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Abstract: Photovoltaic-thermal (PVT) technologies have demonstrated several attractive features,
such as higher power and comparative efficiencies. Improving the thermal recovery from the PVT
system would further improve the power output and the efficiency of the PVT system. This paper
identifies the best operating factors of nanofluid-based PV thermal/nano-enhanced phase change
material using artificial intelligence. The target is the maximization of thermal energy and exergy
outputs. The suggested approach combines ANFIS modelling and particle swarm optimization (PSO).
Four operating factors are taken into consideration: PCM (phase change material) layer thickness,
HTF (heat transfer fluid) mass flow rate, MFNPCM (“mass fraction of nanoparticles in PCM”) and
MFNfluid (“mass fraction of nanoparticles in nanofluid”). Using a dataset, an “adaptive neuro-fuzzy
inference system” (ANFIS) model has been established for simulating the thermal energy and exergy
outputs in terms of the mentioned operating factors. Then, using PSO, the best values of PCM
thickness, mass flow rate, MFNPCM and MFNfluid are estimated. The proposed model’s accuracy
was examined by comparing the results with those obtained by response surface methodology and
the experimental dataset.

Keywords: photovoltaic thermal (PVT); phase change material; nanofluid; optimization; modelling;
exergy; thermal energy

1. Introduction

To address the issue of rising energy consumption and associated environmental
impacts, the development of numerous RES, “renewable energy sources”, has become an
unavoidable choice [1–3]. Meanwhile, various energy conversion processes are accompa-
nied by the generation of a significant quantity of waste heat that negatively affects their
overall efficiency [4–6]. The effective use of such waste heat using proper thermal energy
conversion methods and technologies would improve the overall efficiency of the various
energy conversion processes [7,8]. As a source of renewable energy, solar photovoltaics
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(PVs) now hold first place as to all newly installed electricity capacity that has reached
mega-scale, and wind comes in second place. In light of this viewpoint, the efficiency of
photovoltaic technologies has been improved thanks to the efforts of industrial developers
and researchers. Several studies have shown that high operating temperatures on solar
cells reduce efficiency over time [9]. In the solar photovoltaics (PVs) panels, a major part of
the solar radiation is lost in the form of waste heat that results in increasing the working
temperature of the solar PV panels; therefore, the electrical efficiency and the long-term
performance decrease [10,11]. To enhance the power output of the solar PV panels, a proper
cooling system is usually applied [12]. Management techniques for thermal energy are
classified into four categories according to Jia et al. [13]: alleviation, squandering, thermal
energy recovery and storage.

A PCM “Phase Change Material” is a material that can absorb (charge) or release (dis-
charge) thermal energy, during the physical transition between the vapour, liquid, and solid
phases, keeping the temperature fluctuation in the system process to a minimum [14,15].
PCMs have been the subject of a lot of attention in solar energy research because of their
great energy storage capacity [16]. Moreover, this energy can also be used for other purposes,
i.e., domestic application [17], refrigeration, heat pumps and water purgation [18,19]. A
PVT (“Photovoltaic-thermal”) integrated with PCM (“phase change material”) system can be
effectively used to provide electrical and thermal energies [20].

In terms of PVT-PCM hybrid systems, organic paraffinic chemicals are the most often
employed PCM, because of their advantages [21]. To improve the thermal performance
of the PVT system, raise the amount of heat that can be absorbed from the PV module,
and boost the amount of hybrid energy that can be recovered, a number of studies have
advocated the use of composite PCM, nano-PCM, and nanofluid.

Das et al. [22] studied a PVT collector with organic PCM and biochar. The melting
temperature of the PCM-biochar ranged from 35 to 39 ◦C. The experimental results of the
PVT collector surface temperature was decreased by 29%, whereas the electricity production
was enhanced by 18.4% in comparison to the conventional PV module, and the biochar
improved the thermal efficiency from 60.3 to 71.2%. Huo et al. [23] demonstrated that a
PVT system with inorganic PCM module has a 3.5 to 6.5 ◦C lower surface temperature
and 19.8% higher electrical efficiency than does a conventional PVT collector. Similar
improvement has been reported by Karthikeyan et al. [24]. Qiu et al. [25] studied a PVT
collector operating with MPCM (micro-encapsulated PCM); the hybrid system efficiency
ranged from 80.8% to 83.9%. Jamil et al. [26] studied an experimental PV module with
PCM (PT-58) mixed with three different Nano under two concentrations (0.25 wt% and
0.5 wt%): MWCNTs NPs (“multiwall carbon nanotubes nanoparticles”), GNPs (“graphene
nanoplatelets”) and MgO NPs (“magnesium oxide nanoparticles”). The results showed
that the highest reduction in PV module temperature was 9.94 ◦C and 6.53 ◦C for GNPs/PT-
58 at 0.5 wt% and 0.25 wt%, respectively, in comparison to 5.01 ◦C for PV module with
pure PCM. While the electrical efficiency increased to 12.10% and 11.97% at 0.5 wt% and
0.25 wt%, respectively, compared to 11.74% for traditional PV modules with pure PCM.

