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Abstract: Natural gas is a fossil fuel that has been widely used for various purposes, including
residential and industrial applications. The combustion of natural gas, despite being more environ-
mentally friendly than other fossil fuels such as petroleum, yields significant amounts of greenhouse
gas emissions. Therefore, the optimization of natural gas consumption is a vital process in order to
ensure that emission targets are met worldwide. Regarding residential consumption, advancements
in terms of boiler technology, such as the usage of condensing boilers, have played a significant
role in moving towards this direction. On top of that, the emergence of technologies such as smart
homes, Internet of Things, and artificial intelligence provides opportunities for the development
of automated optimization solutions, which can utilize data acquired from the boiler and various
sensors in real-time, implement consumption forecasting methodologies, and accordingly provide
control instructions in order to ensure optimal boiler functionality. Apart from energy consumption
minimization, manual and automated optimization solutions can be utilized for balancing purposes,
including natural gas demand response, which has not been sufficiently covered in the existing
literature, despite its potential for the gas balancing market. Despite the existence of few research
works and solutions regarding pure gas DR, the concept of an integrated demand response has
been more widely researched, with the existing literature displaying promising results from the
co-optimization of natural gas along with other energy sources, such as electricity and heat.

Keywords: domestic gas boiler; energy efficiency; consumption minimization; demand response; gas
balancing; integrated demand response

1. Introduction

Climate change as a result of global warming is gradually becoming an important issue
of modern society. Its main cause is greenhouse gas emissions, which constitute the result
of mainly anthropogenic activities involving the burning of fossil fuels, which currently
supply more than 85% of the worldwide energy consumption, and their use is constantly
increasing [1], despite the fact that they are finite resources [2]. Such applications include
energy generation and energy related activities in domestic and tertiary buildings. Another
important problem that our society is facing is energy poverty, which currently remains a
problem even for developed countries and is strongly linked to modern living standards,
affecting the health and the emotional state of those facing it [3]. In order to address these
issues, multiple options are examined towards the sustainability and accessibility of energy,
including (a) the transition to clean renewable energy sources such as solar, wind, and
hydroelectric energy [4], (b) the switch to more environmentally friendly fuels, such as shale
gas and natural gas [5,6], even as transitory fuels towards full decarbonization by the year
2050 [7], and (c) the efficiency improvement of existing energy consumption units [8,9] such
as industrial, commercial, residential, and public buildings. For the latter, in the European
Green Deal, there are provisions that require Member States to renovate at least 3% of the
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total floor area of all public buildings annually and a multitude of other provisions for
energy efficiency actions [10].

The emerging technologies of smart grids, artificial intelligence, Internet of Things,
and smart homes provide the base of new solutions that can also lead to this direction.
The aforementioned technologies provide a great opportunity to develop natural gas
energy efficiency solutions, utilizing data from buildings in real-time and deploying control
methodologies accordingly. The control methodologies developed for optimizing energy
efficiency can also be used as the base for systems targeted at scheduling and shifting
energy loads throughout the day, while taking into consideration user comfort. These
solutions concern demand response (DR), which is the concept of increasing or decreasing
an energy load in order for the supply to match the demand and, therefore, to help keep the
grid stable. DR has been mainly implemented in electric loads during the last years, both
in terms of research and of practical applications [11]. However, during the last years, the
same concept was assessed for other energy carriers, including natural gas, and even for the
combination of multiple energy sources, which defines integrated demand response [12].

The main purpose of the current work was to outline and review the existing method-
ologies regarding natural gas boiler optimization, including both manual and automatic
techniques. Based on the methodologies described, we discuss (a) whether the above tech-
niques can be used to provide balancing services in the natural gas markets in a similar
way to which electricity load control methodologies are used to provide DR in the power
system, (b) what other solutions exist in this topic, and (c) what other research topics could
be helpful in the above process (e.g., gas load forecasting techniques as part of the control
process). Finally, this work reviews how natural gas DR can be used along with other energy
sources optimizations, shaping integrated DR (IDR) solutions, and provides insights on
what methodologies are covered and which future research directions are expected to follow.

Initially, Section 2 provides the energy efficiency initiatives in the European Union. In
Sections 3 and 4, the paper focuses on domestic buildings/environments that use natural
gas in order to cover their heating needs, and it reviews existing technologies/methodologies
used for the minimization of natural gas consumption, commenting on the expected en-
vironmental and financial impact of such solutions. In Section 5, the characteristics of
the natural gas market are outlined, and various gas system scheduling and balancing
approaches are presented, some of which deploy similar methodologies to the solutions
mentioned in the previous section. Since natural gas is also used in electricity genera-
tion, the development of optimization methods aimed at the simultaneous scheduling
and balancing of electricity and gas systems are assessed in Section 6, where the concept
of integrated demand response in multi-energy systems is also presented and reviewed.
Finally, Section 7 presents the conclusions drawn, summarizing the critical issues that have
been already solved and the main challenges that remain unresolved, and it provides useful
insights to where the current research and development is heading.

2. Energy Efficiency Initiatives

Over the years, the evolution of the technical and commercial viability of new tech-
nologies such as IoT and artificial intelligence has created new opportunities to develop
and deliver energy efficiency-oriented solutions. Indeed, multiple mid- and long-term
plans have been established to drive towards a greener future, such as the European Union
2030 Climate and Energy Framework, which, among other key objectives, defined the
targets of decreasing greenhouse gas (GHG) emissions by at least 40% and improving the
overall EU energy efficiency by at least 32.5% until 2030 [13]. The EU also proposed a set
of long-term targets, aiming to become completely climate-neutral by 2050 [14]. Based on
the above, the EU updated its energy policy framework and published eight new energy
rules aiming to make an impact in terms of the consumer perspective, the environment,
and the economy [9]. These rules, most of which are defined by legislative initiatives, must
be adopted by all EU countries and converted into national law, and they include directives
towards building energy performance improvement and an energy efficiency increase [15].
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The European Commission, through funding programs such as “Horizon 2020” and
“Horizon Europe”, offers incentives to researchers to develop innovative solutions towards
energy efficiency. Such an example is the “Secure, Clean and Efficient Energy” section
of the “Horizon 2020” program, in which about six billion euros were invested for non-
nuclear energy research purposes for the period 2014–2020, with the main priority being
the energy efficiency sector [16]. In response to the energy efficiency targets set by the EU,
the member states also implemented various measures to promote actions towards energy
efficiency. For instance, Germany, which is one of the most energy efficient countries in
the world at the moment, implemented a variety of policies and measures targeted both
at residential and industrial buildings [17]. Regarding residential buildings, there are two
energy efficiency incentives: (a) federal funding for the improvement of the efficiency of
existing buildings and (b) tax reductions for the application of energy-related solutions.

Another, more global, approach was defined by the Paris Agreement [7], which
was initiated in 2015, when it had effect on 55 countries, accounting for 55% of total
global greenhouse gas emissions. More countries are continuously joining the agreement,
accounting for a total of 189 parties that ratified until May 2020 [18]. Its main purpose is to
limit the increase of the global average temperature to 1.5 ◦C compared to pre-industrial
levels and to help developing countries make a transition to newer energy efficiency-
oriented technologies.

In a similar fashion, the Clean Energy Ministerial was formed in 2010, which consti-
tutes a global forum where major economies cooperate in order to share and promote the
best practices and policies towards a global clean energy economy. Major global economies
are represented among the participant countries, including China, which has also made
commitments to minimize its carbon footprint by reducing their carbon dioxide emissions
by 60–65% compared to 2005 levels by 2030.

All the described initiatives define objectives that align with the development of energy
efficiency-oriented solutions. In this paper, several solutions regarding the optimization of
natural gas consumption in domestic buildings are assessed with respect to the aforemen-
tioned objectives. In addition, the development of large-scale natural gas balancing services
is also evaluated in the following sections, since such services could (a) alter the current
gas market structure, creating increased competition in the gas balancing market, and
(b) lead towards an intelligent demand response (DR) approach where both the financial
and environmental aspect can be taken into account in the form of an adaptive multi-
objective optimization problem, similar to electricity DR [11].

