−3) σ
D

(nm)
ε

(×10−3) σ
U

(×10−5)

400 30.91 109.71 3.09 109.71 3.09 472.97 109.71 3.09 472.90 73.01

500 31.62 132.86 5.07 132.85 5.07 777.38 132.85 5.07 777.30 197.20

600 34.31 135.34 4.88 135.34 4.88 746.83 135.34 4.88 746.80 182.00

700 41.82 169.18 4.18 169.18 4.18 639.60 169.18 4.18 639.50 133.50

Figure 4. A positive slope of lattice strain for BCZY.

3.3. Electrochemical Measurement

A study on electrical anode performance of NiO-BCZY pellet has been reported
elsewhere [46]. Hence, as a continuity work, a single cell was fabricated with a configuration
anode|electrolyte|cathode:NiO-BCZY|BCZY|LSCF-BCZY to intensively evaluate the
effect of lattice expansion and crystallite size of anode materials on the electrochemical
performance. Figure 5 shows a typical Nyquist plot of NiO-BCZY|BCZY|LSCF-BCZY
single cell was measured at 700 ◦C with an inductance ‘tail’ below the x-axis region and
two well-defined arcs. The impedance spectrum was fitted using the equivalent circuit
Ls-Ro-(R1Q1)-(R2Q2) where Ls and Ro correspond to the inductance and ohmic resistance,
respectively. R1 and R2 indicate the resistance from arc-1 and arc-2 where R1 + R2 is the
polarization resistance, Rp of the cell.

Figure 5. Impedance spectrum of NiO-BCZY|BCZY|LSCF-BCZY single cell at 700 ◦C under hydro-
gen/air atmosphere.
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Table 4 shows the Ro, Rp and conductivity values of the cell at 500–700 ◦C. The
conductivity increases with increasing temperature demonstrates the involved reactions
are temperature dependent and indicates that the corresponding electrochemical reactions
are thermally activated processes [47]. The total conductivity of the cell is comparable to a
study done by Senari et al. [48] in a similar operation atmosphere.

Table 4. The area specific resistance and total conductivities of single cell at 500–700 ◦C.

Temperature (◦C) Ro
(Ωcm2)

Rp
(Ωcm2)

Total Conductivity
(×10−3 Scm−1)

700 34.19 7.90 1.90

600 44.37 8.30 1.52

500 52.45 10.26 1.28

As studied by Hossain et al. [49] the conductivity mechanism was reported as a result
of the contribution of ions transportation. For example, the proton transport in crystal
lattice of perovskite strongly affect the proton conductivity that occur between the lattices
through hopping and reorientation mechanism [50]. Thus, perovskite materials that have
large lattice volume tend to form high proton conductivity and vice versa [51]. Greater
lattice size promotes more energy to the lattice vibration, which speeds up proton transport
and results in better proton conductivity [52].

Shown in Figure 6 is the current- voltage (I-V) and current-power (I-P) plots of the
single cell measured when the open circuit voltage (OCV) was stabilized at 700 ◦C. As
compared to our previous study [53], the maximum power density of present findings
at 500–700 ◦C (Table 5) have improved from nW/cm2 to mW/cm2 without the need of
pore former and material modification. However, the power density of this in-house single
cell is noticeably lower than the state-of-art in PCFC technology, particularly NiO-BCZY-
based anode composite [9,10,14,46,49]. One of the reasons is due to the ohmic resistance
of electrolyte that dominates the cell resistance and influence the OCV of the cell (~0.21 V
at 700 ◦C). The small OCV value indicates insufficiently dense electrolyte membrane to
prevent gas mixture from anode to cathode, which might explain the overall performance
of the cell. Hence, promising fabrication techniques should be taken into consideration
for future development [54,55]. On the other hand, it is best to limit or reduce the extreme
nickel diffusion from Ni-based cermet anode into barium cerate electrolyte through altering
fabrication procedures, for instance, as this tends to result in poor cell performance by
lowering the ionic conductivity [56]. Since each research study compares different cell
designs, it might be difficult to thoroughly understand the factors that affect the output
performance of fuel cells, including fabrication technique, current collector, and gas flow.

Figure 6. Power density of single cell at 700 ◦C.
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Table 5. Power density value of single cell at 500–700 ◦C.

Temperature (◦C) Power Density (mW/cm−2)

700 0.48

600 0.30

500 0.18

4. Conclusions

The increase in lattice parameter and unit cell volume indicates that the NiO-BCZY
anode composite undergoes lattice expansion at operating temperatures from 400 to 700 ◦C.
The results from Scherrer’s method and Williamson-Hall’s method showed that the crystal-
lite size increases as the temperature increases. The average value obtained for crystallite
size from different models shows that the lattice strain and deformation stress affected
the crystallite size. It can be concluded that the Williamson-Hall method gives a more
accurate value compared to Scherrer’s method. The electrochemical results of the single
cell NiO-BCZY|BCZY|LSCF-BCZY exhibited almost linear correlation with the obtained
crystallite size data at operating temperatures.
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