Deciding the optimum operating conditions of any process experimentally is time-
, effort-, and money-consuming. Moreover, performing experimental measurements is
limited to a definite number of datasets, as it is impossible to investigate all the available
points. Therefore, modelling (mathematical and physical) is considered the best solution
for such conditions [27–30]. However, major physical and mathematical models require
several electrochemical, chemical, and/or physical parameters; additionally, some of them
are assumed and thus negatively affect the accuracy of such models [31]. Lately, AI
“artificial intelligence” and ML “machine learning” have been involved in this direction
and demonstrated their superior efficacy relative to conventional techniques. AI and ML
tools have been tackling several engineering applications [32–35].

The ANFIS model merges the merits of the fuzzy and neural, therefore, in the current
research, it has been applied to build the model of a nanofluid-based PVT system incorpo-
rated with nano-enhanced phase change material (PCM). The constructed ANFIS model
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simulates the thermal energy and exergy outputs in terms of four operating parameters: the
thickness of the PCM; the mass flow rate of the HTF “heat transfer fluid”; the MFNPCM,
“mass fraction of nanoparticles in PCM”; and MFNfluid, the “mass fraction of nanoparti-
cles in nanofluid”. PSO, “particle swarm optimizer”, is then used to determine the best
operating conditions to boost the thermal energy and exergy outputs.

The main contributions in this research are outlined as follows:

• A consistent ANFIS model is constructed for simulating a nanofluid-based PV/ ther-
mal system.

• A new application of PSO is proposed to determine the best-operating conditions of
nanofluid-based PV/thermal systems.

• The accuracy of the suggested strategy is demonstrated.
• The thermal energy and exergy outputs are simultaneously maximized.

2. Measured Data

The dataset is obtained using the PVT/PCM system shown schematically in Figure 1. The
system consists of the PV cells sandwiched between two layers of ethylene vinyl acetate (EVA)
layers. The bottom EVA layer is covered by TPT (Tedlar Polyester Tedlar, Du Pont, Wilmington,
DE, USA) [36], absorber, collector tubes, and, finally, PCM. In the shown PVT/NPCM module,
water is used as the cooling HTF, and RT “Rubitherm” (Rubitherm, Berlin, Germany) series of
organic phase change materials is used (https://www.rubitherm.eu/en/productcategory/
organische-pcm-rt) (accessed on 1 November 2022). The performance of the PV system
was boosted by optimizing the operating conditions, i.e., the flow rate of the HTF, the PCM
thickness, and the mass fraction of the nanomaterials (Al2O3) in both the HTF and the PCM.
The performance was discussed according to the thermal energy and exergy variation. Table 1
shows the dataset used in this study.
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Table 1. The input and output data matrix, reproduced from [37], with permission No. 5401450569962.

Input Parameters Output Parameters

m
(kg/h)

MFNfluid
(%) H (cm) MFNPCM

(%)
E˝el

(W/m2)
E˝th

(W/m2)
Ex˝el

(W/m2)
Ex˝th

(W/m2)
S˝gen

(W/K m2)