3. Domestic Heating

Domestic heating is as necessary today as it has been for the entire human history
so far, and its need is steadily increasing due to the respective increase of the world
population. While for the largest part of the last century the fuel used to generate heat was
oil or some of its byproducts, in the current century, other fuels and heating systems are
gaining popularity [19], and amongst them is natural gas. Natural gas is a naturally born,
non-renewable hydrocarbon gas mixture with multiple uses, including cooking, heating,
mobility (in the form of compressed natural gas or CNG), and electricity generation in
open-cycle and combined-cycle gas turbines (OCGTs and CCGTs, respectively).

The reason for its extended use (natural gas dominates the European heating and
energy supply [20]) is the fact that it offers a superior conversion efficiency compared to
other fuels (coal, crude, oil products, etc.). It also emits considerably lower amounts of
carbon dioxide when burned. This last feature aligns perfectly with the global initiative
to reduce global warming, making natural gas the ideal fuel, both efficient and more
environmentally friendly than other alternatives. This is the reason why natural gas has
been designated by the European Commission as a transitory fuel towards the envisioned
full decarbonization target in the year 2050.

The technology of the boiler plays an important role in both the composition and
amount of greenhouse gases emitted when gas is burned, but the key feature for any type of
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user, residential or industrial, is energy efficiency. Older technology boilers, also known as
conventional boilers, are less efficient and environmentally friendly compared to condens-
ing boilers. Condensing boilers consume less fuel and have a 23% lower environmental
impact [21]. It is worth noting though that, according to a national study carried out in
Italy, the national consumption for domestic heating has not increased substantially, and
the average NOx emissions decreased thanks to advancements in boiler technology, despite
the increase in demand for natural gas during the period 1999–2011 [22]. An extensive
analysis of boiler technology is provided in Section 4.

In order for the fuel to reach the boiler, the house must be initially connected to the gas
distribution network, analogously to the electrical grid. The gas enters the pipelines in the
injection points (gas wells and/or storage facilities), and it flows through the transportation
and distribution networks in order to reach the consumers’ houses to be deployed. This
is the traditional approach, where combustion takes place locally to serve the needs of an
individual house. In some cases, the expansion of modern-day cities and the rising number
of buildings connected to the gas network call for a new, more centralized approach. A
general model designed to achieve the coordinated development of centralized supply
systems fueled by natural gas is opted for in some cities, by combusting gas in heating plants
outside or nearby each city and distributing the heat energy through a district-heating
system to the end-consumers within the city [23].

Considering all the characteristics of natural gas mentioned above, both (a) for the
user’s economic benefit through the abundance of available customized solutions and
(b) for reduced environmental impact, it becomes clear that natural gas will keep playing a
major role in domestic heating in the foreseeable future.

4. Efficiency Optimization

Achieving higher energy efficiency and lower greenhouse gas emissions is a never-
ending process leading to modifications in boilers and more efficient, environmentally
friendly solutions. In this section, some well-known evolutions and breakthrough solutions
are presented, categorized as follows:

• technological advancements in the construction phase;
• boiler operation manual improvement techniques;
• automated optimization during the boiler operational phase.

Each one of the above solutions contribute to the improvement of domestic boiler
performance. The hereinafter described solutions belong to three main categories in chrono-
logical order, as summarized in Figure 1.
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4.1. Boiler Technological Advancements in the Construction Phase

Boiler systems have been widely utilized for a long time as the driving force behind
the industrial revolution, but initially they were not introduced in domestic environments
until the middle of the 20th century in the form that are used today [24]. Traditional boilers
were designed with only one mode of operation, i.e., on-off. This means that they could
operate only at their full rated capacity. Thus, in many cases, the boiler would turn on, in
order to satisfy the load, and then turn off again, multiple times, increasing the number
of boiler cycles. This increase in boiler cycles leads to cycle losses, which makes the boiler
less energy efficient and adds to the wear of the equipment. An important innovation
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that reduced the amount of boiler cycles is the boiler’s ability to modulate its output in
a continuous manner, namely, to operate within a range between the minimum and the
maximum modulation level [25]. Manufacturers started offering units with multiple firing
rates, which allow the system to adapt its response according to the load and not operate in
full mode. As a result, most modern boilers are modulated.

Another major upgrade for domestic heating was the introduction of condensing
boilers. In a traditional, non-condensing boiler, some heat is wasted in the form of hot gases
released from the flue, whereas condensing boilers capture that heat and transfer it to water
returning from the central heating system. This process results in a lower temperature of
combustion products, recycling of the exhaust gas through the condensing heat exchanger,
and reduced CO2 emissions. All these characteristics make condensing boilers safer and
more environmentally friendly, with the added benefit of being more efficient, reaching
an efficiency level up to 99%. This high efficiency level is achieved by using waste heat in
flue gas to preheat the cold water entering the boiler [26]. Inquiries have also been made
in the direction of materials used for various components of the boiler. In a paper written
by Liu et al. on emissions and thermal efficiency in premixed condensing gas boilers, two
different types of burners were examined, metal fiber and stainless steel, in different heat
loads and air rates to define which is most suitable and efficient for condensing boilers [27].

Other attempts to reduce the environmental impact, whilst achieving satisfactory
combustion performance, include the use of different combustion catalysts [28]. Several
European manufacturers offer domestic gas boilers that are able to burn gases of different
compositions with the automatic adjustment of the excess air ratio. One of the cases
examined is a mix of natural gas and hydrogen. Xin et al. performed simulations to
determine the best hydrogen to natural gas volume ratio during combustion and concluded
that the hydrogen mixing technique can help increase the combustion temperature and
rate and reduce flue gas and CO2/NOx emissions [29]. The presence of hydrogen, which
is highly flammable, requires increased control over the combustion process; the types of
systems used to control the combustion process in natural gas fired residential boilers are
“Flue gas analysis” and “Flame ionization” [30].

4.2. Boiler Operation Manual Improvement Techniques

Manual optimization is used to describe any process that can improve a boiler’s
functionality from the design and production phase to the installation and commencement
of operation. From the first day of their conception, boilers are designed and built with the
target of maximum efficiency. Nowadays, there are guidelines and practices manufacturers
can deploy when designing a boiler regarding their efficiency and safety [31,32]. These
practices are crucial in ensuring that the boiler operates in its optimal state; neglecting them
can cause significant performance issues.

However, there is still room for improvement. As mentioned above, natural gas boilers
are divided into two categories depending on whether they recapture escaping heat from
flue gases: conventional and condensing. It is worth noting that a conventional boiler
can be retrofitted to a condensing one even after its installation [33]. This results in the
significant improvement of the efficiency of the boiler by a simple addition of a condensing
heat exchanger, and it can be applied after the construction phase.

Another important procedure that is commonly overlooked and plays a crucial role
in a boiler’s operation, wear, and life expectancy is maintenance. Many users neglect the
fact that their boiler is a machine that requires regular tuning to perform nominally. The
importance of maintenance is such that research has been devoted to finding models to
predict the required maintenance on buildings considering user discomfort [34]. Addition-
ally, frequent maintenance increases the systems reliability, reduces boiler hazards, and
potentially keeps down costs [35], while at the same time mitigating any potential health
risks to the residents of the building [36]. Automatic early fault detection can help the
process of proper maintenance by alerting the residents when a possible operational issue
is detected. Achieving sufficient accuracy in the fault detection process is significant in this
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context. Shohet et al. tested a variety of machine learning algorithms (K-nearest neighbor,
decision tree, random forest, and support vector machine) in a simulated environment with
14 different boilers [37]. The results were impressive, displaying an accuracy of over 95%
in the models trained for each boiler, but generalization was not possible. This indicates
that, with the described methodology, it is difficult to create a single robust model that can
be used as a generalized approach for fault detection in all boilers, but, instead, models
can be trained for each boiler specifically, deployed during the tuning phase, and installed
before the operational phase to inform the user of possible faults, which would then require
manual fault fixes to be applied.

Finally, the functional parameters of the boiler’s operation can play a crucial role in its
efficiency during its normal daily operation. Wu et al. [38] optimized the boiler’s efficiency
by employing an artificial bee colony (ABC) algorithm in order to determine the functional
parameters (exhaust gas temperature, volume percentage of O2, combustible material in
fly ash, and boiler load percentage) that minimize the system’s heat losses, based on the
model of boiler combustion efficiency. The resulting parameters can be used to fine-tune
the boiler before its operational phase and after its construction to ensure optimal efficiency.
The test case displays that the ABC methodology performs better than a genetic algorithm
(GA), achieving quicker convergence and increased robustness.

Nevertheless, despite the fact that the literature is mainly focused on the optimization
of individual boilers’ efficiency, the authors of [39] introduced an interesting conclusion
about the zonal controlling of domestic heating, where zonal controlling means heating the
rooms of the residence only when they were ‘occupied’. In a pilot study of an 8-week winter
test period in the UK, a house with zonal control used 11.8% less gas, despite a 2.4 percent-
age point drop in average daily boiler efficiency, compared to conventionally controlled
heating. This minor parametrization technique indicates the significance of the added value
that a smart heat system could have and the huge potential of automated solutions.

4.3. Automated Optimization during the Boiler Operational Phase

As discussed above, achieving higher efficiency levels of energy usage, particularly for
natural gas boilers that constitute the main subject of this work, and minimizing greenhouse
gas emissions constitute primary objectives of the EU Energy policy [13]. The methods
discussed in the previous sections mainly focus on well-known practices, improvements
during the design phase, or the addition/upgrade of various compartments that can boost
a boiler’s performance. However, the rapid growth of data science and the development
of smarter algorithms has opened new opportunities that allow for further improvements
in machine operations through the analysis and application of software tools. These new
capabilities can help us tune the machines to operate optimally, but they also provide the
added value of offering real-time automated solutions that require minimal outside/human
intervention.

In order to create energy efficient buildings and deploy solutions regarding automatic
control, one must firstly gain a better understanding of the various factors affecting their
energy consumption and efficiency performance. The first step to this process is the develop-
ment of an evaluation model that performs effectively for multiple types of buildings. Such
a model was implemented, using multi-scale analysis, and tested by Tronchin et al. [40].
Among the various parameters used for such a system, a crucial parameter is the building’s
energy rating, since it holds significant information regarding its thermal behavior. Aiming
for a specific building energy profile and being able to account for it during its design phase
can prove to be a significant advantage [41], with the derived data being potentially helpful
in the selection and tuning of both manual and automated efficiency optimization solutions
deployed later on.

A boiler is designed and built in an environment that has quite different conditions
from the one it is called to operate in. This fundamental difference calls for additional
actions to ensure that every boiler performs optimally depending on the environment it
is placed and installed in. Weather is an important aspect when attempting to provide
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heating for a building/home. It is constantly changing and can be quite unpredictable.
Thus, any system responsible for heating should be quick to adapt to weather changes and
be able to predict, to a certain degree, its future behavior. Weather compensation is the
ability of a system to account for the weather variations and tune itself to operate in the
most efficient way, providing a remarkable base for automated optimization solutions. An
interesting approach was proposed by Ping et al. [42], who developed a model predictive
control (MPC) technique for the control of the heating process based on weather forecast
compensation. MPC constitutes an advanced method of process control that is used to
control a process while satisfying a set of constraints. The main advantage of MPC is the
fact that it allows the current timeslot to be optimized, while taking future timeslots into
account. The proposed system receives, in real-time, the indoor and ambient temperatures,
as well as an ambient temperature forecast for future time-intervals, and appropriately
adjusts the heat supply based on thermal comfort constraints and the modelling of the
building’s thermodynamics. Simulation results indicate that the delay of heating and the
overheating of the space due to thermal inertia are limited, providing an overall better user
experience regarding thermal comfort and eliminating the wasted energy consumed when
the space is heated above the comfort level, which is most often the case when using more
classical control approaches.

In most commercial systems using weather compensation, the temperature of the
heating fluid is calculated as a function of some predetermined relation to the outdoor
temperature called heating curve. This approach, however, often fails to capture the
building’s physics and conditions and cannot compute for future outdoor conditions, thus
leading to an excess of energy consumption to maintain the users’ thermal comfort. A
convenient system of a non-invasive add-on module that can connect to existing heat
controllers was developed using MPC to control the building’s heating requirements [43].
The system was deployed during the 2013–2014 heating season in several locations, with
the results being quite encouraging, achieving positive energy savings for all test sites.

A different approach is the use of data predictive control (DPC) methodologies, such
as neural network prediction models and relevant machine learning algorithms. Data
predictive control is a framework designed to combine the simplicity of model-based
methods with the predictive capability of data-driven control. Using DPC algorithms,
one can synthesize finite-horizon predictive control decisions after learning dynamical
system models based on historical data. Of course, not all models are suitable for all
problems, but they can be easily modified to serve similar purposes. In recent years,
the introduction of controllers that are designed to house neural network models has
increased the ability of locally processing information and decision making, allowing for
more autonomy, advanced capabilities, and reliability. An example of such a controller
was proposed in 2015 by Meng et al. [44]. The research team presented an improved
version of the conventional PID neural network (PIDNN) control algorithm with additional
momentum, which is used to improve its learning efficiency and solve the problem of
local minimums, along with the introduction of an improved particle swarm optimization
that helps initialize the weights of the neural network. The simulation was conducted
via a multi-variable nonlinear coupling system and showed that the proposed algorithm
displayed improvements in terms of regulating time and controlling precision compared to
the original algorithm. Despite the fact that the presented controller approach is neither
developed for, nor directly tested in, a boiler optimization scenario, the presented control
methodologies can potentially be applied as an alternative for conventional boiler control
methodologies. Smarra et al. [45] developed a data-driven control methodology based
on random forests and regression trees, where an on-off biomass boiler was controlled in
real-time, along with other sources of energy. The test cases, which contain both a simulated
case and a real-world house scenario, displayed positive results, especially in the case of
random forests. Macarulla et al. [46] introduced an adaptive control strategy targeted at
commercial buildings with the help of feed-forward neural networks. The proposed system
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sends on/off commands to boilers at specific time intervals, attempting to minimize total
consumption and the loss of user comfort at the same time.

Tsoumalis et al. proposed another DPC methodology where LSTM neural networks
are used to predict the change in indoor temperature and the load of the boiler in the
short-term (30-min look ahead), and a genetic algorithm (GA) was employed to obtain the
optimal boiler configuration with regards to user thermal comfort and gas consumption
minimization [47]. Results acquired from the trial in four real-world houses indicated a
significant reduction in natural gas consumption with minimal comfort loss.

Table 1 summarizes the automated optimization/control methods presented in
the literature.

Table 1. Automated optimization/control methodologies summary.