1 20 8 1.5 16 135.09 345.65 135.09 2.94 2.6710

2 20 8 2.75 0 135.62 323.55 135.62 2.58 2.6704

3 20 0 1.5 0 134.60 331.60 134.60 2.53 2.6739

4 20 8 1.5 0 135.12 343.74 135.12 2.91 2.6710

5 20 8 4 16 135.91 312.91 135.91 2.41 2.6700

6 20 0 4 0 135.26 306.67 135.26 2.17 2.6729

7 20 0 4 16 135.54 297.61 135.54 2.04 2.6725

8 20 0 1.5 16 134.56 333.71 134.56 2.57 2.6740

9 20 4 2.75 8 135.65 309.16 135.65 2.28 2.6713

10 40 4 2.75 16 136.37 336.74 136.37 1.36 2.6720

11 40 8 2.75 8 136.50 344.32 136.50 1.47 2.6712

12 40 4 2.75 8 136.34 336.06 136.34 1.35 2.6721

13 40 4 4 8 136.40 335.03 136.40 1.34 2.6719

14 40 4 2.75 8 136.34 336.06 136.34 1.35 2.6721

15 40 4 1.5 8 135.80 360.23 135.80 1.55 2.6732

16 40 0 2.75 8 136.14 329.51 136.14 1.26 2.6730

17 40 4 2.75 0 136.16 344.90 136.16 1.42 2.6724

18 40 4 2.75 8 136.34 336.06 136.34 1.35 2.6721

19 60 4 2.75 8 136.67 352.24 136.67 0.99 2.6722

20 60 0 1.5 0 135.98 364.94 135.98 1.03 2.6743

21 60 0 4 0 136.36 349.05 136.36 0.94 2.6734

22 60 0 1.5 16 135.97 366.15 135.97 1.04 2.6743

23 60 8 4 0 136.70 364.04 136.70 1.10 2.6718

24 60 8 1.5 0 136.39 377.32 136.39 1.18 2.6725

25 60 0 4 16 136.57 340.71 136.57 0.90 2.6728

26 60 8 1.5 16 136.40 377.14 136.40 1.18 2.6725

27 60 8 4 16 136.90 355.23 136.90 1.04 2.6712

E˝el is the electrical power of the PVT system, E˝th is the thermal power of the PVT, Ex˝el is the electrical exergy
of the PVT, Ex˝th is the thermal exergy of the PVT, S˝gen is the rate of entropy generation of the PVT. All are per
unit area.

3. Methodology

Two stages, ANFIS modelling and parameter identification, are taken into consideration.

3.1. ANFIS-Modelling

Figure 2 exemplifies the construction of ANFIS model. It contains some main phases
such as fuzzification and defuzzification [38]. There are several possible membership
function forms and defuzzification methods, but the Gaussian shape and weight average
were adopted in this work. For obtaining a smoother prediction curve, the Gaussian-
shape is very suitable MF as it gives a fine transition from one predicted point to the next,
as opposed to the others’ triangular or trapezoidal shapes, which produce jumps in the
predictions. An example of the ANFIS rules is as follows:
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Figure 2. Arrangement of ANFIS model.

IF x is A1 and y is B1 then f 1 = g1(x, y)

IF x is A2 and y is B2 then f 2 = g2(x, y)

where, the A1, A2 and B1, B2 are the membership functions of the two inputs x and y,
respectively. However, the final output f is calculated based on the two rules’ outputs, f 1
and f 2, as follows:

f = ω̃1 f1 + ω̃2 f2 (Output Layer)

Evaluating ω̃1g1(x, y) and ω̃2g2(x, y) (Defuzzification Layer)

ω̃1 =
ω1

ω1 + ω2
and ω̃2 =

ω2

ω1 + ω2
(N Layer)

ω1 = µA1 ∗ µB1 and ω2 = µA2 ∗ µB2 (π Layer)

µA1 , µA2 , µB1 and µB2 are the MF values of the two inputs (Fuzzification Layer)

3.2. Particle Swarm Optimization

PSO simulates the movements of birds to attain a specific objective (optimum solution).
The location of every particle is updated based on data from other particles. The new
velocity and location can be determined as follows [36,37]:

v(t + 1) = v(t) + C1R1(Xp− X(t)) + C2R2(Xg− X(t)) (1)

p(t + 1) = p(t) + v(t + 1) (2)

where, v and p are the velocity and location of the particle. R1 and R2 are randoms. Four
controlling parameters that affect the thermal energy and exergy outputs are examined
in the current work. Such parameters include the PCM’s thickness, the HTF’s mass flow
rate, MFNPCM, and MFNfluid. Therefore, throughout the optimization procedure, these
parameters are assigned to be the decision variables for the PSO to simultaneously boost
the thermal energy and exergy outputs, which are used as the system’s cost function.

4. Results and Discussion
4.1. ANFIS Based Results

The number of the experimental data points used to build the ANFIS model is 30 points
for both training and testing phases. The model is trained with a hybrid approach applying
LSE in the forward path and Backpropagation in the backward path. The SC is used to
create the system’s rules, which were in this work 13 and 21 rules, respectively, for energy
and exergy models. Then, these models were trained up to a smaller MSE. The resulting
statistical metrics of both energy and exergy models are presented in Table 2.
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Table 2. Statistical metrics of both energy and exergy models.