Ref. No. Tools/Solvers Deployed Control Target Control Type
(MPC/DPC) Timeframe Test Results

[42] MPC based on time varying
parameter state space model

Target water
temperature of a house

heating system

MPC (weather
compensation) Hourly Simulation

[43] MPC based on a building
and a climate model Thermostatic valves MPC (weather

compensation) 15-min One house

[44]

Improved version of the
basic PID neural network
controller using particle

swarm optimization

Any DPC - Simulation

[45] Random forests and
regression trees

On-off biomass boiler,
radiators DPC 10-min intervals,

40-min horizon
Simulation and

one house

[46] Feed-forward neural
networks On-off gas boiler DPC 15-min intervals One commercial

building

[47] LSTM neural networks Modulated gas boilers DPC 5-min intervals,
30-min horizon 4 houses

Since automatic optimization usually involves minimal or no user interference, one
aspect of significant importance is monitoring, which helps ensure that the system operates
in nominal conditions and detects any problems or errors related to safety and performance.
A paper published by a team at DELFT University describes a set of fault detection and
diagnostic tools for condensing boilers [48]. The system was designed to use real-time
measurements in order to evaluate performance degradation, making it ideal for building
energy management systems that can store limited amounts of data. Through extensive
simulations, the effectiveness of those tools was verified both in terms of quick fault
detection, but also in isolating the source of the problem. Such systems contribute to making
sure that boilers remain at an optimal operational level, and they can be integrated in an
optimization system in order to provide more complete and production-ready solutions.

Though there are significant advancements in IoT technologies and quite a variety of
methodologies have been explored, the transition to commercial applications seems to be
quite slow. The transfer of research results to the market is a field of its own, which opens
numerous subjects for investigation, including the validation of the derived conclusions in
real life, as well as the impact from their massive application.

5. Gas Balancing Market
5.1. Introduction

The concept of demand response in the balancing market has been extensively visited
in the electricity sector in the last few decades, where domestic and industrial customers
are offered financial incentives to reduce or shift their electrical load [11]. Utilizing the
latest technology available, electricity DR aggregators [49] can provide balancing services
to the transmission system operator (TSO) in a “smart” and automated way, by shifting
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loads throughout the day while covering the user needs. In this way, they provide a
financial benefit to the user and simultaneously balance services to the electricity TSO.
The load curve is flattened by maintaining a smaller range between the peak and off-peak
load during the day, and the balancing energy market attains more “depth” in terms of
balancing resources, with the known positive effects in competition, price-setting, market
power mitigation, and transmission/generation planning investments’ deferral.

In the gas balancing market, DR has not been extensively utilized so far, despite
the existence of automated optimization control solutions that have been implemented
in the gas sector, as mentioned in Section 4. One main difference with the electricity
sector is the lack of diversity in controllable loads, especially in the residential sector.
Residential electricity consumers split their consumption among a variety of loads, which
can be deferrable or controllable, while gas residential consumers mainly use gas for space
heating and hot water exclusively, hence offering fewer potential applications. In addition,
electricity smart metering infrastructure has been implemented at a larger scale compared
to the gas metering infrastructure, especially for small- and medium-size consumers [50].

Despite the aforementioned setbacks, the value of DR solutions for the gas market is
indisputable. Existing solutions for addressing high demand usually involve the upgrade
of the existing pipeline, compressors, and control valve infrastructure, requiring costly
operations, or, during extreme demand, the reliability of the whole system could be put in
danger. Natural gas DR provides the capability to shift gas consumption and reduce peak
gas demand, thus providing financially viable alternative methods of addressing the gas
pipeline constraints, without the need of new or improved transportation infrastructure.
Therefore, gas DR can have multifold objectives: (a) to minimize the overall system’s cost
by minimizing imbalance and (b) to shave peak load.

Gas load forecasting methodologies can be beneficial tools for developing gas bal-
ancing services. Due to the deviation between forecasted quantities/gas nominations
and actual quantities, energy imbalances are created in the system, which are settled in
the imbalance prices within the balancing market framework. Therefore, gas forecasting
techniques, which can be utilized both by the system operators and by entities such as
DR aggregators, can help in two ways: (a) they can improve the initial forecast, e.g., used
for the day ahead scheduling of the gas transmission system and for defining a baseline
consumption, and (b) they can define the dispatchable quantity that can be utilized at a later
stage, e.g., in real-time, in order to respond to the balancing market prices (price-driven
DR) or respond to a TSO peak-shaving event (event-driven DR). The above interactions are
outlined in Figure 2.
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5.2. Gas Load Forecasting

The first issue encountered by gas suppliers in the gas market is the gas load forecast-
ing for industrial, commercial, and residential consumers. Accurate forecasting is implicitly
imposed by the regulatory framework with penalties in case of large forecasting errors,
which mainly concern the short-term forecasts (day-ahead, intra-day, and real-time). In
terms of long-term forecasting, the developed methodologies are mainly used for the long-
term planning of the transmission system, e.g., for determining the required infrastructure
upgrades. During the latest years, the evolution and advances in machine learning and big
data technologies have provided a boost in the tools that can be utilized to increase fore-
casting accuracy, enabling novel methodologies to take advantage of more computational
resources and complex data targeted at both short- and long-term forecasting.

Although, traditional approaches, such as time series analyses and regressions, are
also applied and often result in sufficient prediction accuracy, requiring less computa-
tional resources and being generally less sensitive to under- and over-fitting. Such an
approach was proposed by Potocnik and Govekar, who based their forecasting system
on a stepwise regression method, implementing the selection and extraction of the most
important input variables and features. The authors concluded that the performance of
the model was sufficient in terms of top-level short-term forecasting requirements and
internal optimization requirements, based on the results of the presented case study in
the region of Ljubljana [51]. A logistic modelling approach was proposed by Shaikh and
Ji in order to predict the mid- (2020) to long-term (2035) gas consumption in China [52].
The Levenberg–Marquardt Algorithm (LMA) was utilized to define the logistic model’s
parameters. Despite the simplicity of the proposed model, the attained results complied
with studies performed by national and international institutions and scholars. Vitullo et al.
outlined different methodologies regarding natural gas consumption forecasting, including
linear models and neural networks, and provided an analysis of the most effective factors
and data processing techniques used in commercial forecasting software [53]. They com-
pared multiple linear regression, neural networks, and dynamic model adaptation in terms
of generalization, interpolation, and extrapolation for this type of problem, emphasizing
the inability of ANNs to predict on data that are unsimilar to the training data and the
limited accuracy of the linear models. The results indicated that the combination of multi-
ple linear regression with ANNs results in the best forecasting performance in most cases
when considering the MAPE metric, and they exhibited that long-term forecasting requires
different approaches compared to short-term, with generalization and extrapolation being
a more significant requirement.

A widely used approach during the latest years in gas demand forecasting is neural
networks. Common NN structures have been extensively utilized in the existing literature.
Szoplik proposed a multilayer perceptron model that was trained and evaluated using
consumption data from Szczecin (Poland) [54]. Other solutions evaluated less common NN
architectures. For example, Akpinar et al. implemented an ABC-based neural network with
a sliding window technique to produce a stable effective model, which forecasts the day-
ahead gas consumption in Turkey [55]. The ABC algorithm is used as an alternative to back-
propagation (BP) for determining the weights of the neural networks. For the examined
problem, the ABC algorithm attains a much better forecasting accuracy performance in
terms of the attained MAPE metric, with ABC resulting in 14.9% MAPE in the test set and BP
in 30% MAPE. Furthermore, Ying et al. [56] proposed a hybrid forecast model, combining
an autoregressive model and a convolutional neural network, in order to produce short-
term forecasting of the hourly natural gas flows of 92 distribution nodes in the German
network. Their model provided stable and accurate results for a variety of different types
of nodes.

Apart from neural networks, other AI models have also been assessed. Wei et al.
proposed the combination of a factor selection algorithm (FSA), a life genetic algorithm
(LGA), and a support vector regression (SVR) in order to predict the gas consumption in
three large cities of Greece [57]. The approach was compared to a respective ANN approach,
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a simple genetic algorithm (GA) with SVR and an LGA with SVR. The results showed the
importance of LGA-SVR in the error rate reduction and the improvement that occurs when
the dataset is divided into more sub-datasets for training.

Papageorgiou et al. developed a natural gas consumption forecasting day-ahead
model using an adaptive neuro-fuzzy inference system (ANFIS) [58]. The authors initially
reviewed existing approaches to similar problems, which are mainly based on ANNs, fuzzy
cognitive maps (FCMs), and a combination of them, and they introduced a novel ANFIS
approach. Their model was trained and inferred using historical natural gas consumption
data from 10 cities in Greece, and its performance was compared to approaches based on
the existing literature. The results indicated a better performance of the ANFIS approach.
Another solution, focused on residential natural gas load forecasting, was presented by
Uribe et al., who compared the performance of an ARIMA model to an SVM approach for
the forecasting of the natural gas load in Medellín, Colombia [59]. The authors concluded
that both models performed sufficiently well, with the ARIMA option providing faster
inference and lower RMSE and MAE.

Table 2 summarizes the basic features of the research works in the literature on gas
load forecasting and presents the difference in the methodologies employed when targeting
short- compared to mid-/long-term forecasting.

Table 2. Gas load forecasting literature overview.

Ref.
No.

Forecasting
Methodology Timestep Lead-

Time
Evaluation

Metrics
Examined Test

Case Results

[51] Stepwise regression Hourly Half hour
and 24 h

Mean absolute
range normalized
error (MARNE)

Slovenian natural
gas distribution
company supply

forecast

1.92–3.27%

[52]
Logistic model with

Levenberg–Marquardt
algorithm (LMA)

Yearly -

Root mean square
error (RMSE),
mean absolute

percentage error
(MAPE), Mean
absolute error
(MAE), and R2

China’s natural gas
demand long-term
forecast (5–20 years

ahead)

RMSE: 1.294–1.517 bn m3

MAPE: 3.886–5.054%
MAE: 1.604–2.691

R2: 0.993–0.994
with an average

out-of-sample value of
146.13 bn m3

[53]

Multiple linear
regression (LR),

feed-forward neural
network (ANN),

combination of the
above with the

software GasDayTM

(GD)

Daily Day-
ahead MAPE

GasDayTM

forecasting for
14 operating areas

in US

Heating season:
LR: 6.67–16.83%
ANN: 6.33–16%
GD: 5.21–14.47%

[54] Feed-forward neural
network Hourly - MAPE

Gas demand
forecast for

Szczecin
8%

[55]
ABC-based neural

network with sliding
window

Daily - MAPE

Households and
low-consuming

commercial users’
four-year

consumption data

14.9%

[56]
Autoregressive model
and a convolutional

neural network
Hourly Day-

ahead
MAPE, normalized

RMSE MARNE

92 distribution
nodes in the

German
high-pressure gas
pipeline network

MAPE: 10.7–14%
nRMSE: 10.5–14 %
MARNE: 5.7–7.7%
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Table 2. Cont.

Ref.
No.

Forecasting
Methodology Timestep Lead-

Time
Evaluation

Metrics
Examined Test

Case Results

[57]

Factor selection
algorithm (FSA), life

genetic algorithm
(LGA), and support

vector regression (SVR)

Daily Day-
ahead

MAE, MAPE,
RMSE, and

MARNE

Three-year
consumption data

from three big cities
in Greece (Athens,

Thessaloniki,
Larisa)

Larisa
MAE: 0.17 GWh

MAPE: 12.1%
RMSE: 0.02 GWh
MARNE: 2.12%

with an average of
approximately 2 GWh

daily load
Thessaloniki

MAE: 1.27 GWh
MAPE: 25.49%

RMSE: 0.1 GWh
MARNE: 3.62%

with an average of
approximately 12 GWh

daily load
Athens

MAE: 1.59 GWh
MAPE: 25.17%

RMSE: 0.11 GWh
MARNE: 4.24%

with an average of
approximately 13 GWh

daily load

[58]
Adaptive neuro-fuzzy

inference system
(ANFIS)

Daily Day-
ahead

MSE, RMSE, MAE,
MAPE, and R2

Daily consumption
data from 10 cities

in Greece

MSE: 0.0007–0.0259
Normalized MWh2

RMSE: 0.0271–0.1609
Normalized MWh

MAE: 0.0176–0.1087
Normalized MWh

MAPE: 6.223–36.717%
R2: 0.9839–0.5126

[59]

Autoregressive
integrated moving

average (ARIMA) and
support vector
machine (SVM)

Monthly - RMSE and MAE

Residential natural
gas load in the
municipality of

Medellín,
Antioquia,
Colombia

ARIMA
RMSE: 560,357.2 ft3

MAE: 434,956.49 ft3

SVM
RMSE: 616.128,8 ft3

MAE: 500.304,3 ft3

5.3. Gas System Balancing

Gas TSOs are responsible for monitoring the transportation system in terms of nodal
pressures and flows and for taking appropriate actions to keep the system stable. When
the nodal pressures are low, a load reduction by gas loads could help restore the pressure
to normal levels. Instead, when the pressures are high, an increase of gas consumption
would be beneficial for the system. In both cases, the gas TSO executes auctions where
upward and downward balancing gas is purchased and sold, respectively. Gas-consuming
industries and gas DR aggregators can participate in such auctions and adjust their gas
load to acquire additional profits.

The gas DR aggregator signs a flexibility contract with the consumer, under which the
consumer follows specific instructions to increase or decrease its consumption in exchange
for extra profits. This is possible either through manual notifications, which the consumers
must follow by adjusting their load, or through direct automatic control of their heating
systems, i.e., through automatic DR. This concept complies fully with the regulatory
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framework of European natural gas markets, where balancing service providers (BSPs) can
participate in balancing energy auctions both for upwards and downwards balancing gas.

Gas DR can further optimize the natural gas consumption among a network’s nodes,
offering several benefits. As stated in the Introduction, the balancing of the daily load
achieved through demand response techniques offers better exploitation of the existing
pipeline infrastructure by limiting the peak load, and thus limiting or deferring the capital-
intensive requirements of upgrading or building new pipeline, compressor, and/or storage
solutions to uninterruptedly cover the gas demand. Despite its advantages, there are a
few important restrictions (legal concerns and regulations) for adopting DR, as stated by
the analysis of Gordon A. Coffee [60]. Specifically, the author raised the concern of the
DR participants’ unwillingness to shift their loads in an automatic fashion and the risk
of switching to other energy sources to cover their comfort or functionality loss, such as
electricity. Another concern is the pricing policy in the gas balancing market, where there is
no compensation for gas savings with a concept similar to the “negawatt” used in electric
DR, which represents unused energy. Finally, there is a problem determining whether gas
suppliers or third parties would be the providers of the DR service, since the former do not
have an incentive due to their lack of need to sell the excess capacity to gas-fired generators
to achieve revenue, and the latter would be required to compensate the end users for
their lost productivity in the case of commercial consumers or comfort levels in the case of
residential ones. Such issues are mostly answered by Tsoumalis et al. [61], where the concept
of automated gas DR with domestic gas boilers was introduced, providing the market
design for gas DR, the baseline calculation methodology, and the modelling/algorithm
process for the efficient participation of a gas consumer/gas DR aggregator in the gas
balancing market to provide upward and downward balancing gas services to the gas TSO,
while retaining the comfort of domestic residents.

Gas DR programs have been recently brought to the spotlight in the US by a bill
sponsored by Senator Sheldon Whitehouse (D-RI) to “establish a natural gas demand
response pilot program to use the latest demand response technology from the energy
sector for natural gas.”, leading the Department of Energy to evaluate the feasibility and
potential of gas DR practices at a national level [62].

In this context, DR in natural gas has been applied in practice at regional levels in
commercial solutions during the last few years, yielding interesting results. Southern
California Gas Co. (SoCalGas) tested an energy efficiency program with the purpose of
performing minor adjustments to their residential clients’ heating schedules that would
result in large overall savings. SoCalGas DR programs were implemented in three periods
to this date: 2016–2017, 2017–2018, and 2019–2022. The incentive for the participant is a
reward of bill credits. The results from the testing period (2018–2019) showed a significant
decrease of the average load in both vendors that participated in the trial during the
intra-day testing period, with the most important impact being noticed when DR was
applied in the morning [63]. An important setback though was that, after the DR period
ended, the load increased (snap-back event); hence, the overall daily average load was not
significantly reduced.