MSE RMSE Coefficient of Determination (R2)

Train Test All Train Test All Train Test All

Thermal exergy model

5.12 × 10−12 0.0043 0.0013 2.262 × 10−6 0.0657 0.0360 1.00 0.966 0.9773

Thermal energy model

1.3 × 10−13 0.0016 0.0005 3.61 × 10−7 0.0403 0.0221 1.0 0.9985 0.9106

In respect to Table 2, for the thermal exergy ANFIS- based model, the RMSE values
are 2.262 × 10−6 and 0.0657 for training and testing data. The R2 values “coefficient-of-
determination” are 1.00 and 0.966 for training and testing data. On the other hand, for
the thermal energy ANFIS-based model, the RMSE values are 3.61 × 10−7 and 0.0403 for
training and testing data, while R2 values are 1.00 and 0.9985 for training and testing data.
The low RMSE and the high R2 values of both ANIFS-based models reveal a successful
modelling phase. Figure 3 displays the four-input single-output construction of both
ANFIS-based models; the outlines of the Gaussian shape MFs are expressed in Figure 4.

Figure 5 indicates the 3D description for the input and output (dark red is the highest,
while dark blue is the lowest). As depicted in Figure 5a, a higher mass fraction of the
nanoparticles in the PCM has a positive effect at a low thickness of the PCM where the
nanoparticles will improve the thermal conductivity (K) of the PCM, thereby, improving
the efficiency of the PCM in recovering the heat from the PV panels that can be rejected out
again easily at a small thickness of the PCM. However, at a high thickness of the PCM, the
increase in the K at higher fractions of the nanoparticles would result in a higher storage
capacity of the PCM of the thermal energy; therefore, the net output thermal energy will
decrease. From Figure 5b, it is clear that the increase in the mass fraction of the nanofluid in
the HTF resulted in increasing the heat recovery and thus the thermal energy output. This
would be related to the improved K of the base fluid with the nanoparticles’ dispersion,
and thus to the heat recovery from the PV panels. Therefore, the output thermal energy
is increased by increasing the nanoparticle fraction in the base fluid. This effect is very
clear at the low thickness of the PCM; however, again, at the high thickness of the PCM, a
considerable portion of the energy is stored in the PCM, so the effect is not clear. The effect
of the mass flow rate of the HTF on the thermal energy is clear in Figure 5c,e,f. It is clear that
the thermal energy is increased with the increase in the mass flow rate of the HTF, and this
effect is clear at a low thickness of the PCM (Figure 5c), the low fraction of nanoparticles
in the PCM (Figure 5e) and a high fraction of the nanoparticles in the HTF (Figure 5f).
The negative effect of the high thickness of the PCM (Figure 5c), and the high fraction of
nanoparticles in the PCM (Figure 5e) would be related to the increased capacity of the PCM
to store the thermal energy. And the low fraction of the nanoparticles in the HTF (Figure 5f)
would be related to the low K of the HTF and thus suggest a lower capacity to remove
heat from the PV panels. Figure 5d demonstrated the significant effect of the nanoparticles
in the base HTF on the thermal energy compared to the effect of the nanoparticles in the
PCM. In sum, the significant effect of the mass flow rate of the HTF and the fraction of the
nanoparticles in the base HTF was clear compared to the other factors. Figure 6 shows the
effect of the interaction of every two binary variables on the exergy. It was clear from the
figure that the exergy has the highest values at conditions where the lowest thermal energy
recovery occurs, i.e., the highest expected panel temperature. For instance, at the high mass
flow rate depicted in Figure 6c,e,f, the lowest exergy was recorded, and the highest exergy
was recorded at the lowest mass flow rate of the HTF. Also, high exergy values can be
seen in the conditions of using the lowest thickness of the PCM and lowest nanoparticle
concentrations in both the PCM and the base fluid (Figure 6a,b,d).
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Capturing the correct relation between the inputs and outputs of nanofluid-based
PV/thermal system helps the ANFIS models to predict the output performance correctly.
Figure 7 shows the predicted outputs against the experimental datasets. Considering
Figure 7, it is clear that there is matching between dataset and predictions. As well, the
predictions’ plots across the 100% precision line (Figure 8) are shown for both training and
testing stages.
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Figure 6. 3-D surfaces of ANFIS-based model showing the interactions of two different variables,
i.e., (a) MFNPCM and PCM’s thickness, (b) MFNfluid and PCM’s thickness, (c) HTF’s mass flow rate
and PCM’s thickness, (d) MFNfluid and MFNPCM, (e) HTF’s mass flow rate and MFNPCM, and
(f) HTF’s mass flow rate and MFNfluid, all relative to the exergy.
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4.2. Optimization Results