Con Edison, who already implemented DR in the electricity sector, also decided to
carry out a gas DR pilot for the period 2018–2021 as a main part of a program called “Smart
Solutions” in the region of New York [64]. The main objectives of the pilot included the
evaluation of the load reduction that can be achieved during a DR event over a 24-h window
of the next day using measurement and verification (M&V) techniques, the engagement
of the customers and their willingness to participate, and the collection of consumption
data in order to draw conclusions over the effectiveness of the method and the possible
integration with the load forecasting process. The test pilot was divided into three time
periods with a duration of 1 year each. At the time of the writing of this paper, the results
from the period 2018/19 were available and were used in order to define the changes for
the 2019/20 period. In further detail, the best performance was achieved in commercial
customers employing non-space heating curtailment strategies, with no valid conclusion
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drawn for the rest of the customers, including residential ones. In addition, it was noticed
that some consumers switched to other sources such as fuel oil and other liquid fuels during
the DR events, in spite of the prohibition imposed by the company. Finally, similarly to
the case of SoCalGas, a snapback event was also observed, but the total realized daily load
reduction was significant, as displayed by the period 2019/20 results [65].

Research work has also been performed in gas DR. Hu et al. discussed the existing
technologies and challenges of gas DR implementation and proposed a mathematical
model aimed at optimizing the peak household load while maintaining equitable comfort
service [66]. The simulated results displayed a peak of up to 15% with minimal comfort loss.
Prior research indicated that the most representative gas consumption comes from heating-
related consumption. Montuori and Alcázar-Ortega estimated that the flexibility potential
of district heating systems as gas aggregators is significant and assessed the benefits of the
DR provision on the region of the Italian Peninsula [67]. The same authors used data from
The Marches (Italy) to evaluate whether residential demand response can result in financial
benefits both for the participating consumers and for the gas supplier(s) targeting the
minimization of their daily imbalance costs (for each gas day) [68]. Monte Carlo simulations
displayed that, through the participation of residential clients in the gas balancing market,
the annual cost of the gas supply can be reduced by 15–20% for the consumer and the
imbalance cost by up to 50% for the respective gas amount at the same time. Su et al.
proposed a data-driven real-time pricing methodology for the demand management of
a gas supply system [69]. The authors modeled a multi-objective optimization problem
targeted at peak shaving, supply reliability improvement, gas supplier profit improvement,
and the maintenance of customer’s thermal comfort, use LSTM neural networks to forecast
the system’s behavior and apply GA to find the optimal price. Speake et al. examined
the potential of residential gas DR during extreme cold weather events [70]. The authors
simulated a total of eight DR strategies using data from the 2017–2018 winter of the north-
east US and compared the results with consumption data acquired from a simulation
targeted at the baseline consumption. The DR strategy simulations resulted in consumption
savings ranging from 1% (attained from conservative strategies) up to 29% (attained
from the most aggressive strategies). Ala-Kotila et al. evaluated the DR potential of the
central heating system of existing residential apartments through the deployment of a
DR system that utilized weather forecasts and installed sensor data [71]. The deployed
system performed load reduction by measuring the domestic hot water (DHW) valve
position and the temperature of the heating supply water. The system was tested on
27 residential real-world buildings, connected in eight distinct heating supply systems,
and the results showed an average peak saving of up to 15% and an average energy
consumption reduction of 11%.

Table 3 summarizes the main features of past research works on gas system balancing
and the provision of DR by gas end-consumers.

5.4. Cross-Border Balancing

Within Europe, the European Network of Transmission System Operators for Gas
(ENTSOG) proposed some guidelines to be followed by all European TSOs regarding the
cross-zonal balancing of gas, among other directives requested by the European Commis-
sion (EC) [72]. Within the guidelines, three main models were proposed to be implemented
by TSOs: (a) shipper-led cross border portfolio balancing, (b) cross border TSO balancing,
and (c) joint balancing platform. The above guidelines constituted a draft network code,
which was later materialized with the consultation of the European Union Agency of
Cooperation of Energy Regulators (ACER) into the Network Code on Gas Balancing of
Transmission Networks, accepted and published by EC on 26 March 2014 [73]. This regula-
tion “supports the development of a competitive short term wholesale gas market in the European
Union that enables the provision of gas flexibility, from whatever source, to offer it for purchase and
sale via market mechanisms so that network users can balance their balancing portfolios efficiently
or the transmission system operator can use the gas flexibility when balancing the transmission net-
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work”. The regulation set out common gas balancing rules, including network-related rules
on nomination procedures, imbalance charges, settlement processes associated with the
daily imbalance charge, and operational balancing between transmission system operators’
networks. Concerning cross-border balancing, the regulation provisions that the gas TSOs
can consider a joint balancing platform to be used for an adjacent balancing zones, where
there is sufficient interconnection capacity. However, to the best of our knowledge, until
now, no such platform has been constructed and operated by the gas TSOs in Europe.

Table 3. Gas system balancing and DR services by end-consumers overview.

Ref. No. Methodology
Deployed

Implicit
/Explicit

DR

Appliances
Used For DR

Control
Type Timeframe Evaluation

Metrics Test Results

[63]

Scenario-based
constant target room

temperature
reduction

Implicit Smart
thermostats Manual

Daily
notifications, 5
AM to 9 AM or
5 PM to 9 PM

Average load
reduction hourly

impact percentage
during the DR

event

AM events: 15.21%
PM events: 15.46%

[64,65]

Event triggered by
the region’s average
outdoor temperature
dropping below 18 ◦F

Implicit Smart
thermostats Manual Day-ahead

notifications
Daily net load

reduction

Average daily net
load reduction from

all events:
0.02

dekatherms/device,
56.1 dekatherms

totally

[66]

Optimal control
problem (OCP) based

on physics
constraints modelling

Explicit Smart
thermostats Automatic 1-h and 3-h

ahead

Peak demand
reduction

percentage

Peak demand
reduction by 15%

using the 3-h ahead
model through

simulations

[67]

Flexibility estimation
using flexibility share
per sectors evaluated

in [68]

-

Residential,
industrial, and

commercial
domestic

heating loads

- -
Flexibility potential
per region (in GWh

annually)

Flexibility is
calculated at 1237

GWh per year (12.7%
of the whole

consumption)

[68]

Monte-Carlo
simulations for the
calculation of the

flexible consumption
per consumer’s

category

-

Residential,
industrial, and

commercial
domestic

heating loads

- Hourly

Natural gas
balancing price,

total average daily
gas cost for the

consumer

15–20% cost
reduction for the

customer,
50% reduction of the

imbalance cost for
the involved amount

of gas

[69]

LSTM for load
forecasting and GA
for the optimization

of the natural gas
price

- Total system
load - Hourly

Peak load
reduction with the
application of DSM

through the
determination of

the price

6–7%

[70]
Pre-defined target

indoor temperature
setpoint scenarios

Implicit Residential Automatic Hourly Simulated total
consumption

1% (conservative
strategy) up to 29%

(aggressive strategy)

[71]

Peak shaving
through trigger

based on DHW valve
position and heating

supply water
temperature

Implicit Residential Automatic 10-min

Peak load and
energy

consumption
reduction

Peak load: 14–15%
Energy:

11%

Despite the establishment of this regulation, network users (NUs) across Europe
did not always manage to adapt appropriately, exhibiting balancing misconduct. This
situation has led ACER and ENTSOG to release new recommendations in 2021, including
the exchange of balancing misconduct information across gas TSOs and national regulatory
authorities (NRAs), targeting the minimization of the risks imposed by the deviations from
the new regulatory framework [74].
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6. Integrated Electricity and Gas Demand Response

With the evolution of the market characteristics of electricity and natural gas, new
opportunities arise for the development of flexible solutions that can take advantage of the
way these two resources affect each other, both through their domestic and industrial usage.
Despite the fact that DR is currently mainly used in the electricity sector, the potential
benefits of DR in natural gas, as outlined in the previous chapters, are numerous. Taking
into consideration the fact that natural gas is also used in electricity production, a balancing
service that optimizes both electricity and natural gas loads could aggregate the benefits
to the energy providers in both sectors. At the same time, through the same solution,
the domestic consumer can benefit both financially and in terms of user comfort, while
industrial units can also receive financial incentives by participating in DR programs.

Sheikhi et al. introduced the smart energy hubs framework and proposed a system
where residents can switch the source of energy between gas and electricity, in response
to real-time gas and electricity price signals [75]. The selection is performed based on the
Nash equilibrium methodology, and simulations show that financial benefits from IDR
can be attained both for the supplier and the end consumer. Another Nash equilibrium-
based methodology was proposed by Khazeni et al., where users can switch their energy
source between energy retailers and from their own combined heat-power units (CHP)
in order to cover their electricity and heating needs [76]. The proposed solution leads
to a Nash equilibrium point from which neither retailers nor end users have financial
incentives to deviate. Brahman et al. proposed a multi-objective optimization problem,
incorporating electricity, natural gas, and solar radiation to cover the users’ electricity
and thermal needs [77]. The objectives of the system include the minimization of the
total cost, the maintenance of user comfort, peak load curtailment through DR signals,
and the reduction of the total emissions generated. The problem was formulated as a
mixed integer linear programming (MILP) model and was solved using the CPLEX solver
for the three simulated cases. Su et al. proposed an interval optimization method for
the load scheduling of a domestic multi-energy system, including electricity and gas
loads [78]. The authors modeled uncertainties using interval numbers and constraints
using relaxation with tolerance degrees, transforming the problem to a deterministic one
before applying a genetic algorithm to obtain the solution. Simulation results displayed
significant cost savings compared to traditional approaches and sufficient robustness in
terms of uncertainties. Shao et al. considered the optimization of integrated electricity
and gas systems using IDR in energy hubs [79]. The authors considered both electricity
and gas loads as flexible and controllable in the demand side and employed a two-level
optimization framework to model the effect of IDR in energy hubs on the scheduling of
the integrated electricity and gas system. The solution of the problem was performed by
dividing the formulated TL-MINLP problem into two sub-problems, applying the Karush–
Kuhn–Tucker (KKT) transformation and McCormick envelopes to each problem. The
result was a standard MILP problem and a single-level nonlinear constraint optimization
problem, both of which were solved more efficiently than the original TL-MINLP problem.
Simulation results displayed that the application of IDR in energy hubs can significantly
enhance the flexibility of the integrated electricity and gas system.

IDR has also been investigated in the industrial and commercial sectors. Dababneh
and Li proposed an IDR optimization problem regarding the electricity and gas utilization
during the manufacturing process solved using the modified simulated annealing (MSA)
algorithm. The simulated cases tested the response of the manufacturer to the reception
of real-time price signals from energy providers, and results displayed financial savings
of up to 68% for the manufacturer. Liua et al. modeled the behavior of a load serving
entity (LSE), which participates in the day-ahead multi-energy market for electricity, gas,
and heat [80]. The entity can also store and convert energy using its own gas-fired CHP,
electric boilers, heat pumps, or other appropriate equipment. The authors simulated cases
both for each market independently and for all markets simultaneously, concluding that
IDR in the multi-energy market provides benefits both to the entity and to the network by
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reducing peak loads. In addition, Maeder et al. [81] investigated flexibility technologies for
decarbonized power systems and applied a novel optimization model in various power
systems in Central Europe (Switzerland, Austria, France, Germany, and Italy). The authors
concluded that decarbonized power systems entail a cost shift from the operational to the
investment phase, and total normalized costs could be higher than power market prices.

In terms of power generation, due to the low cost and emissions of natural gas, the
usage of natural gas-fired power plants has been steadily increasing during the last years,
gaining significant share over oil and coal sources [82]. This fact provided the incentive
for new optimization models to be developed, which simulate both the natural gas and
the electricity infrastructures. Such an approach was detailed by Bai et al. [83], where a
case study was performed on a six-bus electricity network, containing electricity loads,
gas-fired generators, and wind turbines, along with a seven-node gas network simulating
different wind uncertainty levels in order to evaluate the feasibility and effects of a co-
optimization strategy. During the case study, models were developed that considered
both system’s parameters and constraints in detail, and a DR program was evaluated
in terms of providing aggregated benefits. Finally, the approach was tested in a larger
system simulation comprised by a 118-bus electricity network with a 14-node natural gas
network (compared to the 7-node system of the initial test case), in order to evaluate the
practical value in bulk systems. The results of the test case indicated a decrease in the
total operational costs in all cases where a combined gas–electricity DR was implemented.
Additionally, the simulation in the larger system yielded similar results and within an
acceptable computation time.

Another approach based on the same advantages of natural gas was proposed by
Zhang et al. [84], which aimed to coordinate natural gas and electricity networks in order
to result in a less volatile hourly electric load profile. The proposed model took into
consideration random outages of generating units and transmission lines, random errors in
the forecasting of the day-ahead electricity loads, as well as natural gas network constraints
that affect gas-fired generating units in a stochastic approach. Monte Carlo simulations
were carried out to cover multiple scenarios. The authors concluded that hourly demand
response and the coordination of the two systems helped reduce the operation costs by
resulting in a flat electric load profile. This DR approach does not consider residential
natural gas DR.

Wang et al. reviewed the concepts of “Energy Internet”, multi-energy systems, and
integrated demand response, which combined multiple energy sources such as electricity,
natural gas, and thermal energy into a unified DR program, that took into account the
interaction of the sources and the user’s comfort, hence considering residential gas us-
age [12]. The advantages of the integrated DR over the traditional electricity DR practices
were outlined. The authors concluded that multi-energy systems, which are comprised
of electricity, thermal energy, natural gas, and other forms of energy, help users maintain
their comfort by shifting their energy source instead of shifting their loads. This means that
even inelastic loads can participate in such DR programs. In terms of domestic heating, the
combination of electricity and natural gas can lead to covering the same loads by assigning
a larger portion of the needed energy to natural gas when electricity prices are high and
maintaining the comfort level partially based on the buildings’ thermal inertia. In a similar
fashion, when, for instance, the wind output is high and the cost of electrical energy is low,
the source of energy can be switched to electricity and elastic loads can be served. In this
way, the difference from peak to valley of the electric load can be reduced.

Table 4 summarizes the main features of the research works in the literature of inte-
grated demand response in multi-energy systems.
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Table 4. Integrated demand response literature overview.