The purpose of this part is to determine the best values of thickness of the PCM layer,
the flow rate of the HTF MFNPCM, and MFNfluid for simultaneous maximization of both
the thermal energy and exergy. Accordingly, after constructing reliable ANFIS models of
thermal energy and exergy, PSO is used for estimating the optimal operating parameters.
SO (“single-objective”) and MO (“multi-objective”) optimization processes are considered.
The problem argument of SO and MO optimization procedures can be stated as:

for SO, energy : x = arg
x∈R

max(y1)

for SO, exergy : x = arg
x∈R

max(y2)

for MO : x = arg
x∈R

max(y1 + y2)

x is the set of normalized input variables and y1 and y2 are normalized values of the energy
and exergy.

Table 3 presents the optimal parameters and corresponding energy and exergy values
using the measured, RSM method and the suggested methodology for both single- and
multi-objective optimization. For single-objective optimization of energy, the proposed
methodology increased the thermal energy by 16.91% compared with measured data,
however, the exergy value decreased by 7.97%; hence in general, the overall performance
increased by 8.94%. For single-objective optimization of exergy, the proposed methodology
improved the exergy by 5.78% than those of measured data, but the energy value de-
creased by 0.6%, so the overall performance increased by 5.18%. Finally, for multi-objective
optimization, the proposed methodology increased the energy and exergy, respectively,
by 7.94% and 1.36%, compared with measured data. These results show the effective-
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ness of integrating PSO and ANFIS modelling. The particle convergence curves during
multi-objective optimization are presented in Figure 9. It is evident that all particles will
eventually arrive at the best possible answer. Figure 10 shows the objective function vari-
ation for single-objective optimization of energy, single-objective optimization of exergy,
and multi-objective optimization.

Table 3. Optimal parameters using different strategies (SO: single-objective, and MO: multi-objective).

Method Objective PCM Thick
cm.

HTF
Kg/h

MFNPCM
%

MFNfluid
%

Energy
W/m2

Exergy
W/m2

% Change
Energy Exergy

Exp. [37] SO: energy 1.5 0 8 60 377.32 1.18 NA NA

Exp. [37] SO: exergy 1.5 16 8 20 345.65 2.94 NA NA

Exp. [37] MO 1.5 16 8 20 345.65 2.94 NA NA

RSM [37] SO: energy 1.5 0.027 7.92 59.127 377.876 NA 0.15 NA

RSM [37] SO: exergy 1.5 0 8 20 NA 2.916 NA −0.82

RSM [37] MO 2.716 16 8 34.043 338.545 1.773 −2.06 −39.69

Proposed SO: energy 1.5 13.29 6.72 60 441.12 1.086 16.91 −7.97

Proposed SO: exergy 2.21 0 8 39.168 343.58 3.11 −0.6 5.78

Proposed MO 1.5 15.94 8 34.332 373.09 2.98 7.94 1.36
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5. Conclusions

The optimal controlling input parameters of the nanofluid-based photovoltaic/thermal
system were determined using the interaction between ANFIS modeling and PSO. Firstly,
ANFIS has been established for simulating the output thermal energy and exergy in terms
of different operating conditions. For the thermal exergy ANFIS- based model, the values
of the RMSE are 2.262 × 10−6 and 0.0657 for training and testing data. The values of the R2

“coefficient-of-determination” are 1.00 and 0.966, for training and testing data. In the other
hand, for the thermal energy ANFIS- based model, the RMSE values are 3.61 × 10−7 and
0.0403 for training and testing data. The values of the R2 are 1.00 and 0.9985 for training and
testing data. The low RMSE and the high R2 of both ANIFS-based models reveal a successful
modelling phase Then, PSO was used to estimate the best-controlling parameters to increase
the thermal energy and exergy. For single-objective optimization of energy, the proposed
ANFIS & PSO increased the thermal energy by 16.91% over measured data, however, the
exergy value is decreased by 7.97%. For single-objective optimization of exergy, the proposed
ANFIS & PSO improved the thermal exergy by 5.78% above measured data; however, the
energy decreased by 0.6%. Finally, for multi-objective optimization, the proposed methodology
increased the energy and exergy respectively by 7.94% and 1.36%, compared with measured
data. This proves the superiority of the incorporation of PSO and ANFIS modelling. The
obtained results are helpful for other PVT systems, taking into consideration the effect of the
site, capacity of the PVT systems, the type of the nanofluid, etc.
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