Ref.
No. Tools/Solvers Deployed DR Target Problem

Definition
Appliances

Used for DR Timeframe Test Case

[75]

Distributed algorithm for
the determination of the

system’s Nash
equilibrium

Decrease of total
energy cost by

electrical and gas
load shifting

Electricity and
gas

Micro gas
turbines

Day-ahead
execution Simulation

[76]

Epsilon Nash
equilibrium

approximation through a
novel discretization

algorithm

Increase of energy
retailers’ profits,

decrease of
customers’
payments

Electricity and
heat

Non-deferrable
electric and

heating loads

Day-ahead
execution Simulation

[77]

Multi-objective
optimization solved
through the epsilon
constraint method

Decrease of the
total energy cost

Electricity, gas,
and heating

storage

Household
appliances,

production, and
storage

components

Hour-ahead Simulation

[78]

Interval optimization
modelling and solution

through genetic
algorithm

Switching between
electricity and gas

consumption

Electricity and
gas

Water heater,
kitchen stove,

clothes washer,
air-

conditioning

Two-days
ahead

optimization
Simulation

[79]

Solution of an MINLP
problem through MILP
transformation via the
Karush–Kuhn–Tucker
(KKT) transformation

and McCormick
envelopes

Total electricity and
gas system cost

optimization

Electricity and
gas

Electrical and
gas loads in
energy hubs

Hourly Simulation

[80]
Modified simulated

annealing (MSA)
algorithm

Decrease of total
energy cost by

electrical and gas
load shifting

Electricity and
gas

Industrial
electricity/gas

load

Real-time
control to act in

15–30 min
Simulation

[81]

Power system
optimization model to

determine the
cost-efficient deployment

Total systems
behavior and

flexibility resources
evaluation

Electricity and
gas

Power systems
in Central

Europe

Long-term
evaluation in

decades
Simulation

[83] Interval-based nonlinear
optimization

Total electricity and
gas system cost

optimization

Electricity and
gas

Electricity
loads,

residential gas
loads

Hourly Simulation

[84]

Short-term stochastic
non-linear model

transformed into MILP
through linear
approximation

Gas-fired units
consumption

profile flattening
Electricity Electricity loads Day-ahead Simulation

7. Conclusions and Future Research Directions

Climate change has been a topic of high interest during the last years, with greenhouse
gas emissions being one/of the major factor behind the augmentation of the phenomenon.
Multiple initiatives for achieving emission reduction targets have been introduced by
countries worldwide, with energy efficiency being a major aspect towards this direction.
One of the most important emission sources is natural gas, a fossil fuel adopted by most
countries worldwide utilized in various applications, including the residential sector.

First, the initial step towards energy efficiency was improvement in boiler technology.
The most important solution at the design phase was the introduction of condensing boilers,
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which exhibit a significant increase in combustion efficiency compared to conventional
boilers. Other solutions include the usage of hydrogen together with natural gas during
the combustion process.

Second, after the boiler’s design phase and before its operation phase, manual opti-
mization can be employed to determine the boiler’s optimal operating parameters through
the mathematical modelling of its efficiency.

Third, at the boiler operating phase, technological advancements in the fields of smart
homes, machine learning, and Internet of Things have created opportunities for the devel-
opment of optimization solutions targeted at improving natural gas consumption energy
efficiency, yielding significant potential financial and environmental advantages. Specifi-
cally, automated optimization has been applied in pilot projects, requiring minimal human
intervention, to ensure optimal real time boiler operation. Additionally, various MPC- and
DPC-based solutions have been proposed in the literature that either use the boiler’s and
building’s mathematical models or utilize data acquired from sensors for the development
of machine learning models (such as neural networks), in order to forecast the boiler’s
efficiency and building’s thermal behavior and provide control instructions accordingly.

These methodologies, apart from directly improving the efficiency of the boiler, can
also be utilized to shape solutions adjusted to the gas balancing market, including natural
gas demand response. Combined with gas load forecasting techniques, where the existing
literature is vast, automated optimization solutions can be used in order to control the
natural gas load in real-time and provide implicit or explicit demand response services.
The existing literature does not currently cover the gas DR concept sufficiently, despite its
great potential, with only two large-scale pure gas DR real-world pilot tests/trials existing
currently and a small number of research works, most of which were validated through
simulated test cases. Considering the success of the already existing pilot tests, there is
certainly room for more similar trials that can focus on automated DR solutions. Despite
the existing literature, there is an apparent lack of practical commercial approaches in gas
DR, since many issues/challenges need to be explored and resolved; to this end, more
large-scale DR pilots would definitely be beneficial.

However, the concept of integrated demand response has been more extensively
covered in the existing literature, providing DR solutions that combine natural gas along
with other energy sources, such as electricity and heat, and displaying promising results
in terms of financial benefits from the combined DR services provision. However, similar
to gas DR, there is still a lack of commercial solutions, despite the promising results of
existing research works in the literature, and no large-scale real-world pilots have been
performed so far.

Based on the above conclusions, Table 5 summarizes the critical issues that have
already been solved and the main challenges that remain unresolved, and it provides useful
insights to where the current research and development are heading.
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Table 5. Critical issues, main challenges, and insights for the way forward.

Timeframe Research
Areas

Critical Issues
That Have Been Solved

Main Challenges
That Remain

Unsolved

Insights to Where the
Current Research,

Development, and Application
Are Heading

Gas boilers
design phase

Combustion
process

X Modulated load in the place
of on-off boilers

X Introduction of condensing
boilers

X Further energy efficiency
improvement

X Mix of gases with different com-
positions to achieve higher com-
bustion efficiency

X Use of different materials as
boiler components

After the
boiler’s

design phase
and before its

operation
phase

Combustion
and fuel-mix
optimization

X Upgrading of a conventional
boiler to a condensing one

X Improvement of the flamm-
able mix

X Proper maintenance and
fault detection

X Data-predictive methodologies
for the definition of the boiler’s
functional parameters before
commissioning

X Data-predictive methodologies
for early fault detection and im-
provement of their generaliza-
tion to assist in their robustness
and real-world adoption

X public adoption of automated
fault detection solutions

Boiler
operating

phase

Energy
efficiency—

gas
consumption
minimization

X Development of automated
optimization solutions based
on MPC and DPC method-
ologies

X Public adoption of auto-
mated optimization solu-
tions

X DPC methodologies utilizing the
latest advancements in AI seem
to take over more traditional
MPC approaches

X Utilization of the advancements
in IoT technology to commercial-
ize existing solutions

Gas demand
response

X Establishment of pilot DR
programs that validate the
meaning of gas DR

X Assessment of residential
gas DR potential through
simulations

X Large-scale adoption of
gas DR programs

X Residents’ willingness to
participate in manual
gas DR events

X Research is heading towards au-
tomated gas DR in smaller instal-
lations (i.e., domestic gas boilers),
attempting to mitigate residents’
unwillingness to participate in
manual DR event

X More automated gas DR pilots
with large number of domestic
gas boilers

X Setup of commercial companies
with automated gas DR solu-
tions (ICT, optimization algo-
rithms, etc.)

X Commercial commencement of
gas DR applications with domes-
tic boilers

Integrated
demand
response

X Validation of the aggregated
advantages of multiple
sources of DR services
through simulated environ-
ments

X Multiple combinations of en-
ergy sources (gas, electricity,
heat, etc.) have been assessed
in the existing literature, yield-
ing promising results

X Large-scale real-world
adoption of IDR solu-
tions is non-existent

X Transfer of theoretical IDR con-
cepts to practical implementa-
tions and real-world testing

X Public adoption through com-
mercialization of more practical
approaches
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Abbreviations

ABC Artificial bee colony
ACER European Union Agency of Cooperation of Energy Regulators
ANFIS Adaptive neuro-fuzzy inference system
ARIMA Autoregressive integrated moving average
CCGT Combined-cycle gas turbine
CHP Combined heat-power
CNG Compressed natural gas
DHW Domestic hot water
DPC Data predictive control
DR Demand response
ENTSOG European Network of Transmission System Operators for Gas
EU European Union
FCMs Fuzzy cognitive maps
FSA Factor selection algorithm
GA Genetic algorithm
GHG Greenhouse gas
ICT Information and communications technology
IDR Integrated demand response
KKT Karush–Kuhn–Tucker
LDC Local distribution company
LGA Life genetic algorithm
LSTM Long-short term memory
M&V Measurement and verification
MAE Mean absolute error
MAPE Mean absolute percentage error
MARNE Mean absolute range normalized error
MILP Mixed integer linear programming
MINLP Mixed integer non-linear programming
MPC Model predictive control
MSA Modified simulated annealing
NANGAM North American Natural Gas Model
NN Neural network
NU Network user
TSO Transmission system operator
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